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ABSTRACT
Context: Complex Event Processing (CEP) architectures present
high applicability in Realtime Streaming Analytics (RTSA) by ex-
tracting and generating valuable information from continuous data
feeds, like in stock markets, traffic, and patient monitoring.

Problem: Although guidelines and models for CEP architectures
have been proposed, the composition of its inter-operable elements
in charge of processing events, known as Event Processing Agent
(EPA), is challenging for software architects.

Solution: This work proposes EPAComp, a model that covers
this gap and addresses large-scale processing requirements through
features such as stream-based constructions and specialized EPAs.

IS Theory: We employed the Representation theory to create a
model representing information systems for event processing.

Method: The model was applied in a real case experiment to cre-
ate a solution to collect streams of events from around 200 systems
and to provide a dashboard for monitoring their usage. Besides,
industry experts qualitatively evaluated the proposal.

Results: The experiment results show an application of the
model to handle heterogeneous data in a scalable and efficient
manner according to indicators regarding performance, the as-
sertiveness of processed output, degree of cohesion, and coupling
of components. The qualitative results present that experts asserted
EPAComp capabilities fit RTSA requirements.

Contributions: An architectural model for EPA composition
that enhances the literature by (i) representing static and dynamic
EPA compositions through arrangements of specific aggregation
structures; (ii) defining the state-of-the-art event processing strate-
gies in CEP; and, (iii) organizing the hierarchy of EPA types.

CCS CONCEPTS
• Information systems → Computing platforms; • Computer
systems organization→ Real-time system specification.

KEYWORDS
Complex Event Processing (CEP), CEP architecture, Event Process-
ing Agent (EPA), Realtime Streaming Analytics (RTSA)
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1 INTRODUCTION
Realtime Streaming Analytics (RTSA) scenarios receive one or more
event streams as input and react to occurrences, often within a few
milliseconds, producing one or more event streams as output [28].

Complex Event Processing (CEP) solutions extract and generate
valuable information from continuous data feeds and have bene-
fited from streaming technologies to handle RTSA scenarios, e.g.,
stock markets, traffic, and patient monitoring [28, 35]. EPA (Event
Processing Agent) processes events. CEP involves arrangements of
interdependent EPAs, benefiting from each other capabilities [10].

EPA compositions express organizations that deal with a net-
work of EPAs as just another EPA. Their design should address
interoperability between EPAs and handle requirements such as
efficiency and low coupling [10].

CEP solutions pose challenges to distributed applications with
heterogeneous data to architects and system developers, like fault
tolerance and complex integration [7]. EPA compositions bring re-
quirements, like correlating occurrences according to a context [28],
and drive matching services to business requirements [22].

The lack of standard models, semantics, and clear guidance on
CEP studies makes the comparison of approaches hard [21]. The dis-
persed knowledge on this subject requires re-examining decisions
through the research stages: planning and designing the artifact,
implementing and evaluating a case, and documenting conclusions.

We investigated how to compose EPAs to meet RTSA demands.
We propose EPAComp for it, bringing as benefits: explicit descrip-
tions of CEP compositions, covering from simple aggregations to
dynamic provisioning or decommissioning of EPAs; reuse of con-
cepts; and, independence of underlying technologies.

We quantitatively assessed the proposal through an experimental
study that collects user requests from around 200 systems. A com-
plimentary evaluation presents the feedback of experienced system
architects about the model’s capability to meet RTSA requirements.

The remainder of the work is divided as follows. Section 2 and
Section 3 presents the fundamental concepts and related work.
Section 4 presents the EPAComp model, and Section 5 the model
evaluations. Section 6 presents the conclusion and future work.

2 BACKGROUND
An event is an occurrence within a particular domain. A CEP ar-
chitecture is composed of the following agents: Producer: input

61

https://orcid.org/0000-0002-5492-8010
https://orcid.org/0000-0002-0864-2396
https://orcid.org/0000-0002-2109-1285
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3592813.3592889
https://doi.org/10.1145/3592813.3592889
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3592813.3592889&domain=pdf&date_stamp=2023-06-26


SBSI ’23, May 29–June 01, 2023, Maceió, Brazil Villaça et al.

events from external systems into CEP platforms; Consumer : pulls
events from CEP platforms; and, EPA: processes events introduced
by Producers or other EPAs and derive events by: filtering: accep-
tance or rejection of events; transformation: e.g., enrichment of
attributes, consolidation from multiple occurrences; and, pattern
detection: inferences on, e.g., time (e.g., successive failures) or space
(e.g., recognition of objects in images) [10].

Those agents perform their tasks and interact with each other.
Additional elements present in interactions are [10]:Event Type:
represents event semantics and is used to guide the distribution
of events among CEP agents; Context: a set of conditions used to
correlate group events; Global State: refers to data from external
sources to complement the event; Channel: provides CEP agents
with event fetching and delivery capabilities.

Complexity rises when processing event groups in segregated
contexts, e.g., detecting which bank clients make more than 2 with-
drawals within 24 hours requires (i) partition withdrawals events
based on client id and time (24 hours since a withdrawal trans-
action), and (ii) aggregating events during specific time frames.

3 RELATEDWORK
This section analysis conceptual models regarding: (i) main features;
(ii) analytic patterns; and, (iii) industry demands.

