
This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry: h t t p s://o rc a.c a r diff.ac.uk/132 8 2 9/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Zak a rya,  M u h a m m a d,  Gilla m,  Le e,  Ali, H a s hi m, Ra h m a n,  Izaz, S al a h,  Khale d,

Kha n,  R a hi m,  R a n a,  O m e r  a n d  Buyya, R ajku m a r  2 0 2 0.  e pcAwa r e:  a  g a m e-

b a s e d,  e n e r gy, p e rfo r m a n c e  a n d  cos t  efficien t  r e sou rc e  m a n a g e m e n t

t ec h niq u e  for  m ul ti-a cc e s s  e d g e  co m p u ting.  IEEE Tra n s a c tions  on  S e rvice s

Co m p u ting  1 0.1 10 9/TSC.202 0.3 0 0 5 3 4 7  file  

P u blish e r s  p a g e:  h t t p://dx.doi.or g/10.11 0 9/TSC.20 2 0.30 0 5 3 4 7

< h t t p://dx.doi.o rg/10.11 0 9/TSC.202 0.3 00 5 3 4 7 >

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,

for m a t ting  a n d  p a g e  n u m b e r s  m ay no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e

d efini tive  ve r sion  of t his  p u blica tion,  ple a s e  r ef e r  to  t h e  p u blish e d  sou rc e.  You

a r e  a dvise d  to  cons ul t  t h e  p u blish e r’s ve r sion  if you  wish  to  ci t e  t his  p a p er.

This ve r sion  is b ein g  m a d e  av ailable  in  a cco r d a n c e  wit h  p u blish e r  policie s.

S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s

for  p u blica tions  m a d e  available  in ORCA a r e  r e t ain e d  by t h e  copyrig h t

hold e r s .



1

epcAware: A Game-based, Energy, Performance
and Cost Efficient Resource Management
Technique for Multi-access Edge Clouds

Muhammad Zakarya, Hashim Ali⋆, Lee Gillam, Khaled Salah, Izaz Ur Rahman,

Ayaz Ali Khan, Rahim Khan, Omer Rana, Rajkumar Buyya

Abstract—The Internet of Things (IoT) is producing an extraordinary volume of data daily, and it is possible that the data may become

useless while on its way to the cloud for analysis, due to longer distances and delays. Fog/edge computing is a new model for analyzing

and acting on time-sensitive data (real-time applications) at the network edge, adjacent to where it is produced. The model sends

only selected data to the cloud for analysis and long-term storage. Furthermore, cloud services provided by large companies such as

Google, can also be localized to minimize the response time and increase service agility. This could be accomplished through deploying

small-scale datacenters (reffered to by name as cloudlets) where essential, closer to customers (IoT devices) and connected to a

centrealised cloud through networks - which form a multi-access edge cloud (MEC). The MEC setup involves three different parties, i.e.

service providers (IaaS), application providers (SaaS), network providers (NaaS); which might have different goals, therefore, making

resource management a defficult job. In the literature, various resource management techniques have been suggested in the context

of what kind of services should they host and how the available resources should be allocated to customers’ applications, particularly,

if mobility is involved. However, the existing literature considers the resource management problem with respect to a single party. In

this paper, we assume resource management with respect to all three parties i.e. IaaS, SaaS, NaaS; and suggest a game theoritic

resource management technique that minimises infrastructure energy consumption and costs while ensuring applications performance.

Our empirical evaluation, using real workload traces from Google’s cluster, suggests that our approach could reduce up to 11.95%

energy consumption, and approximately 17.86% user costs with negligible loss in performance. Moreover, IaaS can reduce up to

20.27% energy bills and NaaS can increase their costs savings up to 18.52% as compared to other methods.

