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Abstract

In this paper we propose a novel framework for the construction of sparsity-inducing priors. In

particular, we define such priors as a mixture of exponential power distributions with a generalized

inverse Gaussian density (EP-GIG). EP-GIG is a variant of generalized hyperbolic distributions,

and the special cases include Gaussian scale mixtures and Laplace scale mixtures. Furthermore,

Laplace scale mixtures can subserve a Bayesian framework for sparse learning with nonconvex

penalization. The densities of EP-GIG can be explicitly expressed. Moreover, the corresponding

posterior distribution also follows a generalized inverse Gaussian distribution. We exploit these

properties to develop EM algorithms for sparse empirical Bayesian learning. We also show that

these algorithms bear an interesting resemblance to iteratively reweighted ℓ2 or ℓ1 methods. Finally,

we present two extensions for grouped variable selection and logistic regression.

Keywords: sparsity priors, scale mixtures of exponential power distributions, generalized inverse

Gaussian distributions, expectation-maximization algorithms, iteratively reweighted minimization

methods

1. Introduction

In this paper we are concerned with sparse supervised learning problems over a training data set

X = {(xi,yi)}n
i=1. The point of departure for our work is the traditional formulation of supervised

learning as a regularized optimization problem:

min
b

{

L(b;X )+Pλ(b)
}

,

where b denotes the model parameter vector, L(·) a loss function that penalizes data misfit, Pλ(·)
a regularization term penalizing model complexity, and λ > 0 a tuning parameter balancing the

relative significance of the loss function and the penalty.

Variable selection is a fundamental problem in the high-dimensional learning setting, and is

closely tied to the notion that the data-generating mechanism can be described using a sparse rep-

resentation. In supervised learning scenarios, the problem is to obtain sparse estimates for the

regression vector b. Given that it is NP-hard to use the ℓ0 penalty (that is, the number of the
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nonzero elements of b) (Weston et al., 2003), attention has focused on use of the ℓ1 penalty (Tib-

shirani, 1996). But in addition a number of studies have emphasized the advantages of nonconvex

penalties—such as the bridge penalty and the log-penalty—for achieving sparsity (Fu, 1998; Fan

and Li, 2001; Mazumder et al., 2011).

The regularized optimization problem can be cast into a maximum a posteriori (MAP) frame-

work. This is done by taking a Bayesian decision-theoretic approach in which the loss function

L(b;X ) is based on the conditional likelihood of the response yi and the penalty Pλ(b) is associated

with a prior distribution for b. For example, the least-squares loss function is associated with a

Gaussian likelihood, while there exists duality between the ℓ1 penalty and the Laplace prior.

The MAP framework provides us with Bayesian underpinnings for the sparse estimation prob-

lem. This has led to Bayesian versions of the lasso, which are based on expressing the Laplace prior

as a scale-mixture of a Gaussian distribution and an exponential density (Andrews and Mallows,

1974; West, 1987). Figueiredo (2003) and Kiiveri (2008) presented a Bayesian lasso based on the

Expectation-Maximization (EM) algorithm. Caron and Doucet (2008) considered EM-based esti-

mation with normal-gamma or normal-inverse-gaussian priors. In recent work, Polson and Scott

(2011) proposed using generalized hyperbolic distributions, variance-mean mixtures of Gaussians

with generalized inverse Gaussian densities, devising EM algorithms via data augmentation method-

ology. Lee et al. (2010) referred to such methods as “quasi-Bayesian.” Related empirical-Bayesian

sparse learning methods have been developed by Tipping (2001).

Recently, Park and Casella (2008) and Hans (2009) proposed full Bayesian lasso models based

on Gibbs sampling. Further work by Griffin and Brown (2010a) involved the use of a family of

normal-gamma priors as a generalization of the Bayesian lasso. This prior has been also used by

Archambeau and Bach (2009) to develop sparse probabilistic projections. In the work of Carvalho

et al. (2010), the authors proposed horseshoe priors which are a mixture of normal distributions and

a half-Cauchy density on the positive reals with a scale parameter. Kyung et al. (2010) conducted

in-depth performance analysis of Bayesian lassos.

There has also been work on nonconvex penalties within a Bayesian framework. Zou and Li

(2008) derived their local linear approximation (LLA) algorithm by combining the EM algorithm

with an inverse Laplace transformation. In particular, they showed that the bridge penalty can be

obtained by mixing the Laplace distribution with a stable distribution. Other authors have shown

that the prior induced from the log-penalty has an interpretation as a scale mixture of Laplace

distributions with an inverse gamma density (Cevher, 2009; Garrigues and Olshausen, 2010; Lee

et al., 2010; Armagan et al., 2011). Additionally, Griffin and Brown (2010b) devised a family of

normal-exponential-gamma priors for a Bayesian adaptive lasso (Zou, 2006). Polson and Scott

(2010, 2012) provided a unifying framework for the construction of sparsity priors using Lévy

processes.

In this paper we develop a novel framework for constructing sparsity-inducing priors. Gen-

eralized inverse Gaussian (GIG) distributions (Jørgensen, 1982) are conjugate with respect to an

exponential power (EP) distribution (Box and Tiao, 1992)—an extension of Gaussian and Laplace

distributions. Accordingly, we propose a family of distributions that we refer to as EP-GIG. In

particular, we define EP-GIG distributions as scale mixtures of EP distributions with a GIG density,

and derive their explicit densities. EP-GIG distributions can be regarded as a variant of generalized

hyperbolic distributions, and include Gaussian scale mixtures and Laplacian scale mixtures as spe-

cial cases. The Gaussian scale mixture is a class of generalized hyperbolic distributions (Polson and

Scott, 2011) and its special cases include normal-gamma distributions (Griffin and Brown, 2010a)
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as well as the Laplacian distribution. The generalized double Pareto distribution (Cevher, 2009;

Armagan et al., 2011; Lee et al., 2010) and the bridge distribution inducing the ℓ1/2 bridge penalty

(Zou and Li, 2008) are special cases of Laplacian scale mixtures. In Appendix B, we devise a set of

new EP-GIG priors.

Since GIG priors are conjugate with respect to EP distributions, it is feasible to apply EP-GIG

to Bayesian sparse learning. Although it has been illustrated that fully Bayesian sparse learning

methods based on Markov chain Monte Carlo sampling work well, our main focus is on a quasi-

Bayesian approach. Our goal is to explore the relationship between MAP estimators and classical

regularized estimators. In particular, using the fact that EP-GIG distributions are scale mixtures of

exponential power distributions, we devise EM algorithms for finding a sparse MAP estimate of b.

When we set the exponential power distribution to be the Gaussian distribution, the resulting EM

algorithm is closely related to the iteratively reweighted ℓ2 minimization methods in Daubechies

et al. (2010); Chartrand and Yin (2008) and Wipf and Nagarajan (2010). When we employ the

Laplace distribution as a special exponential power distribution, we obtain an EM algorithm which

is identical to the iteratively reweighted ℓ1 minimization method in Candès et al. (2008).

We also develop hierarchical Bayesian approaches for grouped variable selection (Yuan and Lin,

2007) and penalized logistic regression by using EP-GIG priors. We apply our proposed EP-GIG

priors in Appendix B to conduct experimental analysis. The experimental results validate that the

proposed EP-GIG priors which induce nonconvex penalties are potentially feasible and effective

in sparsity modeling. Finally, we would like to highlight that our work offers several important

theoretical insights as follows.

1. Theorem 2 establishes a limiting relationship of EP-GIG distributions with the corresponding

EP distributions, an extension of the classical limiting relationship between the t-distribution

and Gaussian distribution as the degree of freedom approaches infinity. Theorem 5 proves

that an exponential power distribution of order q/2 (q > 0) can be represented a scale mixture

of exponential power distributions of order q with a gamma mixing density.

2. The first part of Theorem 6 shows that GIG is conjugate with respect to EP, while the second

part then offers theoretical support for relating EM algorithms with iteratively reweighted

minimization methods under our framework.

3. Theorem 7 shows that the negative log EP-GIG can induce a class of sparsity penalties, in

particular an interesting class of nonconvex penalties. Theorem 9 gives convergence analysis

for the EM algorithm. Finally, Theorem 10 establishes the oracle properties of the sparse

estimator based on Laplace scale mixture priors.

The paper is organized as follows. A brief review of exponential power distributions and gener-

alized inverse Gaussian distributions is given in Section 2. Section 3 presents EP-GIG distributions

and some of their properties, Section 4 develops our EM algorithm for Bayesian sparse learning,

and Section 5 discusses the relationship between the EM and iteratively reweighted minimization

methods. In Section 6 we conduct our experimental evaluations. Finally, we conclude our work in

Section 7, defer all proofs to Appendix A, and provide several new sparsity priors in Appendix B.
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2. Preliminaries

Before presenting EP-GIG priors for sparse modeling of regression vector b, we review the expo-

nential power (EP) and generalized inverse Gaussian (GIG) distributions.

2.1 Exponential Power Distributions

A univariate random variable b ∈R is said to follow an EP distribution if the density is specified by

p(b) =
η−1/q

2
q+1

q Γ( q+1
q
)

exp(− 1

2η
|b−u|q) = q

2

(2η)−
1
q

Γ( 1
q
)

exp(− 1

2η
|b−u|q),

with η > 0. In the literature (Box and Tiao, 1992), it is typically assumed that q ≥ 1. However, it is

possible to relax this assumption into q > 0, which will be useful for our purposes. Moreover, we

will only consider the setting that u = 0.