Regarding Conceptual Models main features, Event Pro-
cessing Technical Society (EPTS)1 devise a reference architectural
model [27] clarifying CEP design patterns based on commonalities
from three CEP industry models:

• IBM Conceptual Model [24] classifies components accord-
ing to their duties in: (1) Emitter: handles producer input
data and delivers standardized events to the Bus; (2) Bus: re-
ceives events from Emitter in high frequencies and delegates
processing to EPAs; (3) EPA: derives to the Bus a reduced
amount of processed events; and, (4) Event Handler: deliver
events from the Bus to consumers.
Highlights: The similarities of Emitter and EPA (publishing
via Bus) and Handler and EPA (consumption via Bus) foster
reuse. Authors propose a “nested” architecture, where agents
may contain a network of agents within themselves.

• TIBCO BusinessEvents Model [2] defines CEP tasks as:
(i) Pre-processing: normalization and data cleansing on raw
data; (ii) Event Tracking: identification and pre-selection;
(iii) Situation Detection: relationships between events and
historical data; (iv) Predictive Analysis: the impact of com-
plex events on business processes; and, (v) Adaptive Business
Processes: dynamic adjustment of processes.
Highlights: Pre-selection tasks based on “events of interest”
provide filtering mechanisms for EPA and Consumer. A dis-
tributed event-driven platform provides the communication
infrastructure to enable high-performance event processing.

• OracleCEPModel [25] correlates processing patterns: (i) Event
sourcing: Producers publish events and trigger processing
mechanisms from state transitions; (ii) Event schema: defines
events from a tuple of attributes; (iii) Pattern matching: fil-
ters out redundant or irrelevant data, correlates meaningful

1EPTS develops standards and promotes understanding and advancement in the field
of event processing.

Table 1: Realtime Streaming Analytics patterns [28]

1. Preprocessing - projecting (or filtering) from one data stream to the other.
2. Alerts and Thresholds - detecting conditions and generating alerts based on simple or complex
conditions, such as the rate of increase.
3. Simple Counting, Counting within SegmentedWindows - aggregating (e.g.Min, Max) in isolation
or under a context (window).
4. Joining Event Streams - processing multiple data streams deriving a new event stream (using a
pattern for joining operations).
5. Data Correlation, Missing Events, and Erroneous Data - matching events from different streams
and detecting missing occurrences using redundant data to remove erroneous events from further
processing.
6. Interacting with Databases - matching real-time streaming data against historical data sources.
7. Detecting Temporal Event Sequence - selecting temporal event sequences via regular expressions
and acceptance criteria.
8. Tracking - tracking objects over space and time and detecting given conditions, e.g., certify that
cars adhere to speed limits.
9. Detecting Trends - detecting patterns from time series.
10. Running the Same Processing Mechanisms in Batch and Realtime Pipelines - combining batch
and online processing.
11. Detecting and Switching to Detailed Analysis - detecting a condition that suggests an anomaly
and further analyzing it using historical data.
12. Using a Model - training a model (often via Machine Learning) and then using it with the
Realtime pipeline to make decisions.
13. Online Control - automatizing the resolution of problems like situation awareness and prediction
of the next value.

events to infer critical decisions; and, (iv) Event stream: the
base for processing, usually assisted by a time window for
evaluation and correlation.
Highlights: Authors propose an event sourcing strategy for
the interaction among EPAs segments via segregated chan-
nels. Their model represents EPN based on microservices2.

According to EPTS, an EPAmay be an individual node or an event
processing network (EPN), i.e., a collection of agents connected by
channels [27]. However, EPTS does not provide details nor clear
guidance to design EPA compositions.

Table 1 presents RTSA patterns proposed by Perera and Suho-
thayan for processing of continuous event flows [28].

Regarding Industry Demands, there are three aspects related
to industry requirements to process large volumes of data in a short
time: (i) Batch loads of events: online and offline processing of
streams [5, 9, 19]; (ii) Incremental Model Training: e.g., Machine
Learning can improve pattern recognition accuracy during EPA
processing [20]; and, (iii) Advanced filtering: moving filtering fur-
ther into CEP pipelines reduces latency when constraints prevent
doing it on event producers [12].

Table 2 consolidates the main concepts and existing CEP strate-
gies proposed in the literature. Our model is an enhancement over
existing proposals since it consolidates benefits from current studies
and introduces relevant features for RTSA. Table 3 lists 17 require-
ments that our model meets compared to existing proposals.

Table 2: Main concepts and works that proposed them.

Concepts and strategies References
Fundamental concepts and data structures [2, 10, 24, 25, 28]
Segregation of responsibilities [1, 11, 31, 34]
Handling high volumes of data [8, 12, 29]
Batch processing of events [5, 9, 19]
Stream processing on CEP [3, 7, 16, 18, 22, 35]
Implementation of cases and metrics [4, 6, 20, 33, 34]

2https://docs.oracle.com/en/solutions/learn-architect-microservice
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Table 3: RTSA requirements handled by our model and their
fit (i.e., yes, no or partial) by other models.