Index Terms—resource management, internet of things, mobile edge clouds, energy efficiency, performance, game theory

✦

1 INTRODUCTION

R eal-time applications such as on-line gaming and video
conferencing have on-demand requirements to provide

high-quality results within the agreed time e.g. shorter
response time through communication with the closest ap-
plication server. Using cloud platform to deploy real-time
applications offers several benefits including reduced OpEx
(operational costs), but not necessarily, and on-demand re-
source allocation - assign resources per needs of the applica-
tion. However, real-time applications may be sensitive to the
quality of network e.g. latency between users and services.
Therefore, the real-time applications’ requirements could,
possibly, be addressed through combining the emerging
edge computing technology with MEC and fog - which
allows computations to be accomplished at the edge of the
network. The rationale of commissioning this technology is
to allocate services or run applications within the proximity
of customers and closer to where computational results are

• M. Zakarya, H. Ali, I.U. Rahman, A.A. Khan, and R. Khan are with the
Department of Computer Science, Abdul Wali Khan University, Pakistan.
L. Gillam is with the University of Surrey, UK. K. Salah is with the Khalifa
University, UAE. O. Rana is with the University of Cardiff, UK. R. Buyya
is with the School of Computing and Information Systems, University of
Milbourne, Australia.
Athors Correspondence: (⋆ denotes first equal author)
{mohd.zakarya, hashimali, izaz, ayazali, rahimkhan}@awkum.edu.pk
l.gillam@surrey.ac.uk, khaled.salah@ku.ac.ae, ranaof@cardiff.ac.uk,
rbuyya@unimelb.edu.au

desirable. This can be achieved through deploying small-
scale or micro datacenters closer to customers, and con-
nected to regional cloud datacenters. Note that the man-
agement systems to run and practice such infrastructures
are, largely, still missing, with the notable exception of AWS
outposts1 and revised OpenStack [1].
Furthermore, with the MEC or fog framework, there are
certain questions that still needs to be investigated. For
example; (i) where these small datacenters (cloudlets should
be deployed; (ii) which services should be installed; (iii)
where and how the resources should be allocated to users’
applications; (iv) how user mobility (service migration)
should be handled; and (v) how the aforementioned MEC
framework should be optimized to minimize or maximize
various objectives such as users’ monetary costs, energy
consumption and workload performance in terms of latency,
execution time and etc. Albeit, (iii) to (v) can be seen, largely,
similar to traditional clouds; but, the management policies
should be redesigned for fog infrastructure.
The aim of this research is to examine resource allo-
cation/placement and consolidation challenges associated
with edge (fog) computing platforms. The main questions
that this research will answer include: (i) where small dat-
acenters (cloudlets – at the edge of networks) should be
installed to meet users’ demand while abating the infras-

1. https://aws.amazon.com/outposts/



2

tructure global cost (CapEx - capital expenditures + OpEx);
(ii) once the platform has been installed, what, how and
where should global control services be deployed; and (iii)
at what size/scale. Furthermore, this will open opportu-
nities for advising a generic resource allocation/placement
and management/migration framework for various kind of
fog/edge services.
While the model of cloud computing provided by a few
mega/large providers (Google and Amazon AWS) still
widely used, the beginning of innovative and emerging
technologies such as IoT applications, edge computing and
MECs is challenging this approach [1]. To cope with this
technological change, cloud and network communities are
now working in the direction of large-scale distributed, but
small sized, datacenter infrastructures (known as cloudlets)
that are installed at the edge of the network - closer to users
and their devices i.e. fog infrastructure (hence, distributed
shape applications that consist of various modules) [2],
[3]. The fog, edge and cloud paradigm is attracting rising
interest as it also improves services’ agility and performance
in terms of response time. For example, IoT applications
can take benefits from edge nodes’ deployment to perform
real-time analysis while conserving main datacenters for
in-depth data analytics [4]. This can be seen as a mixture
of fog/edge/cloudlet/MEC (the latter now being multi-
access rather than merely mobile) – where MEC suggests
being within the radio access network (RAN) but fog/edge
could relate consumer devices aggregating data from sen-
sors (before passing to the remote cloud). Further, “cloudlet”
as a mini datacenter, presumably consistent with a large
cloud provider’s provisions, would be able to support such
aggregation but would always be further from one or more
such sensors. Yet, such a cloudlet need have no relationship
to the RAN.
In addition to recognizing where edge clouds should be
deployed or installed, the drivers of such an evolution lie
in the design of suitable management systems that will
permit: (i) an operator i.e. cloud, network, or edge to ag-
gregate, supervise and expose such massively distributed
resources; and (ii) to implement new kinds of services
that may be deployed and managed by the operator or
by users. However, designing such a management system
is challenging because fog/edge infrastructures differ from
traditional clouds regarding heterogeneity, dynamicity, the
possible huge distribution of resources, and economics of
scale - if smaller, heterogeneity is less likely. The objective of
this research is to explore the placement-related questions
of a massively distributed edge cloud infrastructure. The
research will be organised around the subsequent activi-
ties: (i) propose placement algorithms that can satisfy QoS
expectations while optimizing different objectives such as
infrastructure cost minimization, energy requirements and
reliability (performance in terms of response time and QoS);
and (ii) evaluate proposed algorithms through simulations
by leveraging the iFogSim tool-kit [5] and Google cluster or
similar datasets [6].
The rest of the paper is organized as follows. Major con-
tributions of the work presented in this paper are stated
in Section 2. In Sec. 3, we discuss MECs and resource
management. In Section 4, we model the MECs resource
allocation problem as a game. A game theoretic solution is