The distribution is denoted by EP(b|u,η,q). There are two classical special cases: the Gaussian

distribution arises when q = 2 (denoted N(b|u,η)) and the Laplace distribution arises when q = 1

(denoted L(b|u,η)). As for the case that q < 1, the corresponding density induces a bridge penalty

for b. We thus refer to it as the bridge distribution.

2.2 Generalized Inverse Gaussian Distributions

We first let G(η|τ,θ) denote the gamma distribution whose density is

p(η) =
θτ

Γ(τ)
ητ−1 exp(−θη), τ,θ > 0,

and IG(η|τ,θ) denote the inverse gamma distribution whose density is

p(η) =
θτ

Γ(τ)
η−(1+τ) exp(−θη−1), τ,θ > 0.

We now consider the GIG distribution. The density of the GIG distribution is defined as

p(η) =
(α/β)γ/2

2Kγ(
√

αβ)
ηγ−1 exp(−(αη+βη−1)/2), η > 0,

where Kγ(·) represents the modified Bessel function of the second kind with the index γ. We denote

this distribution by GIG(η|γ,β,α). It is well known that its special cases include the gamma dis-

tribution G(η|γ,α/2) when β = 0 and γ > 0, the inverse gamma distribution IG(η|− γ,β/2) when

α = 0 and γ < 0, the inverse Gaussian distribution when γ =−1/2, and the hyperbolic distribution

when γ = 0. Please refer to Jørgensen (1982) for details.

Note in particular that the pdf of the inverse Gaussian GIG(η|−1/2,β,α) is

p(η) =
( β

2π

)1/2

exp(
√

αβ)η− 3
2 exp(−(αη+βη−1)/2), β > 0,

and the pdf of GIG(η|1/2,β,α) is

p(η) =
( α

2π

)1/2

exp(
√

αβ)η− 1
2 exp(−(αη+βη−1)/2), α > 0.
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Note moreover that GIG(η|−1/2,β,0) and GIG(η|1/2,0,α) degenerate to IG(η|1/2,β/2) and

G(η|1/2,α/2), respectively.

We now present an alternative expression for the GIG density that is interesting. Let ψ =
√

αβ

and φ =
√

α/β. We can rewrite the density of GIG(η|γ,β,α) as

p(η) =
φγ

2Kγ(ψ)
ηγ−1 exp(−ψ(φη+(φη)−1)/2), η > 0. (1)

Let us consider that the case γ = 0. Furthermore, letting ψ → 0, we can see that p(η) ∝ 1/η, an

improper prior. Note that this improper prior can regarded as the Jeffreys prior because the Fisher

information of EP(b|0,η) with respect to η is η−2/q. Finally, we present some useful limiting

properties of GIG distributions in Appendix A.2.

3. EP-GIG Distributions

We now develop a family of distributions by mixing the exponential power EP(b|0,η,q) with the

generalized inverse Gaussian GIG(η|γ,β,α). The marginal density of b is thus defined by

p(b) =
∫ +∞

0
EP(b|0,η,q)GIG(η|γ,β,α)dη.

We refer to this distribution as the EP-GIG and denote it by EGIG(b|α,β,γ,q). The density can be

obtained via direct calculations. We have:

Theorem 1 Let b ∼ EGIG(b|α,β,γ,q). Then its density is

p(b) =
K γq−1

q

(
√

α(β+|b|q))

2
q+1

q Γ( q+1
q
)Kγ(

√

αβ)

α1/(2q)

βγ/2
[β+|b|q](γq−1)/(2q). (2)

The following theorem establishes an important relationship between an EP-GIG distribution

and the underlying EP distribution. It is an extension of the classical relationship of a t-distribution

with the Gaussian distribution. The proof can be directly obtained from Proposition 19 in Ap-

pendix A.2.

Theorem 2 We have the following asymptotic relationships:

(1) limγ→+∞EGIG(b|γα,β,γ,q) = EP(b|0,2/α,q);

(2) limγ→−∞EGIG(b|α,−γβ,γ,q) = EP(b|0,β/2,q).

(3) limψ→+∞EGIG(b|α,β,γ,q) = EP(b|0,φ,q) where ψ =
√

αβ and φ =
√

α/β ∈ (0,∞).

EP-GIG distributions can be regarded as variants of generalized hyperbolic distributions

(Jørgensen, 1982), because when q= 2 EP-GIG distributions are generalized hyperbolic distributions—

a class of Gaussian scale mixtures. However, EP-GIG becomes a class of Laplace scale mixtures

when q = 1. Note that when 0 < q < 2 an EP distribution is a class of Gaussian scale mixtures

(West, 1987; Lange and Sinsheimer, 1993), which implies that EP-GIG can also be represented as
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a class of Gaussian scale mixtures. However, the difficulty with such a representation is that the

corresponding mixing prior is usually not analytically available.

In Appendix B we present several new concrete EP-GIG distributions, obtained from particular

settings of γ and q. We now consider the two special cases in which the mixing density is either a

gamma distribution or an inverse gamma distribution. This yields two special EP-GIG distributions:

exponential power-gamma distributions and exponential power-inverse gamma distributions.

3.1 Generalized t Distributions

We first consider an important family of EP-GIG distributions which are scale mixtures of exponen-

tial power EP(b|u,η,q) with inverse gamma IG(η|τ/2,τ/(2λ)). Following the terminology of Lee

et al. (2010), we refer them as generalized t distributions and denote them by GT(b|u,τ/λ,τ/2,q).
Specifically, the density of the generalized t is

p(b) =
∫

EP(b|u,η,q)IG(η|τ/2,τ/(2λ))dη =
q

2

Γ( τ
2
+ 1

q
)

Γ( τ
2
)Γ( 1

q
)

(λ

τ

)
1
q
(

1+
λ

τ
|b−u|q

)−( τ
2
+ 1

q
)
, (3)

where τ > 0, λ > 0 and q > 0. Clearly, when q = 2 the generalized t distribution becomes to a

t-distribution. Moreover, when τ = 1, it is the Cauchy distribution.

On the other hand, when q = 1, Cevher (2009) and Armagan et al. (2011) called the resulting

distributions generalized double Pareto distributions (GDP). The densities are given as follows:

p(b) =
∫ ∞

0
L(b|0,η)IG(η|τ/2,τ/(2λ))dη =

λ

4

(

1+
λ|b|

τ

)−(τ/2+1)
, λ > 0,τ > 0.

Furthermore, consider τ = 1, such that η ∼ IG(η|1/2,1/(2λ)). We obtain

p(b) =
λ

4
(1+λ|b|)−3/2.

It is well known that the limit of the t-distribution as τ → ∞ is the normal distribution. We find

that we are able to extend this property to the generalized t distribution. In particular, we have the

following theorem, which is a corollary of the first part of Theorem 2.

Corollary 3 Let the generalized t distribution be defined in (3). Then, for λ > 0 and q > 0,

lim
τ→∞

GT(b|u,τ/λ,τ/2,q) = EP(b|u,1/λ,q).

Thus, as a special case of Corollary 3 for q = 1, we have

lim
τ→∞

GT(b|u,τ/λ,τ/2,1) = L(b|u,1/λ).

3.2 Exponential Power-Gamma Distributions

The density of the exponential power-gamma distribution is defined by

p(b|γ,α) =
∫ ∞

0
EP(b|0,η,q)G(η|γ,α/2)dη =

α
qγ+1

2q |b| qγ−1
2

2
qγ+1

q Γ( q+1
q
)Γ(γ)

Kγ− 1
q
(
√

α|b|q),γ,α > 0.
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We denote the distribution by EG(b|α,γ,q). The density of the normal-gamma distribution (Griffin

and Brown, 2010a) is

p(b|γ,α) =
∫ ∞

0
N(b|0,η)G(η|γ,α/2)dη =

α
2γ+1

4 |b|γ− 1
2

2γ− 1
2

√
πΓ(γ)

Kγ− 1
2
(
√

α|b|), γ,α > 0.

As an application of the second part of Theorem 2 in this case, we can obtain the following theorem.

Corollary 4 Let EG(b|λγ,γ/2,q) =
∫ ∞

0 EP(b|0,η,q)G(η|γ/2,λγ/2)dη with λ > 0. Then

lim
γ→∞

EG(b|λγ,γ/2,q) = EP(b|0,1/λ,q).

It is easily seen that when we let γ = 1, the normal-gamma distribution degenerates to the

Laplace distribution L(b|0,α−1/2/2). In addition, when q = 1 and γ = 3/2, which implies that

[b|η]∼ L(b|0,η) and η ∼ G(η|3/2,α/2), we have

p(b|α) = α

4
exp(−

√

α|b|) =
∫ +∞

0
L(b|0,η)G(η|3/2,α/2)dη. (4)

Obviously, the current exponential power-gamma distribution is identical to exponential power dis-

tribution EP(b|0,α−1/2/2,1/2), a bridge distribution with q = 1/2. Interestingly, we can extend

this relationship between the Gaussian and Laplace as well as between the Laplace and 1/2-bridge

to the general case. That is,

Theorem 5 Let γ = 1
2
+ 1

q
. Then,

EP(b|0,α−1/2/2,q/2) =
qα1/q

4Γ(2/q)
exp(−

√

α|b|q) =
∫ +∞

0
EP(b|0,η,q)G(η|γ,α/2)dη.

This theorem implies that a q/2−bridge distribution can be represented as a scale mixture of

q−bridge distributions. A class of important settings are q = 21−m and γ = 1
2
+ 1

q
= 1+2m

2
where

m is any nonnegative integer.