Requirement EPTS IBM TIBCO ORACLE
R1 - EPA composition strategy No No No No
R2 - Batch loads of events No Yes No No
R3 - Advanced Filtering No No No Yes
R4 - Incr. Model Training Yes Yes Yes Yes
Requirement resulting from implementation of patterns presented in Table 1

R5 - RTSA Pattern I Yes Yes Yes Yes
R6 - RTSA Pattern II No Partial* Yes Partial*
R7 - RTSA Pattern III Yes Yes Yes Yes
R8 - RTSA Pattern IV Yes Yes Yes Yes
R9 - RTSA Pattern V Yes Yes Yes Yes
R10 - RTSA Pattern VI No No Yes No
R11 - RTSA Pattern VII Yes Yes Yes Yes
R12 - RTSA Pattern VIII Yes Yes Yes Yes
R13 - RTSA Pattern IX Yes Yes Yes Yes
R14 - RTSA Pattern X No No Yes No
R15 - RTSA Pattern XI No No No Yes
R16 - RTSA Pattern XII Yes Yes Yes Yes
R17 - RTSA Pattern XIII No No No No

*trigger alerts based on simple threshold conditions [6, 28]

4 EPACOMP MODEL
This section presents the EPAComp model. We adopted the prin-
ciples of Domain-Driven Design (DDD) [11] to correlate the CEP
model components and classify them into cohesive units of analysis.
DDD is a paradigm that solves problems associated with the compo-
sition of software components by focusing on core domain aspects
and exploring models that emerge from functional (business) and
non-functional (technical) requirements via a common language
within bounded contexts.

Following the DDD principles, the EPAComp model was catego-
rized into the following layers: (i) Domain: represents concepts and
information about the business; (ii) User Interface: integrates with
external actors; (iii) Application: defines the software-supported
jobs; and, (iv) Infrastructure: supports higher layers via technical
mechanisms. The most relevant entities are marked in grey. Some
class diagrams are not presented due to a lack of space.

The model employs Java language constructs. We chose Java
due to its relevance in industry - 52% of CEP commercial systems
have been implemented using Java [7]. Although the Java use, the
model can be adapted for any language with stream processing
capabilities (like C#, C++, Scala, etc.) or one that integrates with
streaming computation engines (e.g., Spark, Storm, Flink, Kafka
Streams). The notation is very similar across different languages.

4.1 Domain Layer
Represents business concepts such as entities and rules [11].

4.1.1 Event & Event Type (Figure 1). An Event has an EventHeader

which points to EventType and EventEmmitter, e.g., it is helpful for
filtering. EventOpenContent allows a complementary free-format
annotation that can help subscribers. EventPayload contains a set of
EventAttributes, which extends DataAttribute by adding the indi-
cation if the data was derived. For high volumes of data, we can pull
attributes mapped via filterAttributes (and EventHeader informa-
tion), reducing traffic content. EventFactory is used by emitters to
instantiate Events as they arrive in the CEP platform.

-description : String
-parent : EventType

EventType

-derived : boolean

EventAttr ibute
Y extends Serializable

-annotation : String

EventOpenContent

-attributeValues : Set<EventAttribute>

EventPayload

-occurrence : Timestamp
-chronon : TemporalUnit
-detection : Timestamp
-filterAttributes : Set<String>
-certainty : Float
-causers : List<eventId>

EventHeader

Event

source <<Interface>>
EventEmitter

+createEvent(tp : EventType, occ : Timestamp, chrn : TemporalUnit, src : EventEmitter, attr : Set<EventAttribute>, annot : String) : Event

<<Singleton>>
EventFactory

parent

#name : String
#value : U

+getValueType() : Class<?>

DataAttr ibute
U extends Serializable

type

<<Enum>>
TemporalUnit

Powered By�Visual Paradigm Community Edition

Figure 1: Classes of Event hierarchy.

4.1.2 Context (Figure 2). A ContextComposite is composed of one
or more contexts. Contexts may be: TemporalContext, where every
event starts a new window lasting a fixed amount of time compris-
ing events that occur in a time frame; FixedTemporalContext is a
TemporalContext with a fixed initial time (e.g., 00:00 hours), and
successive events within the same time range are assigned to the
sameWindow andwill not trigger a newwindow; SegmentedContext
creates windows based on attribute values - each distinct combina-
tion of values corresponds to a different window; and, EventContext
creates windows based on a list of event types representing the
occurrence of a scenario of interest.

 getinnerWindowId() : Function<Event, String>
 getInnerPertinence() : Predicate<Event, Event>

Context

- i d

+getWindowId(initial : Event) : String
+isPertinent(Event initial, Event current) : Boolean
+getStartMoment() : DateTime
+getEndMoment() : DateTime

ContextComponent

 children : Set<Context>

ContextComposite

-unit : TemporalUnit
-size : long

TemporalContext

-partitionCriterion : Predicate(Set<EventAttribute>)

SegmentedContext -acceptCriterion : Predicate(Set<EventType>)
-completenessEnforced
-orderEnforced

EventContext

-HOUR
-DAY
-MONTH

<<Enum>>
TemporalUnit

-initialMark : Time

FixedTemporal
Context

ContextEPAComposite

Window

Powered By�Visual Paradigm Community Edition

Figure 2: Classes of Context hierarchy.

4.1.3 Data Attribute. DataAttribute provides a data structure for
Serializable attributes related to the events domain or technical
drivers (e.g., a timeout trigger).