presented, is Section 5, to solve the problem. We validate the
proposed approach using real workload traces from Google
cluster in Section 6. We offer an overview of the related
work in Section 7. Finally, Section 8 concludes the paper
with several future research directions.

2 CONTRIBUTIONS

Following are the major contributions of the research con-
ducted in this paper:

• we model the MECs resource allocation and service
migration problem using a game;

• we propose resource allocation and migration algo-
rithms using the game theory; and

• we evaluate the performance of the proposed algo-
rithms using real workload datasets from Google’s
cloud.

3 BACKGROUND

MECs offer finite resources at the edge of the network;
making it possible to run user’s application in its close
proximity, as shown in Fig. 1. The resource at the edge
are provisioned at the cloudlet or MEC server. Moreover,
the application, in cloudlet, runs at one (or more than
one) hope communication distance unlike to their native
execution either in the mobile/fog device or core internet
(remote cloud) - zero and two+ hop distance, respectively.
Therefore, application latency might be potentially affected
depending on the network services. The finite number of
cloudlets’ resources also put questions on their efficient
allocation to connected users. Although, there are several
proposals to share the resources of several cloudlets in
a particular geographic area [7]. However, this will be a
challenging problem when the cloudlet resources are offered
by different service providers having different goals and
objectives. Similarly, beside providers, mobile users, who
run the applications, are also usually selfish and compet-
itive; each user wants to optimise his/her own pay-off or
application’s performance [8].

Fig. 1: Cloud, cloudlet and fog architecture [9]

Moreover, different resources can be offered at different
costs, energy consumption and performance levels. Re-
source placement can significantly affect service providers
(IaaS, network) and customers (SaaS) economics [10]. For ex-
ample, reduced performance of applications increase users’



3

costs as well as energy consumption. Therefore, it is es-
sential to provision appropriate resources in order to meet
application QoS requirements and providers objectives.
Moreover, if mobility is involved - users are moving or
application modules are explicitly migrated among hosts for
energy efficiency or performance gains, then resource man-
agement complexities will potentially increase. Appropriate
resource management techniques are, therefore, essential to
cope with various objectives. In this paper, we elaborate:
(i) how the infrastructure and available resources (IaaS,
SaaS, NaaS) should be managed in order to increase service
agility, performance in terms of response time and minimize
the energy related costs; (ii) investigate how users’ workload
should be run and how, where resources or services should
be allocated, provisioned to it; (iii) develop algorithms
and mathematical models to solve the resource allocation
(network and computing) problem, efficiently, for MEC to
support emerging mobile applications; and (iv) realize and
implement the models and algorithms into a software to
demonstrate their feasibility and practicability.