3.3 Conditional Priors, Marginal Priors and Posteriors

We now study the posterior distribution of η conditioning on b. It is immediate that the posterior

distribution follows GIG(η|(γq−1)/q,(β+ |b|q),α). This implies that GIG distributions are conju-

gate with respect to the EP distribution. We note that in the cases γ = 1/2 and q = 1, as well as γ = 0

and q = 2, the posterior distribution is GIG(η|−1/2,(β+ |b|q),α). In the cases γ = 3/2 and q = 1,

as well as γ = 1 and q = 2, the posterior distribution is GIG(η|1/2,(β+ |b|q),α). When γ = −1/2

and q = 1, or γ =−1 and q = 2, the posterior distribution is GIG(η|−3/2,(β+ |b|q),α).
Additionally, we have the following theorem.

Theorem 6 Suppose that b|η ∼ EP(b|0,η,q) and η ∼ GIG(η|γ,β,α). Then

(i) b ∼ EGIG(b|α,β,γ,q) and η|b ∼ GIG(η|(γq−1)/q,(β+ |b|q),α).

(ii)
∂−log p(b)

∂|b|q = 1
2
E(η−1|b) = 1

2

∫
η−1 p(η|b)dη.

When − log p(b) is used as a penalty in supervised sparse learning, iteratively reweighted ℓ1 or

ℓ2 methods are generally used for solving the resulting optimization problem. We will see that

Theorem 6 implies a relationship between an iteratively reweighted method and an EM algorithm,

which is presented in Section 4.
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3.4 Duality between Priors and Penalties

Since there is duality between a prior and a penalty, we are able to construct a penalty from p(b); in

particular, − log p(b) corresponds to a penalty. For example, let p(b) be defined as in (7) or (8) (see

Appendix B). It is then easily checked that − log p(b) is concave in |b|. Moreover, if p(b) is given

in (4), then − log p(b) induces the ℓ1/2 penalty |b|1/2. In fact, we have the following theorem.

Theorem 7 Let p(b) be the EP-GIG density given in (2). If − log p(b) is regarded as a function of

|bq|, then − d log(p(b))
d|b|q is completely monotone on (0,∞). Furthermore, when 0 < q ≤ 1, − log(p(b))

is concave in |b| on (0,∞); namely, − log(p(b)) defines a class of nonconvex penalties for b.

Here a function φ(z) on (0,∞) is said to be completely monotone (Feller, 1971) if it possesses

derivatives φ(n) of all orders and

(−1)nφ(n)(z)≥ 0, z > 0.

Theorem 7 implies that the first-order and second-order derivatives of − log(p(b)) with respect to

|b|q are nonnegative and nonpositive, respectively. Thus, − log(p(b)) is concave and nondecreasing

in |b|q on (0,∞). Additionally, |b|q for 0 < q ≤ 1 is concave in |b| on (0,∞). Consequently, when

0 < q ≤ 1, − log(p(b)) is concave in |b| on (0,∞). In other words, − log(p(b)) with 0 < q ≤ 1

induces a nonconvex penalty for b.

Figure 1 depicts several penalties graphically; these are obtained from the special priors in

Appendix B. It is readily seen that the fist three penalty functions are concave in |b| on (0,∞).
In Figure 2, we also illustrate the penalties induced from the 1/2-bridge scale mixture priors (see

Examples 7 and 8 in in Appendix B), generalized t priors and EP-Gamma priors. Again, we see

that the two penalties induced from the 1/2-bridge mixture priors are concave in |b| on (0,∞). This

agrees with Theorem 7.

4. Quasi-Bayesian Sparse Learning Methods

In this section we apply EP-GIG priors to quasi-Bayesian sparse learning. Suppose we are given a

set of training data {(xi,yi) : i = 1, . . . ,n}, where the xi ∈ R
p are the input vectors and the yi are the

corresponding responses. Moreover, we assume that ∑n
i=1 xi = 0 and ∑n

i=1 yi = 0. We now consider

the following linear regression model:

y = Xb+ ε,

where y = (y1, . . . ,yn)
T is the n×1 response vector, X = [x1, . . . ,xn]

T is the n×p input matrix, and

ε is a Gaussian error vector N(ε|0,σIn). We aim to estimate the vector of regression coefficients

b = (b1, . . . ,bp)
T under a MAP framework.

4.1 Bayesian Sparse Regression

We place an EP-GIG prior on each of the elements of b. That is,

p(b|σ) =
p

∏
j=1

EGIG(b j|σ−1α,σβ,γ,q).

Using the property that the EP-GIG distribution is a scale mixture of exponential power distribu-

tions, we devise an EM algorithm for the MAP estimation of b. For this purpose, we define a
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Figure 1: Penalty functions induced from exponential power-generalized inverse gamma (EP-GIG)

priors in which α = 1.

hierarchical model:

[y|b,σ]∼ N(y|Xb,σIn),

[b j|η j,σ]
ind∼ EP(b j|0,ση j,q),

[η j|γ,β,α] iid∼ GIG(η j|γ,β,α),
p(σ) = Constant.

According to Section 3.3, we have

[η j|b j,σ,α,β,γ]∼ GIG
(

η j

∣

∣(γq−1)/q, β+σ−1|b j|q, α
)

.

Given the tth estimates (b(t),σ(t)) of (b,σ), the E-step of EM calculates

Q(b,σ|b(t),σ(t)), log p(y|b,σ)+
p

∑
j=1

∫
log p[b j|η j,σ]p(η j|b(t)j ,σ(t),α,β,γ)dη j

∝ −n

2
logσ− 1

2σ
(y−Xb)T (y−Xb)− p

q
logσ

− 1

2σ

p

∑
j=1

|b j|q
∫

η−1
j p(η j|b(t)j ,σ(t),α,β,γ)dη j.
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Figure 2: Penalty functions induced from 1/2-bridge scale mixture priors, exponential power-

inverse gamma (or generalized t, GT) priors and exponential power-gamma (EG) priors.

Here we omit some terms that are independent of parameters σ and b. In fact, we only need to

calculate E(η−1
j |b(t)j ,σ(t)) in the E-step. It follows from Proposition 16 (see Appendix A) that

w
(t+1)
j , E(η−1

j |b(t)j ,σ(t)) =
α1/2

[

β+|b(t)j |q/σ(t)
]1/2

K(γq−q−1)/q

(

√

α[β+|b(t)j |q/σ(t)]
)

K(γq−1)/q

(

√

α[β+|b(t)j |q/σ(t)]
)

. (5)

There do not exist analytic computational formulae for arbitrary modified Bessel functions Kν.

Thus, in general we need to resort to a numerical approximation of the Bessel function. Fortunately,

however, when γ and q take the special values in Appendix B, we have closed-form expressions for

2040



EP-GIG PRIORS AND APPLICATIONS IN BAYESIAN SPARSE LEARNING

(γ,q) γ = 1
2
,q = 1 γ = 3

2
,q = 1 γ = 0,q = 2 γ = 1,q = 2

w j =
1+
√

α(β+σ−1|b j |)
β+σ−1|b j |

√

α
β+σ−1|b j |

1+
√

α(β+σ−1b2
j )

β+σ−1b2
j

√

α
β+σ−1b2

j

Table 1: E-steps of EM for different settings of γ and q. Here we omit superscripts “(t)”.

the corresponding Bessel functions and thus for the w j. In particular, we have from Proposition 17

(see Appendix A) that

w
(t+1)
j =



























[

σ(t)α

σ(t)β+|b(t)j |q

]1/2

(γq−1)/q = 1/2,

σ(t)+[σ(t)α(σ(t)β+|b(t)j |q)]1/2

σ(t)β+|b(t)j |q
(γq−1)/q =−1/2,

3σ(t)

σ(t)β+|b(t)j |q
+ σ(t)α

σ(t)+[σ(t)α(σ(t)β+|b(t)j |q)]1/2
(γq−1)/q =−3/2.

In Table 1 we list these cases with different settings of γ and q.

The M-step maximizes Q(b,σ|b(t),σ(t)) with respect to (b,σ). In particular, we have:

b(t+1) = argmin
b

(y−Xb)T (y−Xb)+
p

∑
j=1

w
(t+1)
j |b j|q,

σ(t+1) =
q

qn+2p

{

(y−Xb(t+1))T (y−Xb(t+1))+
p

∑
j=1

w
(t+1)
j |b(t+1)

j |q
}

.

4.2 A Hierarchy for Grouped Variable Selection

In the hierarchy specified previously each b j is assumed to have distinct scale η j. We can also let

several b j share a common scale parameter, thereby obtaining a Bayesian approach to group sparsity

(Yuan and Lin, 2007). We next briefly describe this approach.

Let Il for l = 1, . . . ,g be a partition of I = {1,2, . . . , p}; that is, ∪g
j=1I j = I and I j ∩ Il = /0 for

j 6= l. Let pl be the cardinality of Il , and bl = {b j : j ∈ Il} denote the subvectors of b, for l = 1, . . . ,g.

The hierarchy is then specified as

[y|b,σ]∼ N(y|Xb,σIn),

[b j|ηl,σ]
iid∼ EP(b j|0,σηl,q), j ∈ Il

[ηl|γl,β,α]
ind∼ GIG(ηl|γl,β,α), l = 1, . . . ,g.