4.2 User Interface Layer
This layer provides integration with external actors, which might
sometimes be other computer systems [11].

4.2.1 Event Producer. The EventProducer injects events into the
CEP Platform through publishing operations according to the Event-
Emitter. The EventProducer validates output events based on a Set
of EventTypes, indicated on PublishPattern.

4.2.2 Event Consumer. EventConsumer pulls events from the CEP
platform via EventFetcher interface implementation (subscribeEvents)
by inspecting events according to SubscriptionPattern. It enables
simple filtering and projection operations. It minimizes latency in
data traffic [12].
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4.3 Application Layer
This layer orchestrates the tasks the software should support, lever-
aging business domain objects [11].

4.3.1 Event Processing Agent. EPAs monitor events to detect pat-
terns of information and trigger actions that output events. EPA-
Component defines the common behavior of EPAs. It establishes a
Channel and a StreamConsumer (for processing), fetches events
based on SubscriptionPattern, and delivers them according to Pub-
lishPattern. EPAComposite aggregates EPAs into a set of components
and delegates processing to them. Segregated inner channels per-
form operations within EPA compositions.

4.3.2 Stateless EPA (Figure 3). StatelessEPA processes input events
independently of any other events (i.e., no state is maintained).

EPA
<<Abstract>>
StatelessEPA

-map : Function<Event, Event>

TranslateEPA

-map : BiFunction<Event, Set<ReferenceDataParameter>, Event>

EnrichEPA

-criteria : Set<StatelessEPA>

SplitEPA

EventFactory

-refDataGlobalStateId
-searchedData : ReferenceDataAttribute
-newAttributeMapper : Function<ReferenceDataAttribute<X>, EventAttribute<Y>>

ReferenceDataParameter

EventAttr ibute

Y extends Serializable

ReferenceData
At t r ibute

X extends Serializable

Channel

ReferenceData
GlobalState

-attrs : FilterAttributes

StatelessFilterEPA

-rejectFilter : Predicate<Event>
-acceptFilter : Predicate<Event>

Fi l terAttr ibutes

Powered By�Visual Paradigm Community Edition

Figure 3: Stateless EPA classes.

StatelessFilterEPA filters events based on a criteria (from Fil-

terAttribute) for their acceptance or rejection.
TranslateEPA receives a single event and generates another event.
EnrichEPA takes an event, pulls related information from a Global

State, and derives an event with new attributes according tomap, if
triggered by PatternDetectEPA (Section 4.3.4). New attributes come
from ReferenceDataGlobalState. It uses a ReferenceDataAttribute
as a parameter to newAttributeMapper, to derive EventAttribute.

SplitEPA creates, from a single input event, a collection of events
using multiple StatelessEPA instances, leveraging implementations
from previous components.

4.3.3 Stateful EPA (Figure 4). StatefulEPA is influenced by previous
events it has already processed [1, 10].

StatefulFilterEPA: its processing considers previous events (e.g.,
fetch last N occurrences).

AggregateEPA: produces events as a function of an incoming
stream of events (e.g., average). The function is computed incre-
mentally via a reduceOperator (BinaryOperator) along with an iden-
tity/initial value (reduceOpIdentity).

ComposeEPA: correlates events from two input streams. A subscrip-
tion method is used for matching events according to an acceptance
BiPredicate. A map BiFunction outputs derived events from matched
pairs of source events.

4.3.4 Pattern Detect EPA (Figure 5 ). Makes event inferences.

EPA

-attrs : FilterAttributes
-operator : StatefulFilterOperator
-countArg : int
-sortCriteria : Map<EventAttribute, Direction>

StatefulFilterEPA

PatternDetectEPA

-acceptanceFilter : BiPredicate<Event, Event>
-map : BiFunction<Event, Event, Event>
-streamsUnmatchedPolicy : UnmatchedPolicy

+subscribeFromNewStream(pattern : SubscriptionPattern, channel : ChannelBroker)

ComposeEPA

#aggregation : AggregateOperation<T>
#mapOutputOccurrence : Function<T, Event>

AggregateEPA

-FAIL
-FORWARD

<<Enum>>
UnmatchedPolicy

-buffer : UnaryOperator(ev : Event)

<<Abst ract>>
StatefulEPA

-FIRST_N
-LAST_N
-RANDOM_N
-TOP_N
-BOTTOM_N

<<Enum>>
StatefulFilterOperator -reduceOpIdentity : T

-reduceOperator : BinaryOperator<T>
-useThreshold : boolean
-thresholdComparison : BiPredicate<T, T>
-mapOperator : Function<Event, T>

AggregateOperation
T

EventFactory

ReferenceData
GlobalState

Channel

Event

Fi l terAttr ibutes

Powered By�Visual Paradigm Community Edition

Figure 4: Stateful EPA classes.