4 PROBLEM DESCRIPTION

Management of resources in MECs is very challenging,
because offering quality services to the end-users depends
on various players, with moderately conflicting goals, such
as infrastructure owners (IaaS), network operators (network
as a service - NaaS), and application providers (SaaS), where
each player controls a particular part of the whole system.
Integral to the problem is the facts that both communication
and computation capacity is needed to guarantee high QoS
in terms of low response time and high throughput. Since,
each player may have different objectives to optimise where
the objectives of one player may potentially affect the objec-
tives of another player and vice versa. Existing works [1],
[7], [10], [11] either assume that the whole infrastructure is
managed by a single player, largely, the resource providers
[10], or separate the management of the network, applica-
tion resources from the core edge computing capacity [7].
We believe, resource allocation in MECs should be assumed
as a multi-objective optimisation problem in such a way that
players’ competition for their objectives can be optimised.
The objectives of all parties are somehow aligned – insuf-
ficient provisions for the application would ruin revenues
for all concerned (customers go elsewhere, and so do the
providers), and so there is an incentive to only minimize
to the point at which this is avoided and so either all ‘win’
together (can minimize absent impact) or all ‘lose’ together
(minimizing has impact). Moreover, simple optimization
methods cannot ensure a win-win situation for all players,
in similar resource allocation scenarios [12], [13]. Therefore,
we use game theory to model and solve such a complex,
multi-player resource allocation problem.
Largely, SaaS providers host their applications on virtu-
alised resources provided by an IaaS provider. Moreover,
SaaS providers need to comply with every application’s
quality of service (QoS) requirements, as described in Ser-
vice Level Agreement (SLA) with the customers, which
determine the SaaS revenue on the basis of achieved level of
performance. However, application performance is not only
dependent on computational resources (provided by IaaS),

but, as well as, on the network bandwidth provided by
the network operators. Similarly, service providers would
prioritise their workloads based on the nature of applica-
tions (native or third party) [7]. Furthermore, in MECs, the
network operators could be: (a) the IaaS owners (internal
network); and (b) third party mobile network operators (ex-
ternal network). Therefore, network resources from various
providers should be provisioned at affordable prices. The fo-
cus of SaaS providers would be to maximize their revenues
through minimising SLAs, while reducing the total cost of
using compute, as well as, network resources provided by
the IaaS and third party network service providers. More-
over, in case of multiple IaaS providers or cities (MECs),
SaaS providers would probably compete and bid for the use
of infrastructural resources based on prices. On the other
hand, the IaaS and third party network service providers
could maximize their revenues through providing their
virtualized resources as much as possible. Moreover, IaaS
providers could maximize their resource usage (utilisation)
in order to minimise energy consumption.

TABLE 1: Notations used in problem formulation

Notation Description
N List of players so that m ∈ N
K List of available resources
Cm

K Type k ∈ K resources offered by m ∈ N provider
C List of total offered resources by m ∈ N
M Set of applications
H List of hosts in datacenter such that h ∈ H
L List of users such that u ∈ U
M Number of cloudlets such that e ∈ M
j A particular job that belongs to an application ∈ M
R Resource request matrix
A Resource allocation matrix
D Allocation decision
U Utility function of all providers

XiN Resource - provider mapping function, constraint
xij VM - host mapping function, constraint
bcost Cost of network bandwidth B
Trate Rate of transmission over the B

bidj Bid of jth provider for its resources
eij Energy consumed at host j for VM i
tk Execution time of application k
Xij Mapping function of provider i to application j

pIaaSij Utility of IaaS for application j on host i

pSaaS
ij Utility of SaaS for application j of user i

pNaaS
ij Utility of NaaS for application j for ith channel
Em Energy consumed during a VM migration

VMdata The data copied during the migration of VM

4.1 Mathematical Formulation

In our game, we assume three players with conflicting goals:
(i) IaaS – whose aim is to minimise energy consumption
through consolidating the workload onto the fewest re-
sources; (ii) SaaS – who want to maximise service perfor-
mance and avoid SLAs (and, therefore, increase revenue);
and (iii) third party network service providers and operators
– whose aim is to minimise network traffic in order to ensure
QoS in terms of performance (response time). We assume
that N = {1, 2, ..., N} denotes a set of all service providers
that act as players. A list of all mathematical notations
can be found in Table 1. Moreover, each player has a set
of K = {1, 2, ...,K} various kinds of resources including