Moreover, given σ, the bl are conditionally independent. By integrating out ηl , the marginal density

of bl conditional on σ is then

p(bl|σ) =
K γl q−pl

q

(
√

α(β+σ−1‖bl‖q
q))

[

2
q+1

q σ
1
q Γ( q+1

q
)
]pl

Kγl
(
√

αβ)

αpl/(2q)

βγl/2

[

β+σ−1‖bl‖q
q

](γlq−pl)/(2q)
,

which implies bl is non-factorial. The posterior distribution of ηl on bl is then GIG(ηl| γlq−pl

q
, β+

σ−1‖bl‖q
q, α).
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In this case, the iterative procedure for (b,σ) is given by

b(t+1) = argmin
b

(y−Xb)T (y−Xb)+
g

∑
l=1

w
(t+1)
l ‖bl‖q

q,

σ(t+1) =
q

qn+2p

{

(y−Xb(t+1))T (y−Xb(t+1))+
g

∑
l=1

w
(t+1)
l ‖b

(t+1)
l ‖q

q

}

,

where for l = 1, . . . ,g,

w
(t+1)
l =

α1/2

[

β+‖b
(t)
l ‖q

q/σ(t)
]1/2

K γl q−q−pl
q

(

√

α[β+‖b
(t)
l ‖q

q/σ(t)])

K γl q−pl
q

(

√

α[β+‖b
(t)
l ‖q

q/σ(t)])

.

Recall that there is usually no analytic computation for w
(t+1)
l . However, setting γl such that

γlq−pl

q
=

1
2

or
γlq−pl

q
=− 1

2
yields an analytic computation. As a result, we have

w
(t+1)
j =















[

σ(t)α

σ(t)β+‖b
(t)
l ‖q

q

]1/2

(γlq−pl)/q = 1/2,

σ(t)+
[

σ(t)α(σ(t)β+‖b
(t)
l ‖q

q)
]1/2

σ(t)β+‖b
(t)
l ‖q

q

(γlq−pl)/q =−1/2.

Figure 3 depicts the hierarchical models in Section 4.1 and 4.2. It is clear that when g = p and

p1 = · · ·= pg = 1, the models are identical.

α β γ

ηj

bj

y X

σ

p

(a) independent

α β

γl

ηj

bj

y X

σ

pl
g

(b) grouped

Figure 3: Graphical representations.

4.3 Extensions to Logistic Regression

Another extension is the application to penalized logistic regression for classification. We consider

a binary classification problem in which y ∈ {0,1} now represents the label of the corresponding
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input vector x. In the logistic regression model the expected value of yi is given by

P(yi = 1|xi) =
1

1+ exp(−xT
i b)

, πi.

In this case σ = 1 and the log-likelihood function becomes

log p(y|b) =
n

∑
i=1

[yi logπi +(1−yi) log(1−πi)].

Given the tth estimate b(t) of b, the E-step of EM calculates

Q(b|b(t)), log p(y|b)+
p

∑
j=1

∫
log p[b j|η j]p(η j|b(t)j ,α,β,γ)dη j

∝
n

∑
i=1

[yi logπi +(1−yi) log(1−πi)]−
1

2

p

∑
j=1

w
(t+1)
j |b j|q.

As for the M-step, a feasible approach is to first obtain a quadratic approximation to the log-

likelihood function based on its second-order Taylor series expansion at the current estimate b(t) of

the regression vector b. We accordingly formulate a penalized linear regression model. In particular,

the M-step solves the following optimization problem

b(t+1) = argmin
b∈Rp

(ỹ−Xb)T W(ỹ−Xb)+
p

∑
j=1

w
(t+1)
j |b j|q,

where ỹ, the working response, is defined by ỹ = Xb(t)+W−1(y−π), W is a diagonal matrix with

diagonal elements πi(1−πi), and π = (π1, . . . ,πn)
T . Note that here the π are evaluated at b(t).

5. Iteratively Re-weighted ℓq Methods

We employ a penalty induced from the EP-GIG prior EGIG(b|α0,β0,γ,q). Let

R(|b|q), γq−1

2q
log(β0+|b|q)− logK γq−1

q

(
√

α0(β0+|b|q)) ∝ − logEGIG(b|α0,β0,γ,q).

Then the penalized regression problem is

min
b

{

F(b),
1

2
‖y−Xb‖2

2 +λ
p

∑
j=1

R(|b j|q)
}

,

which can be solved via an iteratively reweighted ℓq method. Given the tth estimate b(t) of b, the

method considers the first-order Taylor approximation of R(|b j|q) w.r.t. |b j|q at |b(t)j |q and solves

the following problem

min
b

{

Q(b|b(t)),
1

2
‖y−Xb‖2

2 +λ
p

∑
j=1

[

R(|b(t)j |q)+ω
(t+1)
j (|b j|q −|b(t)j |q)

]

}

,

2043



ZHANG, WANG, LIU AND JORDAN

which is equivalent to

min
b

1

2
‖y−Xb‖2

2 +λ
p

∑
j=1

ω
(t+1)
j |b j|q.

Here ω
(t+1)
j =

∂R(|b j|q)
∂|b j|q

∣

∣

∣

b j=b
(t)
j

. It follows from Theorem 6-(ii) that

ω j =
1

2

√
α0

√

β0 + |b j|q
K γq−1

q
−1
(
√

α0(β0 + |b j|q))

K γq−1
q

(
√

α0(β0+|b j|q))
. (6)

5.1 Relationship between EM and Iteratively Re-weighted Methods

Under certain conditions, Zou and Li (2008) established a relationship between their LLA algorithm

and an EM algorithm by using an inverse Laplace transformation. In particular, calculating weights

in the former is equivalent to calculating the E-step in the latter. In our case, furthermore, Theorem 6

shows the weights are equal to the expectations involved in the corresponding EM algorithm up to

the constant 1/2.

We pursue this relationship here, focusing on the relationship of the EM algorithm in Section 4.1

with the iteratively reweighted ℓq method proposed above. Letting α0 = α/σ, β0 = βσ and λ = σ,

we immediately see that 2ω j’s in (6) are equal to w j’s in (5). This implies the iteratively reweighted

minimization method is identical to the EM algorithm given in Section 4.1. When q = 2, the EM

algorithm is identical to the reweighted ℓ2 method and corresponds to a local quadratic approxi-

mation (Fan and Li, 2001; Hunter and Li, 2005). When q = 1, the EM algorithm is reweighted ℓ1

minimization and corresponds to an LLA.

In particular, when we set γ = 1 and q = 2, the EM algorithm is the same as one studied by

Daubechies et al. (2010). This implies that the reweighted ℓ2 method of Daubechies et al. (2010)

can be equivalently viewed as an EM algorithm based on our proposed EP-GIG in Example 5 of

Appendix B. When the EM algorithm is based on our proposed EP-GIG prior in Example 4 of

Appendix B (i.e., γ = 1 and q = 2), we obtain the combination of the reweighted ℓ2 method of

Daubechies et al. (2010) and the reweighted ℓ2 method of Chartrand and Yin (2008).

When γ = 3
2

and q = 1, the EM algorithm (see Table 1) is equivalent to a reweighted ℓ1 method,

which in turn has a close connection with the reweighted ℓ2 method of Daubechies et al. (2010).

Additionally, the EM algorithm based on γ = 1
2

and q = 1 (see Table 1) can be regarded as the

combination of the above reweighted ℓ1 method and the reweighted ℓ1 of Candès et al. (2008). In-

terestingly, the EM algorithm based on the EP-GIG priors given in Examples 7 and 8 of Appendix B

(i.e., γ = 3
2

and q = 1
2

or γ = 5
2

and q = 1
2
) corresponds a reweighted ℓ1/2 method.

In is also worth mentioning that in Appendix C we present EP-Jeffreys priors. Using this prior,

we can establish the close relationship of the adaptive lasso of Zou (2006) with an EM algorithm.

In particular, when q = 1, the EM algorithm based on the Jeffreys prior is equivalent to the adaptive

lasso.

5.2 Convergence Analysis

Owing to the equivalence between the iteratively reweighted ℓq method and the EM algorithm, we

investigate convergence analysis based on the iteratively reweighted ℓq method. Using the previous

notation, we have the following theorem.
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Lemma 8 Let {b(t) : 0,1,2, . . .} be a sequence defined by the the iteratively reweighted ℓq method.

Then

F(b)≤ Q(b|b(t)) and only F(b(t)) = Q(b(t)|b(t)).

Furthermore,

F(b(t+1))≤ F(b(t))

with equality if and only if b(t+1) = b(t).

It follows from Theorem 7 that
∂R(|b|q)

∂|b|q < 0. Thus, R(|b|q) is strictly concave in |b|q. Accordingly,

the lemma is proven. Since F(b(t)) ≥ 0, this lemma shows that F(b(t)) converges monotonically

to some F∗ ≥ 0. In fact, the iteratively reweighted ℓq method enjoys the same convergence as the

standard EM algorithm (Dempster et al., 1977; Wu, 1983). Let A(b(t)) be the set of values of b that

minimize Q(b|b(t)) over Ω⊂R
p and S be the set of stationary points of F in the interior of Ω. From

the Zangwill global convergence theorem (Wu, 1983; Sriperumbudur and Lanckriet, 2009) we have

that

Theorem 9 Let {b(t)} be an iterative sequence generated by b(t+1) ∈ A(b(t)). Suppose that (i)

A(b(t)) is closed over the complement of S and that (ii)

F(b(t+1))< F(b(t)) for all b(t) 6∈ S .

Then all the limit points of {b(t)} are stationary points of F(b) and F(b(t)) converges monotonically

to F(b∗) for some stationary point b∗.