EPA

#matchingPolicy : MatchingPolicy

<<Abst ract>>
PatternDetectEPA

-typeSet : LinkedHashSet<EventType>
-modal : PatternModal
-sequence : PatternSequence

BasicPatternDetectEPA

-UNORDERED
-TEMPORAL

PatternSequence

-type : TrendType
-trendCheck : BiPredicate<Event, Event>
-threshold : Long

TrendPatternDetectEPA

-ALL
-SOME
-NONE

PatternModal

-condition : Predicate<Event>

ConditionalPatternDetectEPA

StatefulEPA

-INCREASING
-DECREASING
-NONINCREASING
-NONDECREASING
-STABLE
-MIXED

TrendType

EventFactory

-excess : ExcessMode
-excessLimit : int
-evaluation : EvaluationMode
-reuse : ReuseMode
-reuseLimit : int
-order : OrderMode
-orderCompare : Comparator<Event>

MatchingPolicy

-IMMEDIATE
-DEFERRED

EvaluationMode
-LAST
-FIRST
-EVERY

ExcessMode

-CONSUME
-REUSE
-BOUNDED

ReuseMode
-OCCURRENCE_TIME
-DETECTION_TIME
-USER_DEFINED
-STREAM_POSITION

OrderMode
ReferenceData

GlobalState

GlobalState

EventGlobalState ReferenceDataGlobalState

Channel

Event

EventType

EventAttr ibute

AggregateEPA

Powered By�Visual Paradigm Community Edition

Figure 5: Pattern Detect EPA classes.

BasicPatternDetectEPA detects events that match a set of Event-
Types. PatternModal indicates possibilities like: all event types should
be met (ALL); it can be partially met (SOME) or not met (NONE).

ConditionalPatternDetectEPA requires a condition to be satisfied
by matching events, defined via a Predicate.

TrendPatternDetectEPA detects trends by correlating pairs of sub-
sequent events via trendCheck BiPredicate. Absolute or relative val-
ues can be evaluated (e.g., target distance decreasing at a rate). Spe-
cific conditions may trigger events that further launch EnrichEPA,
or dispatch a process via GlobalState.

PatternDetectEPA include a MatchingPolicy that indicates how
to deal with events satisfying an expected pattern, like: (i) Evalua-
tionMode: determines if the output is generated incrementally or
at the end of a context; (ii) ExcessMode: when several instances of
the same event type occur, consider the first, the last, or every
one; (iii) ReuseMode: events are to be discarded after consumption
or considered in subsequent analyses; (iv) OrderMode: a comparison
parameter for event ordering (e.g., occurrence or detection time).

These agents are usually processed under TemporalContext,
where statistics are continuously provided.

4.3.5 Clustering EPA. ClusteringEPA continuously groups related
events into a predefined number of clusters based on the events’
features. A template parameter applies to event features (i.e., one
or more dimensional attributes). A timeToLive attribute balances
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the relative importance of new data versus historical data, allowing
faster reaction to changes. Inferred results may trigger further
processing, e.g., via EnrichEPA or via GlobalState.

4.3.6 Context Partitioner (Figure 6). Continuous processing of events
associated with a context is performed according to segmented
event grouping via Window and is handled by ContextEPAComposite.
Dynamic provisioning and decommissioning of this agent happen
according to the pertinence of events to Windows. When used along
with Context to provision event grouping.

Context

+getWindowId(initial : Event) : String
+isPertinent(Event initial, Event current) : Boolean
+getStartMoment() : DateTime
+getEndMoment() : DateTime

ContextComponent

ContextComposite

-window : Window

+ContextEPAComposite(internalCh : Channel, window : Window)
+isTerminateCondition(event : Event)
+isEventApplicable(event : Event)

ContextEPAComposite

-internalChannel : Channel

EPAComposite

-id : String
-initialEvent : Event
-ctx : ContextComponent

+Window(c : ContextComponent, e : Event)

Window

checkPertinence

<<instant iate>>

-windowIdSet : Set<String>

+ContextPartitioner(context : ContextComponent, template : ContextEPAComposite, channel : Channel)
-isNewWindowRequired(event : Event) : Boolean
-cloneInceptiveEPA()

ContextPartit ioner

<<instant iate>>

getWindowId

EventConsumer
Channel

Powered By�Visual Paradigm Community Edition

Figure 6: Context Partition classes.

4.3.7 Offline Event Loader (Figure 7). OfflineEventLoader lever-
ages EventProducer to introduce batches of events from source
systems into CEP platforms. It contains an instance of EventData-
GlobalState to fetch an accumulated list of events, further sent to a
CEP platform.

EventType

EventProducer

EventEmitterChannelGlobalState

+getQueryByDateExpression(init : DateTime, end : DateTime) : String
+getQueryByEventExpression(template : Event) : String
+query(expression : String) : List<T>

EventGlobalState

-scheduleExpression : String

+OfflineEventLoader(ch : Channel, p : Optional<PublishPattern>, eventGlobalStateId)

Offl ineEventLoader

Event

GlobalStateProvider

Powered By�Visual Paradigm Community Edition

Figure 7: Offline Loader classes.

4.4 Infrastructure Layer
Provide technical mechanisms to support higher layers, such as
interaction with event distribution platforms [11].

4.4.1 Channel (Figure 8). Channel instances capture events from
event emitters, place them into the CEP platform via publishmethod,
and route selected instances of events to event fetchers. Subscrip-
tionPatterns assist filtering of fetched events.

Global Channel routes messages between CEP agents. For EPAs
within an EPA composition, a segregated inner channel (one per
composition) handles message exchange between them. Channel-
Broker singleton provides both global and segregated Channel in-
stances. Channels may optimize storage and reduce latency by
serializing Events into EncodedEvents [17].