5.3 Oracle Properties

We now study the oracle property of our sparse estimator based on Laplace scale mixture priors. For

this purpose, following the setup of Zou and Li (2008), we assume two conditions: (1) yi = xT
i b∗+εi

where ε1, . . . ,εn are i.i.d errors with mean 0 and variance σ2; (2) XT X/n → C where C is a positive

definite matrix. Let A = { j : b∗j 6= 0}. Without loss of generality, we assume that A = {1,2, . . . , p0}
with p0 < p. Thus, partition C as

[

C11 C12

C21 C22

]

,

where C11 is p0×p0. Additionally, let b∗
1 = {b∗j : j ∈ A} and b∗

2 = {un j : j /∈ A}.

We in particular consider the following one-step sparse estimator:

b
(1)
n = argmin

b

(y−Xb)T (y−Xb)+λn

p

∑
j=1

|b j|
Qγ−1(αn(βn + |b(0)j |))

Qγ−1(αn(βn +1))
,

where Qν(z) = Kν−1(
√

z)/(
√

zKv(
√

z)) and b(0) = (b
(0)
1 , . . . ,b

(0)
p )T is a root-n-consistent estimator

of b∗. The following theorem shows that this estimator has the oracle property. That is,

Theorem 10 Let b
(1)
n1 = {b

(1)
n j : j ∈ A} and An = { j : b

(1)
n j 6= 0}. Suppose that λn → ∞, λn/

√
n → 0,

αn/n → c1 and αnβn → c2, or that λn/n1/4 → ∞, λn/
√

n → 0, αn/
√

n → c1 and αnβn → c2. Here

c1,c2 ∈ (0,∞). Then b
(1)
n satisfies the following properties:

(1) Consistency in variable selection: limn→∞ P(An = A) = 1.

(2) Asymptotic normality:
√

n(b
(1)
n1 −b∗

1)→d N(0,σ2C−1
11 ).
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6. Experimental Studies

In this paper our principal purpose has been to provide a new hierarchical framework within which

we can construct sparsity-inducing priors and EM algorithms. In this section we conduct an experi-

mental investigation of particular instances of these EM algorithms. In particular, we study the cases

in Table 1. We also studied two EM algorithms based on the generalized t priors, that is, the ex-

ponential power-inverse gamma priors (see Section 3.1). For simplicity of presentation, we denote

them by “Method 1,” “Method 2,” “Method 3,” “Method 4,” “Method 5,” “Method 6,” and “Method

7,” respectively. Table 2 lists their EP-GIG prior specifications (the notation is the same as in Sec-

tion 3). As we see, using the EP-GIG priors given in Examples 7 and 8 (see Appendix B) yields

EM algorithms with closed-form E-steps. However, the corresponding M-steps are a weighted ℓ1/2

minimization problem, which is not efficiently solved. Thus, we did not implement such EM algo-

rithms.

For Method 1, Method 2, Method 3, Method 5 and Method 6, we fix α = 1 and σ(0) = 1, and use

the cross validation method to select β. In Method 4 and Method 7, the parameter λ was selected by

using cross validation. In addition, we implemented the lasso, the adaptive lasso (adLasso) and the

SCAD-based method for comparison. For the lasso, the adLasso and the reweighted ℓ1 problems

in the M-step, we solved the optimization problems by a coordinate descent algorithm (Mazumder

et al., 2011).

Method 1 Method 2 Method 3 Method 4

EGIG(b|σ−1,σβ, 1
2
,1) EGIG(b|σ−1,σβ, 3

2
,1) EGIG(b|σ−1,σβ,− 1

2
,1) GT(b|0, σ

λ ,
1
2
,1)

(q = 1, γ = 1
2
) (q = 1, γ = 3

2
) (q = 1, γ =− 1

2
) (q = 1, τ = 1)

Method 5 Method 6 Method 7 AdLasso

EGIG(b|σ−1,σβ,0,2) EGIG(b|σ−1,σβ,1,2) GT(b|0, σ
λ ,

1
2
,2) ∝ exp(−|b|1/2)

(q = 2, γ = 0) (q = 2, γ = 1) (q = 2, τ = 1) (q = 1
2
)

Table 2: The EP-GIG specifications of the algorithms.

Recall that Method 1, Method 2, Method 3, Method 4 and AdLasso in fact work with the

nonconvex penalties. In particular, Method 1, Method 2 and Method 3 are based on the Laplace

scale mixture priors proposed in Appendix B. Method 4 is based on the GDP prior by Armagan

et al. (2011) and Lee et al. (2010), and we employed the ℓ1/2 penalty in the adLasso. Thus, this

adLasso is equivalent to the EM algorithm which given in Appendix D. Additionally, Method 5 and

Method 6 are based on the Gaussian scale mixture priors given in Appendix B, and Method 7 is

based on the Cauchy prior. In Appendix C we present an EM algorithm based on the EP-Jeffreys

prior. This algorithm can be also regarded as an adaptive lasso with weights 1/|b(t)j |. Since the

performance of the algorithms is same to that of Method 4, we did not include the results with this

prior. We also did not report the results with the Gaussian scale mixture given in Example 6 of

Appendix B, because they are almost identical to those with Method 5 or Method 6.

6.1 Reconstruction on Simulation Data

We first evaluate the performance of each method on the simulated data which were used in Fan

and Li (2001) and Zou (2006). Let b = (3,1.5,0,0,2,0,0,0)T , xi
iid∼ N(0,Σ) with Σi j = 0.5|i− j|, and
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y0 = Xb. Then Gaussian noise ε ∼ N(0,δ2In) is added to y0 to form the response vector y = y0 +ε.

Let b̂ denote the sparse solution obtained from each method which takes X and y as inputs and

responses. Mean square error (MSE) ‖y0 −Xb̂‖2
2/n is used to measure reconstruction accuracy,

and the number of zeros in b̂ is employed to evaluate variable selection accuracy. If a method is

accurate, the number of “correct” (C) zeros should be 5 and “incorrect” (IC) should be 0.

For each pair (n, δ), we generate 10,000 data sets. In Table 3 we report the numbers of correct

and incorrect zeros as well as the average and standard deviation of MSE on the 10,000 data sets.

From Table 3 we see that the nonconvex penalization methods (Methods 1, 2, 3 and 4) yield the best

results in terms of reconstruction accuracy and sparsity recovery. It should be pointed out that since

the weights are defined as 1/|b(t)j |1/2 in the adLasso method, the method suffers from numerical

instability. In addition, Methods 5, 6 and 7 are based on reweighted ℓ2 minimization, so they do not

naturally produce sparse estimates. To achieve sparseness, they have to delete small coefficients.

MSE(±STD) C IC MSE (±STD) C IC MSE (±STD) C IC

n = 60, δ = 3 n = 120, δ = 3 n = 120, δ = 1

METHOD 1 0.699(±0.63) 4.66 0.08 0.279(±0.26) 4.87 0.01 0.0253(± 0.02) 5.00 0.00

METHOD 2 0.700(±0.63) 4.55 0.07 0.287(±0.30) 4.83 0.02 0.0256(±0.03) 4.99 0.00

METHOD 3 0.728(±0.60) 4.57 0.08 0.284(±0.28) 4.93 0.00 0.0253(±0.02) 5.00 0.00

METHOD 4 0.713(±0.68) 4.78 0.12 0.281(±0.26) 4.89 0.01 0.0255(±0.03) 5.00 0.00

METHOD 5 1.039(±0.56) 0.30 0.00 0.539(±0.28) 0.26 0.00 0.0599(±0.03) 0.77 0.00

METHOD 6 0.745(±0.66) 1.36 0.00 0.320(±0.26) 1.11 0.00 0.0262(±0.02) 4.96 0.00

METHOD 7 0.791(±0.57) 0.20 0.00 0.321(±0.28) 0.42 0.00 0.0265(±0.02) 2.43 0.00

SCAD 0.804(±0.59) 3.24 0.02 0.364(±0.30) 3.94 0.00 0.0264(±0.03) 4.95 0.00

ADLASSO 0.784(±0.57) 3.60 0.04 0.335(±0.27) 4.83 0.01 0.0283(±0.02) 4.82 0.00

LASSO 0.816(±0.53) 2.48 0.00 0.406(±0.26) 2.40 0.00 0.0450(±0.03) 2.87 0.00

RIDGE 1.012(±0.50) 0.00 0.00 0.549(±0.27) 0.00 0.00 0.0658(±0.03) 0.00 0.00

Table 3: Results on the simulated data sets.

6.2 Regression on Real Data

We apply the methods to linear regression problems and evaluate their performance on three data

sets: Pyrim and Triazines (both obtained from UCI Machine Learning Repository) and the biscuit

data set (the near-infrared (NIR) spectroscopy of biscuit doughs) (Breiman and Friedman, 1997).

For Pyrim and Triazines data sets, we randomly held out 70% of the data for training and used the

remainder for test. We repeat this process 10 times, and report the mean and standard deviation of

the relative errors defined as
1

ntest

ntest

∑
i=1

∣

∣

∣

∣

y(xi)−ỹ(xi)

y(xi)

∣

∣

∣

∣

,

where y(xi) is the target response for the test input xi, and ỹ(xi) is the prediction value computed

from a regression method. For the NIR data set, we use the supplied training and test sets: 39

instances for training and the remaining 31 for test (Breiman and Friedman, 1997). Since each

response of the NIR data includes 4 attributes (“fat,” “sucrose,” “flour” and “water”), we treat the

data as four regression data sets; namely, the input instances and each-attribute responses constitute

one data set.
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The results are listed in Table 4. We see that the four new methods outperform the adaptive lasso

and lasso in most cases. In particular, Methods 1, 2, 3 and 4 (the nonconvex penalization) yield the

best performance over the first two data sets, and Methods 5, 6 and 7 are the best on the NIR

data sets. This implies that nonconvex penalization outperforms convex penalization in sparsity,

but not always in classification accuracy. The reason is that sparsity is not always in concert with

classification accuracy.

PYRIM TRIAZINES NIR(FAT) NIR(SUCROSE) NIR(FLOUR) NIR(WATER)

METHOD 1 0.1342(±0.065) 0.2786(±0.083) 0.0530 0.0711 0.0448 0.0305

METHOD 2 0.1363(±0.066) 0.2704(±0.075) 0.0556 0.0697 0.0431 0.0312

METHOD 3 0.1423(±0.072) 0.2792(±0.081) 0.0537 0.0803 0.0440 0.0319

METHOD 4 0.1414(±0.065) 0.2772(±0.081) 0.0530 0.0799 0.0448 0.0315

METHOD 5 0.1381(±0.065) 0.2917(±0.089) 0.0290 0.0326 0.0341 0.0210

METHOD 6 0.2352(±0.261) 0.3364(±0.079) 0.0299 0.0325 0.0341 0.0208

METHOD 7 0.1410(±0.065) 0.3109(±0.110) 0.0271 0.0423 0.0277 0.0279

SCAD 0.1419(±0.064) 0.2807(±0.079) 0.0556 0.0715 0.0467 0.0352

ADLASSO 0.1430(±0.064) 0.2883(±0.080) 0.0533 0.0803 0.0486 0.0319

LASSO 0.1424(±0.064) 0.2804(±0.079) 0.0608 0.0799 0.0527 0.0340

Table 4: Relative error of each method on the three data sets. The numbers of instances (n) and

numbers of features (p) of each data set are: n = 74 and p = 27 in Pyrim, n = 186 and

p = 60 in Triazines, and n = 70 and p = 700 in NIR.

6.3 Experiments on Group Variable Selection

Here we use p = 32 with 8 groups, each of size 4. Let β1:4 = (3,1.5,2,0.5)T , β9:12 = β17:20 =
(6,3,4,1)T , β25:28 = (1.5,0.75,1,0.25)T with all other entries set to zero, while X, y0, and y are

defined in the same way as in Section 6.1. If a method is accurate, the number of “correct” (C) zeros

should be 16 and “incorrect” (IC) should be 0. Results are reported in Table 5.

6.4 Experiments on Classification

In this subsection we apply our hierarchical penalized logistic regression models in Section 4.3 to bi-

nary classification problems on five real-world data sets: Ionosphere, Spambase, Sonar, Australian,

and Heart from UCI Machine Learning Repository and Statlog. Table 6 gives a brief description of

these five data sets.

In the experiments, the input matrix X∈R
n×p is normalized such that ∑n

i=1 xi j = 0 and ∑n
i=1 x2

i j =
n for all j = 1, · · · , p. For each data set, we randomly choose 70% for training and the rest for test.

We repeat this process 10 times and report the mean and the standard deviation of classification

error rate. The results in Table 7 are interesting; in most cases Methods 1, 2, 3 and 4 based on the

nonconvex penalties outperform the other methods in both accuracy and sparsity.
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MSE(±STD) C IC MSE (±STD) C IC MSE (±STD) C IC

n = 60, δ = 3 n = 120, δ = 3 n = 120, δ = 1

METHOD 1′ 2.531(±1.01) 15.85 0.31 1.201(±0.45) 16.00 0.14 0.1335(±0.048) 15.72 0.01

METHOD 2′ 2.516(±1.06) 15.87 0.28 1.200(±0.43) 15.97 0.10 0.1333(±0.047) 15.87 0.00

METHOD 3′ 2.445(±0.96) 15.88 0.54 1.202(±0.43) 15.98 0.25 0.1301(±0.047) 16.00 0.01

METHOD 4′ 2.674(±1.12) 15.40 0.30 1.220(±0.45) 15.79 0.49 0.1308(±0.047) 16.00 0.00

METHOD 5′ 2.314(±0.90) 5.77 0.04 1.163(±0.41) 7.16 0.03 0.1324(±0.047) 16.00 0.01

METHOD 6′ 2.375(±0.92) 10.18 0.04 1.152(±0.41) 15.56 0.03 0.1322(±0.047) 16.00 0.00

METHOD 7′ 2.478(±0.97) 9.28 0.05 1.166(±0.41) 14.17 0.03 0.1325(±0.047) 15.96 0.00

GLASSO 2.755(±0.92) 5.52 0.00 1.478(±0.48) 3.45 0.00 0.1815(±0.058) 3.05 0.00

ADLASSO 3.589(±1.10) 11.36 2.66 1.757(±0.56) 11.85 1.42 0.1712(±0.058) 14.09 0.32

LASSO 3.234(±0.99) 9.17 1.29 1.702(±0.52) 8.53 0.61 0.1969(±0.060) 8.03 0.05

Table 5: Results on the simulated data sets.

Ionosphere Spambase Sonar Australian Heart

n 351 4601 208 690 270

p 33 57 60 14 13

Table 6: The description of data sets. Here n: the numbers of instances; p: the numbers of features.

IONOSPHERE SPAMBASE SONAR AUSTRALIAN HEART

METHOD 1 9.91(±2.19) 7.54(±0.84) 18.71(±5.05) 12.46(±2.08) 13.83(±3.33)

METHOD 2 10.19(±2.03) 7.47(±0.85) 19.19(±5.18) 12.56(±2.06) 14.20(±3.50)

METHOD 3 10.00(±1.95) 7.58(±0.83) 19.03(±4.35) 12.61(±2.15) 14.32(±3.60)

METHOD 4 10.66(±1.94) 7.61(±0.83) 21.65(±5.11) 12.65(±2.14) 13.95(±3.49)

METHOD 5 11.51(±3.77) 8.78(±0.41) 21.61(±5.70) 12.03(±1.74) 13.21(±3.14)

METHOD 6 11.51(±3.72) 8.86(±0.41) 21.94(±5.85) 13.24(±2.22) 14.57(±3.38)

METHOD 7 11.70(±4.06) 9.49(±0.33) 22.58(±5.84) 14.11(±2.48) 13.46(±3.10)

SCAD 10.47(±2.06) 7.58(±0.83 21.94(±5.60) 12.66(±2.08) 13.83(±3.43)

ℓ1/2 10.09(±1.67) 7.51(±0.86) 20.00(±5.95) 12.56(±2.15) 14.20(±3.78)

ℓ1 10.47(±1.96) 7.57(±0.83) 21.61(±5.11) 12.66(±2.15) 13.95(±3.49)

Table 7: Misclassification rate (%) of each method on the five data sets.

7. Conclusions

In this paper we have proposed a family of sparsity-inducing priors that we call exponential power-

generalized inverse Gaussian (EP-GIG) distributions. We have defined the EP-GIG family as a

mixture of exponential power distributions with a generalized inverse Gaussian (GIG) density. EP-

GIG are extensions of Gaussian scale mixtures and Laplace scale mixtures. As a special example
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of the EP-GIG framework, the mixture of Laplace with GIG can induce a family of nonconvex

penalties. In Appendix B, we have presented five new EP-GIG priors which can induce nonconvex

penalties.

Since GIG distributions are conjugate with respect to the exponential power distribution, EP-

GIG are natural for Bayesian sparse learning. In particular, we have developed hierarchical Bayesian

models and devised EM algorithms for finding sparse solutions. We have also shown how this

framework can be applied to grouped variable selection and logistic regression problems. Our

experiments have shown that the proposed EP-GIG priors giving rise to nonconvex penalties are

potentially feasible and effective in sparsity modeling.
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Appendix A. Proofs

We first present some mathematical preliminaries that will be needed.

A.1 Mathematical Preliminaries

The first three of the following lemmas are well known, so we omit their proofs.

Lemma 11 Let limν→∞ a(ν) = a. Then limν→∞

(

1+ a(ν)
ν

)ν
= exp(a).

Lemma 12 (Stirling Formula) limν→∞
Γ(ν)

(2π)1/2νν−1/2 exp(−ν)
= 1.

Lemma 13 Assume z > 0 and ν > 0. Then

lim
ν→∞

Kν(ν
1/2z)

π1/22ν−1/2ν(ν−1)/2z−ν exp(−ν)exp(−z2/4)
= 1.

Proof Consider the integral representation of Kν(ν
1/2z) as

Kν(ν
1/2z) = π−1/22ννν/2zνΓ

(

ν+
1

2

)

∫ ∞

0
(t2 +νz2)−ν− 1

2 cos(t)dt

= π−1/22νν−(ν+1)/2z−(ν+1)Γ
(

ν+
1

2

)

∫ ∞

0

cos(t)

(1+ t2/(νz2))ν+ 1
2

cos(t)dt.

Thus, we have

lim
ν→∞

Kν(ν
1/2z)

π−1/22νν−(ν+1)/2z−(ν+1)Γ
(

ν+ 1
2

) = lim
ν→∞

∫ ∞

0

cos(t)

(1+ t2/(νz2))ν+ 1
2

cos(t)dt

=
∫ ∞

0
cos(t)exp(−t2/z2)dt.
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We now calculate the integral
∫ ∞

0 cos(t)exp(−t2/z2)dt for z > 0. We denote this integral by φ(z)
and let u = t/z. Hence,

φ(z) = z

∫ ∞

0
exp(−u2)cos(uz)du = z f (z),

where f (z) =
∫ ∞

0 exp(−u2)cos(uz)du. Note that

f ′(z) =−
∫ ∞

0
exp(−u2)sin(uz)udu =

1

2

∫ ∞

0
sin(uz)d exp(−u2)

=− z

2

∫ ∞

0
exp(−u2)cos(uz)du =− z

2
f (z),

which implies that f (z) =C exp(−z2/4) where C is a constant independent of z. We calculate f (1)
to obtain C. Since

C = lim
z→+0

f (z) = lim
z→+0

∫ ∞

0
e−u2

cos(uz)du =
∫ ∞

0
e−u2

du =

√
π

2
,

we have φ(z) =
√

π
2

zexp(−z2/4). Subsequently,

lim
ν→∞

Kν(ν
1/2z)

π−1/22νν−(ν+1)/2z−(ν+1)Γ
(

ν+ 1
2

) =

√
π

2
zexp(−z2/4).