EPA

SubscriptionPattern

EPAComposite

EPAComponent

PublishPattern

EventProducer

EventEmitter

< < u s e > >
getGlobalChannel

EventConsumer

< < u s e > >
getGlobalChannel

-globalChannel : Channel
-innerChannels : Map<Integer, Channel>

+getGlobalChannel() : Channel
+getCompositeEPAChannel(epaComponentId : Integer) : Channel

<<Singleton>>
ChannelBroker

< < u s e > >
getGlobalChannel

EventFetcher

< < u s e > >
getCompositeEpaChannel

< < u s e > >
getGlobalChannel

-encodeEvent : Function<Event, EncodedEvent>
-decodeEvent : Function<EncodedEvent, Event>
-streamPlatformConnectivitySettings : Properties

+publish(events : List<Event>)
+consume(p : SubscriptionPattern) : Stream<Event>

Channel

<<instant iate>>

-content

EncodedEvent

Powered By�Visual Paradigm Community Edition

Figure 8: Channel classes.

4.4.2 Global State. GlobalState is used by EPAs to pull data out-
side the events’ scope, bringing: (i) reference data, e.g., to enrich
data and drive processing logic, via ReferenceDataGlobalState; or,
(ii) historical events, via EventGlobalState. It interacts with data
stores via GlobalStateDataStore. Template parameters may be used
to cast: R: a data-store-related record ( e.g., Row3); and T: a type as-
sociated to an Event entity or to a mapped ReferenceDataAttribute.

AttributeContainers properly identify data structures - e.g., a
table, under a schema, related via parent attribute.

EPAs supply a template (of EventAttribute or ReferenceData-

Attribute) to derive a search expression for query based on their
existing attributes. They use findOne to fetch a unique instance
matching a template parameter.

To persist Events or Attributes, updateMapper Function from
EventGlobalState or ReferenceDataGlobalState is used.

5 EVALUATION
This section presents the evaluation of our model, including the
EPAComp coverage to mapped requisites, an industry case experi-
ment, and feedback from experts.

Table 4 lists the requirements (Table 3) and the components that
support each one. The model fully covers the requirements.

5.1 Industry Real Case Experiment
We evaluated the model in a real scenario employing a monitor-
ing dashboard built using our model to investigate the benefits of
EPAComp. The solution was evaluated in terms of effectiveness,
given the demand and computational processes required and the
interdependence degree among components.

5.1.1 Scenario Requirements. The scenario encompasses user inter-
actions with 208 systems used by over 5000 employees and provides
a dashboard of the utilization of the system aggregated by, e.g., date
ranges and user ids. The systems were grouped based on their
strategy to capture events (Table 5).

5.1.2 Assessment Goals. We collected information on a week with
two major transitions of non-monitored systems to monitored sys-
tems, indicating high loads of events during 2 nightly time-frames.
3https://spark.apache.org/docs/2.1.0/api/java/org/apache/spark/sql/Row.html
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Table 4: Table presenting the components that support the
requirements presented in Table 3.

Req. Model Component(s)
R1 EPA, Channel, Context & subclasses, and ContextPartitioner
R2 OfflineEventLoader, GlobalState
R3 EventHeader, SubscriptionPattern
R4 PatternDetectEPA, ClusteringEPA
R5 EventHeader, SubscriptionPattern, PublishPattern, StatefulFilterEPA
R6 TranslateEPA, TrendPatternDetectEPA
R7 ContextPartitioner, AggregateEPA, Context-related classes
R8 ComposeEPA
R9 ComposeEPA and BasicPatternDetectEPA
R10 GlobalState & subclasses
R11 BasicPatternDetectEPA
R12 TrendPatternDetectEPA
R13 TrendPatternDetectEPA
R14 OfflineEventLoader, GlobalState & subclasses
R15 TrendPatternDetectEPA, ClusteringEPA, EnrichEPA
R16 ClusteringEPA
R17 TrendPatternDetectEPA, ClusteringEPA, GlobalState

Table 5: System groups

Group1
(G1)

Systems with no authentication mechanisms. Usage events are captured
via web tracking;

Group2
(G2)

Systems with push notification. Systems that are already using publish
mechanisms to send events into the messaging platform;

Group3
(G3)

Systems integrated into a Central Authentication Service (CAS). A job
captures authentication events from a CAS repository;

Group4
(G4)

Legacy systems. A job captures login events from audit trails. A data
source maps system user ids to CAS corporate ids.

Measurements included processing time and throughput (processed
events per unit of time) indicators.

We evaluated correctness and completeness of results using the
terminology [13]: true positive: events properly processed; true neg-
ative: events properly discarded; false positive: events incorrectly
processed (improper rejection or with incorrect outcomes); false
negative: events incorrectly discarded. Based on that, we calculated:
accuracy: (true positives + true negatives) / total number of events;
and, precision: true positives / (true positives + false positives).

5.1.3 Event Input and Output. Group 1 systems use web tracking,
triggering usage events as web pages are loaded from a browser.
Listeners for each system reject HTTP requests from invalid IPs
(using a white list). Group 2 systems feed Events of types (e.g., login,
logout, authentication error or usage) into the CEP platform. Group
3 and Group 4 systems introduce batches of events into the CEP
platform. For Group 3, an OfflineLoader periodically fetches usage
events. Systems from group 4 capture usage events from audit trails,
over distinct technologies, via OfflineLoaders.