On the other hand, it follows from Lemmas 11 and 12 that

lim
ν→∞

Γ(ν+1/2)

(2π)1/2νν exp(−ν)
= lim

ν→∞

Γ(ν+1/2)√
2πνν[1+1/(2ν)]ν exp(−ν)exp(−1/2)

= 1.

Thus,

lim
ν→∞

Kν(ν
1/2z)

π
1
2 2ν− 1

2 ν
ν−1

2 z−ν exp(−ν)exp(− z2

4
)
= 1.

Lemma 14 The modified Bessel function of the second kind Kγ(u) satisfies the following properties:

(1) Kγ(u) = K−γ(u);

(2) Kγ+1(u) = 2
γ
u
Kγ(u)+Kγ−1(u);

(3) K1/2(u) = K−1/2(u) =
√

π
2u

exp(−u);

(4)
∂Kγ(u)

∂u
=− 1

2
(Kγ−1(u)+Kγ+1(u)) =−Kγ−1(u)− γ

u
Kγ(u) =

γ
u
Kγ(u)−Kγ+1(u).

(5) For γ ∈ (−∞,+∞), Kγ(u)∼
√

π
2u

exp(−u) as u →+∞.

Lemma 15 Let Qν(z) = Kν−1(
√

z)/(
√

zKν(
√

z)) where ν ∈ R and z > 0. Then, Qν is completely

monotone.
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Proof When ν ≥ 0, the result was proved by Grosswald (1976). Thus, we only need to consider the

case in which ν < 0. In this case, we let ν =−τ where τ > 0. Thus,

Qν =
K−τ−1(

√
z)√

zK−τ(
√

z)
=

Kτ+1(
√

z)√
zKτ(

√
z)

=
2τ

z
+

Kτ−1(
√

z)√
zKτ(

√
z)
,

which is obviously completely monotone.

The following proposition of the GIG distribution can be found in Jørgensen (1982).

Proposition 16 Let η be distributed according to GIG(η|γ,β,α) with α > 0 and β > 0. Then

E(ην) =
(β

α

)ν/2 Kγ+ν(
√

αβ)

Kγ(
√

αβ)
.

We are especially interested in the cases that γ = 1/2, γ = −1/2, γ = 3/2 and γ = −3/2. For

these cases, we have the following results.

Proposition 17 Let α > 0 and β > 0.

(1) If η is distributed according to GIG(η|1/2,β,α), then

E(η) =
1+

√

αβ

α
, E(η−1) =

√

α

β
.

(2) If η is distributed according to GIG(η|−1/2,β,α), then

E(η) =

√

β

α
, E(η−1) =

1+
√

αβ

β
.

(3) If η is distributed according to GIG(η|3/2,β,α), then

E(η) =
3

α
+

β

1+
√

αβ
, E(η−1) =

α

1+
√

αβ
.

(4) If η is distributed according to GIG(η|−3/2,β,α), then

E(η) =
β

1+
√

αβ
, E(η−1) =

3

β
+

α

1+
√

αβ
.

Proof It follows from Lemma 14 that K3/2(u) =
1+u

u
K1/2(u) =

1+u
u

K−1/2(u).

We first consider the case that η ∼ GIG(η|1/2,β,α). Consequently, E(η−1) = α/β and

E(η) =
(β

α

)1/2 K 3
2
(
√

αβ)

K 1
2
(
√

αβ)
=
(β

α

)1/2 1+
√

αβ
√

αβ
=

1+
√

αβ

α
.
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As for the case that η ∼ GIG(η|−3/2,β,α), it follows from Proposition 16 that

E(η) =
(β

α

)1/2 K−1/2(
√

αβ)

K−3/2(
√

αβ)
=

β

1+
√

αβ

and

E(η−1) =
(β

α

)−1/2 K−5/2(
√

αβ)

K−3/2(
√

αβ)
=

3

β
+

α

1+
√

αβ
.

Likewise, we have the second and third parts.

A.2 Some Limiting Properties of GIG Distributions

An interesting property of the gamma and inverse gamma distributions is given as follows.

Proposition 18 Let λ > 0. Then

(1) limτ→∞ G(η|τ,τλ) = δ(η|1/λ).

(2) limτ→∞ IG(η|τ,τ/λ) = δ(η|1/λ).

Here δ(η|a) is the Dirac delta function; namely,

δ(η|a) =
{

∞ if η = a,
0 otherwise.

Proof Note that

lim
τ→∞

G(η|τ,τλ) = lim
τ→∞

(τλ)τ

Γ(τ)
ητ−1 exp(−τλη)

= lim
τ→∞

(τλ)τ

(2π)
1
2 ττ− 1

2 exp(−τ)
ητ−1 exp(−τλη) (Use the Stirling Formula)

= lim
τ→∞

τ
1
2

(2π)
1
2 η

(λη)τ

exp((λη−1)τ)
.

Since lnu ≤ u−1 for u > 0, with equality if and only if u = 1, we can obtain the proof.

The second part follows similarly.

As an extension of Proposition 18, we have the limiting property of GIG as follows.

Proposition 19 Let γ ∈ R, α > 0 and β > 0. Then

(1) limγ→+∞GIG(η|γ,β,γα) = δ(η|2/α).

(2) limγ→−∞GIG(η|γ,−γβ,α) = δ(η|β/2).

(3) limψ→+∞GIG(η|γ,β,α) = δ(η|φ) where ψ =
√

αβ and φ =
√

α/β ∈ (0,∞).
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Proof Using Lemma 13,

lim
γ→+∞

GIG(η|γ,β,γα) = lim
γ→+∞

γγ/2(α/β)γ/2

2Kγ(
√

γαβ)
ηγ−1 exp(−(γαη+βη−1)/2)

= lim
ν→+∞

αγ exp(αβ
4
)exp(−βη−1/2)

π
1
2 2γ+ 1

2 γ−
1
2

ηγ−1 exp(−γ(αη/2−1))

= lim
γ→+∞

η−1γ
1
2 exp(αβ

4
)

(2π)
1
2 exp(βη−1/2)

(αη/2)γ exp(−γ(αη/2−1))

= δ(η|2/α).

Again since lnu ≤ u−1 for u > 0, with equality if and only if u = 1, we can obtain the proof of Part

(1).

Let τ =−γ. We have

lim
γ→−∞

GIG(η|γ,−γβ,α) = lim
τ→+∞

GIG(η|− τ,τβ,α)

= lim
τ→+∞

(α/(τβ))−τ/2

2Kτ(
√

ταβ)
η−τ−1 exp(−(αη+ τβη−1)/2),

due to the fact that K−τ(
√

ταβ) = Kτ(
√

ταβ). Accordingly, we also have the second part.

Finally, based on (1) and Lemma 14, we have that

lim
ψ→+∞

p(η) = lim
ψ→+∞

ψ1/2

√
2π

1

exp( ψ
2φη(φη−1)2)

= δ(η|φ).

A.3 The Proof of Theorem 5

With the setting that γ = 1
2
+ 1

q
, we have

∫ ∞

0
EP(b|0,η,q)G(η|γ,α/2)dη =

α
1
q
+ 1

4 |b| q
4

2
2
q
+ 1

2 Γ( q+1
q
)Γ( 1

2
+ 1

q
)
K1/2(

√

α|b|q)

=
α

1
q
+ 1

4 |b| q
4

2
2
q
+ 1

2 2
− 2

q
√

π 2
q
Γ( 2

q
)

2−1/2
√

π

(α|b|q)1/4
exp(−

√

α|b|q)

=
qα1/q

4Γ( 2
q
)

exp(−
√

α|b|q) = EP(b|0,α−1/2/2,q/2).

Here we use the fact that Γ( q+1
q
)Γ( 1

2
+ 1

q
) = 2

1−2( 1
2
+ 1

q
)√πΓ(1+ 2

q
) = 2

− 2
q
√

π 2
q
Γ( 2

q
).
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A.4 The Proof of Theorem 6

The first part is immediate. We consider the proof of the second part. It follows from Lemma 14

that

∂− log p(b)

∂|b|q =
K γq−1

q
−1
(
√

α(β+ |b|q))+ (γq−1)/q√
α(β+|b|q)

K γq−1
q

(
√

α(β+ |b|q))

K γq−1
q

(
√

α(β+ |b|q))
1

2

α
√

α(β+ |b|q)

− γq−1

2q

1

β+ |b|q

=
1

2

√
α

√

β+ |b|q
K γq−1

q
−1
(
√

α(β+ |b|q))

K γq−1
q

(
√

α(β+ |b|q))
=

1

2
E(η−1|b).

due to that η|b ∼ GIG(η|(γq−1)/q,
√

β+ |b|q,α).