5.1.4 Event Processing Activities. The processing of events is di-
vided into five phases. In Phase I, the processing of raw events
derives events representing user sessions: successive interactions
with the system over time, based on login (if authentication ap-
plies) or IP addresses and timestamps (from anonymous requests).
In Phase II, aggregations of user sessions are grouped by date. In
Phase III, summaries of sessions are done on a date. In Phase IV,
events coming from Phase III are clustered according to utiliza-
tion summaries. In parallel, missing events on a date are detected,
i.e., it detects systems with no observed session. In Phase V, all

Table 6: Measurement metrics.

∆1 - Event Generation Delay - from the moment events are instantiated until the
channel publish method is called.
∆2 - Channel Conversion Delay - within channel, from the moment event serial-
izations start (e.g., via Avro - https://avro.apache.org/) until a call to the messaging
platform is performed.
∆3 - CEP EPA Processing Time - from the moment an event message is consumed
by the EPA until either an event is derived by this component (usual StatelessEPA
scenarios) or an event is processed and placed on a buffer (StatefulEPA scenarios).
∆4 - Fetcher Conversion Delay. Conversion from CEP Platform events to Dash-
board API, which is fed with derived events.

Table 7: Processing time measurements.

Latency (milliseconds)
∆1 - Event Generation Delay
Average Time Group 1, 2, 3, 4 Producers 0.1 - 0.5
∆2 - Channel Conversion Delay
Average Time Global / Segregated Channels 0.1
∆3 - EPA Processing Time
Average Time StatelessEPA 1 - 5
Average Time StatefulEPA 1 - 10
Average Time ClusteringEPA* 3000
∆4 - Fetcher Conversion Delay
Average Time Dashboard Consumer 0.1 - 0.5

*Clustering initialization takes around three seconds

previous events are processed in a dashboard that provides online
monitoring and reporting with drill-down capabilities.

5.2 Experiment Execution
The experiment was performed in four servers configured with
an Intel Xeon processor (8 cores) and 32 GB RAM, running con-
tainers orchestrated via Docker Swarm4. Among Swarm features
are scalability (guaranteed number of replicas) and load balancing
(distributing containers between hosts).

Processing scenarios are regular loads (1000 events/day) and
batch loads (up to 500.000 events per system at once). Batches are
processed when applications are monitored when we load authenti-
cation data since January 2012 for historical analysis. Two overnight
batches were performed, one with 15 systems and another with 24
systems.

Channel implementations were refactored to copy all published
and subscribed events to new Topics (T_CH_PUB, T_CH_SUB).
Code was injected in EPA to trigger the submission of messages to
another Topic (named T_EPA). Every message contains processing
start and end date-time and serialized representations of the output
event.

5.2.1 Effectiveness. We evaluated T_EPA entries to: verify EPA
processing time; correlate raw and derived events, confirming if
all events from T_CH_PUB and T_CH_SUB were adequately pro-
cessed assigned. Latency measurements were defined according
to a benchmark study for CEP [21], based on metrics depicted in
Table 6. Measurements results are presented in Table 7.

Results indicate that, on higher load occasions, throughput scaled
up to around 100 raw events processed per second. We observed
no compromise to integrity (all events were processed) nor any im-
pact on availability, resulting in an average processing time (under

4https://docs.docker.com/engine/swarm/
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Table 8: Coupling-Related Measurements

Class CBO NDO RECBO
EventProducer 5 0 0
OfflineEventLoader 7 0 0
EventGlobalState 3 2 i 1 i

EventConsumer 5 0 0
ReferenceData-
GlobalState

5 2 i 1 i

EnrichEPA 9 1 ii 0 iii

StatefulFilterEPA 7 1 ii 0 iii

ClusteringEPA 8 1 ii 0 iii

ContextEPA- Com-
posite

9 1 ii 0 iii

AggregateEPA 8 1 ii 0 iii

Channel 5 ∝ iv ∝ v
i GlobalStateProvider factory and CEP agents reference this instance at run-time.
ii At creation time: EPAComposite, ContextEPAComposite, or ContextPartitioner.

iii After creation, EPAs are not referenced by other model components.
iv Static Channel references scale based on the number of EPA specializations.

v Dynamic Channel references are proportional to the number of agents.

normal circumstances) of 10 ms. However, the total running time
is impacted during batch loads.

All events were correctly assigned and processed by EPAs. There
was no improper discarding of events (false negative) nor improper
processing (false positive), and accuracy and precision achieved
100%. Around 550,000 raw events (historical events plus 10,000 con-
temporaneous events) and 350,000 derived events were observed.

5.2.2 Interdependence degree. We assessed our components’ cou-
pling and cohesion degree, which led to more reliable and main-
tainable products [14]. CEP agents interact with each other via the
channel, presenting no knowledge of methods and attributes of
each other (minimizing coupling among them). Measurements to
corroborate this aspect were: CBO [26] (the number of times meth-
ods of a class use methods or attributes of another class); NDO [26]
(the number of dependent classes of a class); and, RECBO [23] (the
number of instances accessing the methods of a class at runtime).
Table 8 presents those measurements. Observed CBO values (≤ 9),
are indications of low coupling [30].

The LCOM metric [15] was used to evaluate the degree of cohe-
sion of the Channel. CEP agents are dependent on Channel since
they interact through it. It consists of the number of pairs of meth-
ods on disjoint sets of variables. Both exposed methods publish and
consume of the Channel share streamPlatformConnectivitySettings
(Section 4.4.1), so no disjoint set of edges arise from its graph -
indicating LCOM = 1 (high cohesion [15]).

5.3 Feedback from Industry Experts
A complimentary evaluation of the capability of our model to meet
the 13 RTSA pattern requirements (Table 1) was performed in a
workshop with expert system architects. Participants were selected
based on their background (Computer Science Graduation degree
and experience developing solutions that handle high volumes of
transactions near real-time). Five experienced professionals joined
our workshop: two from the Finance area, one from Telecommuni-
cation, and two from Oil & Gas.

5.3.1 Sessions. The workshop was divided into 3 sessions.

In the first session, we presented the CEP components and the
logic behind their compartmentalization into DDD layers. We also
presented the executed experiment.

In the second session, we explained the evaluation requirements
and RTSA patterns. Then, we asked the participants to fill out a ques-
tionnaire. They were all in the same room without the researcher
during this activity.

In the third session, we debated the justifications for the answers,
aiming to reach a consensus concerning the capacity of our model
to meet the demands of RTSA patterns.

5.3.2 WorkshopQuestionnaire and Evaluation Criteria. For the first
set of questions, we inquired participants if they understood the
model, the requisites to be evaluated, the rules for evaluation, and
whether they considered it reasonable.

We developed a plan to clarify our goals by following the GQM
(Goals, Questions, and Metrics) strategy [32]. A questionnaire was
presented with 1 question for each requirement of Table 3. Partici-
pants evaluated the adequacy of the model to each RTSA pattern
by marking their perception as: 0: does not meet the acceptance
criteria; 1: partially meets the acceptance criteria with severe re-
strictions; 2: meets the acceptance criteria with minor restrictions;
3: fully meets the acceptance criteria. They were asked to provide a
textual justification for their answers.

5.3.3 Results. Positive feedback was given for all questions on the
first four questions.

In the second set, we observed no participants assigned a grade
of less than 2. The majority of the answers for this set received 3.
Only 4 cases out of the 65 responses were evaluated with grade 2
(i.e., it meets the acceptance criteria with minor restrictions).

The justified answers were further discussed among all par-
ticipants and related to the following observations: on Pattern 4,
correlations involving different data formats (audio, video) and at-
tributes (as geolocation) were not directly approached and may
require further extensions; on Pattern 9, an extension of Pattern-
DetectEPA provides the prediction of clusters; however, additional
extensions are required as we aim to incorporate functionalities
such as supervised Machine Learning; and on Pattern 13, use cases
that involve more complex online control scenarios involving in-
ferences of corrective actions are needed.

We can infer potential benefits from the proposed model by
observing the convergence in the answers from the five participants.
Results indicate the model fully complies with 10 out of 13 patterns
and meets acceptance criteria for the remaining ones - whereas, for
EPTS Reference CEP Models (described in Section 3), only 9 out of
13 patterns apply [6, 28].

6 CONCLUSION
Designing of CEP architecture platforms aiming on inter-operable,
reusable components requires clear understanding of EPA agents
composition.

The main contribution of this work is the proposed architectural
model which address weakness of literature with regard to EPA
composition. The model provides a guidance to minimize complex-
ity by establishing responsibility assignments for components, and
by highlighting and isolating common functionalities.
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The proposed model enhances current CEP literature by: (i) Rep-
resenting static and dynamic EPA compositions through arrange-
ments of specific aggregation structures; (ii) Representing state of
the art event processing strategies in CEP, such as advanced filter-
ing, offline introduction of events, incremental model training, and
stream processing; (iii) Clarifying and reorganizing the hierarchy
of EPA types, e.g., by providing reuse of StatefulEPAs on SplitEPA,
and by handling event processing via stream processing pipelines.

Compared to other architectural models, our proposal addresses
solutions for patterns not yet covered, which is accomplished by
the features like stream grouping based on context, processing of
streams of events, and offline processing of event batches.

We executed experiments within an industry real use case which
results demonstrate the model guides us to implement cohesive
components that integrate events and agents through a platform
(via message streaming) with a low degree of coupling. Other ben-
efits perceived from this solution include: the ability to meet the
demand for integration with systems that present constraints such
as restricted schedules (via offline loads); advanced message filter-
ing (via platform features); continuous model training; and, high
performance and reusability for emitting and pulling events via
streaming operations provided by specialized components. This
analysis can serve as a guidance to elaborate other solutions, de-
pending on the architecture application scenarios.

As limitations, the model encompasses 4 layers with more than
60 relevant concepts, which is a trade-off to express different com-
position scenarios. Besides, the evaluation results could have bias
due to the researchers engagement in the implementation. We mit-
igate this by collecting feedback about the model by performing a
workshop with expert system architects.

As future work, we point out the need for refining the model
to encompass other relevant scenarios, e.g., one in which events
are inferred from data collect by sensor cameras geographically
spread. Also, we plan to create guidelines to assist architects and
developers in implementing following the proposed model.
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