A.5 The Proof of Theorem 7

For notational simplicity, we let z = |bq|, ν = γq−1
q

and φ(z) = ∂−log p(b)
∂|b|q . According to the above

proof, we have

φ(z) =
α

2

1
√

α(β+ z)

Kν−1(
√

α(β+ z))

Kν(
√

α(β+ z))
.

It then follows from Lemma 15 that φ(z) is completely monotone.

A.6 The Proof of Theorem 10

Let b
(1)
n = b∗+ u√

n
and

û = argmin
u

{

Ψ(u) :=
∥

∥

∥
y−X(b∗+

u√
n
)
∥

∥

∥

2

+λn

p

∑
j=1

ω
(0)
j |b∗j+

u j√
n
|
}

,

where

ω
(0)
j =

√

αnβn +αn
√

αn(βn + |b(0)j |)

Kγ−2(
√

αn(βn + |b(0)j |))

Kγ−1(
√

αn(βn+|b(0)j |))

Kγ−1(
√

αn(βn +1))

Kγ−2(
√

αn(βn+1))
.

Consider that

Ψ(u)−Ψ(0) = uT (
1

n
XT X)u−2

εT X√
n

u+λn

p

∑
j=1

ω
(0)
j

{

∣

∣b∗j+
u j√

n

∣

∣−|b∗j |
}

.

We know that XT X/n → C and XT ε√
n
→d N(0,σ2C). We thus only consider the third term of the

right-hand side of the above equation. Since αnβn → c1 and αn → ∞ (note that αn/n → c2 > 0

implies αn →+∞), we have

Kγ−1(
√

αn(βn +1))

Kγ−2(
√

αn(βn+1))
→ 1.
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If b∗j = 0, then
√

n(|b∗j +
u j√

n
| − |b∗j |) = |u j|. And since

√
nb

(0)
j = Op(1), we have αn|b(0)j | =

(αn/
√

n)
√

n|b(0)j | = Op(1). Hence, Qγ−1(αn(βn + |b(0)j |)) converges to a positive constant in prob-

ability. As a result, we obtain

λnω
(0)
j√

n
→p→ ∞.

due to
√

αnβn +αn√
n

Kγ−1(
√

αnβn +αn)

Kγ−2(
√

αnβn +αn)
→√

c2.

If b∗j 6= 0, then ω
(0)
j →p

1
√

|b(0)j |
> 0 and

√
n(|b∗j +

u j√
n
|−|b∗j |)→ u jsgn(b∗j). Thus λn

ω
(0)
j√
n

√
n(|b∗j+

u j√
n
|−

|b∗j |)→p 0. The remaining parts of the proof can be immediately obtained via some slight modifi-

cations to that in Zou (2006) or Zou and Li (2008).

Appendix B. Several Special EP-GIG Distributions

We now present eight other important concrete EP-GIG distributions, obtained from particular set-

tings of γ and q.

B.1 Example 1

We first discuss the case that q = 1 and γ = 1/2. That is, we employ the mixing distribution of

L(b|0,η) with GIG(η|1/2,β,α). In this case, since

K 1
2
−1(

√

α(β+|b|)) = K−1/2(
√

α(β+|b|)) = (π/2)1/2

(α(β+|b|))1/4
exp(−

√

α(β+|b|))

and

K1/2(
√

αβ) =
(π/2)1/2

(αβ)1/4
exp(−

√

αβ),

we obtain the following pdf for EGIG(b|α,β,1/2,1):

p(b) =
α1/2

4
exp(

√

αβ)(β+|b|)−1/2 exp(−
√

α(β+|b|)). (7)

B.2 Example 2

The second special EP-GIG distribution is based on the setting of q = 1 and γ = 3/2. Since

K3/2(u) =
u+1

u
K1/2(u) =

u+1

u

(π/2)1/2

u1/2
exp(−u),

we obtain that the pdf of GIG(η|3/2,β,α) is

p(η|α,β,3/2) =
α3/2

√
2π

exp(
√

αβ)
√

αβ+1
η

1
2 exp(−(αη+βη−1)/2)

and that the pdf of EGIG(b|α,β,3/2,1) is

p(b) =
αexp(

√

αβ)

4(
√

αβ+1)
exp(−

√

α(β+|b|)). (8)
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B.3 Example 3

We now consider the case that q = 1 and γ = −1/2. In this case, we have EGIG(b|α,β,−1/2,1)
which is a mixture of L(b|0,η) with density GIG(η|−1/2,β,α). The density of

EGIG(b|α,β,−1/2,1) is

p(b) =
β1/2 exp(

√

αβ)

4(β+ |b|)3/2
(1+

√

α(β+ |b|))exp(−
√

α(β+ |b|)).

B.4 Example 4

The fourth special EP-GIG distribution is EGIG(b|α,β,0,2); that is, we let q = 2 and γ = 0. In

other words, we consider the mixture of the Gaussian distribution N(b|0,η) with the hyperbolic

distribution GIG(η|β,α,0). We now have

p(b) =
1

2K0(
√

αβ)
√

β+b2
exp(−

√

α(β+b2)).

B.5 Example 5

In the fifth special case we set q = 2 and γ = 1; that is, we consider the mixture of the Gaussian

distribution N(b|0,η) with the generalized inverse Gaussian GIG(η|1,β,α). The density of the

corresponding EP-GIG distribution EGIG(b|α,β,1,2) is

p(b) =
1

2K1(
√

αβ)β1/2
exp(−

√

α(β+b2)).

B.6 Example 6

The final special case is based on the settings q = 2 and γ =−1. In this case, we have

p(b) =
∫ ∞

0
N(b|0,η)GIG(η|−1,β,α)dη =

(β/α)1/2

2K1(
√

αβ)

1+
√

α(β+b2)

exp(
√

α(β+b2))
(β+b2)−

3
2 .

B.7 Example 7

We are also interested EP-GIG with q = 1/2, that is, a class of bridge scale mixtures. In this and

next examples, we present two special cases. First, we set q = 1/2 and γ = 3/2. That is,

p(b) =
∫ ∞

0
EP

(

b|0,η,1/2
)

GIG
(

η|3/2,β,α
)

dη =
α

3
2 exp(

√

αβ)

24(1+
√

αβ)

exp(−
√

α(β+|b|1/2))

(β+|b| 1
2 )

1
2

.

B.8 Example 8

In this case we set q = 1/2 and γ = 5/2. We now have

p(b) =
∫ ∞

0
EP(b|0,η,1/2)GIG(η|5/2,β,α)dη =

α2 exp(
√

αβ)

24(3+3
√

αβ+αβ)
exp

(

−
√

α(β+|b|1/2)
)

.
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Appendix C. EP-Jeffreys Priors

We first consider the definition of EP-Jeffreys prior, which the mixture of EP(b|0,η,q) with the

Jeffreys prior 1/η. It is easily verified that

p(b) ∝

∫
EP(b|0,η,q)η−1dη =

q

2
|b|−1

and that [η|b]∼ IG(η|1/q, |b|q/2). In this case, we obtain

E(η−1|b) = 1

2q
|b|−q.

On the other hand, the EP-Jeffreys prior induces penalty log |b| for b. Moreover, it is immedi-

ately calculated that

d log |b|
|b|q ,

1

q
|b|−q = 2E(η−1|b).

As we can see, our discussions here present an alternative derivation for the adaptive lasso (Zou,

2006). Moreover, we also obtain the relationship of the adaptive lasso with an EM algorithm.

Using the EP-Jeffreys prior, we in particular define a hierarchical model:

[y|b,σ]∼ N(y|Xb,σIn),

[b j|η j,σ]
ind∼ EP(b j|0,ση j,q),

[η j]
ind
∝ η−1

j ,

p(σ) = “Constant”.

It is easy to obtain that

[η j|b j,σ]∼ IG
(

η j

∣

∣1/q, σ−1|b j|q/2
)

.

Given the tth estimates (b(t),σ(t)) of (b,σ), the E-step of EM calculates

w
(t+1)
j , E(η−1

j |b(t)j ,σ(t)) =
2σ(t)

q|b(t)j |q
.

The M-step maximizes Q(b,σ|b(t),σ(t)) with respect to (b,σ). In particular, it is obtained as fol-

lows:

b(t+1) = argmin
b

(y−Xb)T (y−Xb)+
p

∑
j=1

w
(t+1)
j |b j|q,

σ(t+1) =
q

qn+2p

{

(y−Xb(t+1))T (y−Xb(t+1))+
p

∑
j=1

w
(t+1)
j |b(t+1)

j |q
}

.
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Appendix D. The Hierarchy with the Bridge Prior Given in (4)

Using the bridge prior in (4) yields the following hierarchical model:

[y|b,σ]∼ N(y|Xb,σIn),

[b j|η j,σ]
ind∼ L(b j|0,ση j),

[η j]
ind
∝ G(η j|3/2,α/2),

p(σ) = “Constant”.

It is easy to obtain that

[η j|b j,σ]∼ GIG
(

η j

∣

∣1/2, σ−1|b j|,α
)

.

Given the tth estimates (b(t),σ(t)) of (b,σ), the E-step of EM calculates

w
(t+1)
j , E(η−1

j |b(t)j ,σ(t)) =

√

√

√

√

ασ(t)

|b(t)j |
.

The M-step maximizes Q(b,σ|b(t),σ(t)) with respect to (b,σ). That is,

b(t+1) = argmin
b

(y−Xb)T (y−Xb)+
p

∑
j=1

w
(t+1)
j |b j|q,

σ(t+1) =
q

qn+2p

{

(y−Xb(t+1))T (y−Xb(t+1))+
p

∑
j=1

w
(t+1)
j |b(t+1)

j |q
}

.
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