4

computation (IaaS), application (SaaS), and communication
(NaaS) resources. The mth service provider denotes its
offered resources as Cm = {Cm

1
, Cm

2
, ..., Cm

K } where Cm
k

is the amount of resources of type k offered by m service
provider. Therefore, all offered resources at various service
providers is given by:

C =
{

∑

m∈N

.Cm
1
,
∑

m∈N

.Cm
2
, ...,

∑

m∈N

.Cm
K

}

(1)

Moreover, every job j (i.e. application module) asks for a set
of resources (in the form of coalition) that belongs to a set
of all applications given by M = {M1UM2...UMK} subject
to the condition that every application module is allocated
resources once in every m ∈ N - an application module can
run exactly once. We assume that every application module
j runs in a virtual machine (VM) or container. Further-
more, it is possible that a job may comprise a multiplicity
of amounts of containers/VMs/network resources which
presumably can be co-located - unless there can be only one
VM or container per host or application, in which case this
readily simplifies. However, to simplify our formulation, we
assume that each module requires one VM or container, at
most and the total number of VMs or containers provisioned
cannot exceed the application M resource requirements R

(subject to constraint in Eq. 2).

VMs|containers
∑

i=1

Mi ≥ RM (2)

Suppose an MEC system with a single cluster (cloud dat-
acenter), several edge locations (cloudlets) and numerous
mobile/fog devices. These resources are interconnected
through networks such that cloudlets are in close proxity
to fog devices. An application’s modules are distributed
and run over these resources. The cloud datacenter which
consists of H heterogeneous hosts and each host is denoted
by h, such that 1 ≤ h ≤ H. For k ∈ K resources (such
as CPU, memory, storage, network) each h can be denoted
as a capacity vector Ch = {ch

1
, ch

2
, ch

3
, ......, chk}; and each

kind of resource is denoted as n. For example, h(2, 4, 10, 1)
describes that a particular host h has 2 CPUs, 4 GB memory,
10 GB disk storage and 1 Gbps network card. Moreover,
we assume that there areM edge locations (cloudlets) and
each edge cloud e consists of several heterogeneous hosts
S; and each edge host s ∈ S resources are also represented
as capacity vector Cs – similar to cluster host Ch. Moreover,
cloudlet resources are extremely lower than datacenter re-
sources i.e

∑

S <<
∑

H and Cs << Ch. The resources in
datacenter and cloudlets are virtualised, therefore, offered
through VMs. Each VM can run a particular application
module or job. The application or job submitted by a partic-
ular user u is denoted as Ju, where u ∈ {1, 2, ......, U}. Every
application comprises several modules that run concur-
rently [9]. Furthermore, a variety of VM or container types
are predefined by each cloud provider (cloud and cloudlets);
and each type’s resources are encoded by the capacity vector
R such that Ru = {ru1, ru2, ......, ruj , ......, rU}. Note that,
each VM or container can run a single job (application
module) at a time (subject to constraints in Eq. 12), both in
the remote datacenter and cloudlets. Various resources like
CPU, memory, storage and network of a host h ∈ H or s ∈ S

will be occupied, only, when a particular VM or container is
created on h ∈ H or s ∈ S. Mobility of application modules
is, therefore, possible through VM migration [10].
With the above terms, resource requests for a particular job
j (or user) can be defined as a u × v dimensional matrix
(Rj); where rows represent the VM or container type and
columns denote the amount of various resources associated
with the VM/container type:

Rj =









r
j
1

r
j
2

...

rju









=









r
j
11
r
j
12
r
j
13
...r

j
1v

r
j
21
r
j
22
r
j
23
...r

j
2v

... ... ... ... ...

r
j
u1r

j
u2r

j
u3...r

j
uv









(3)

Note that, the request matrix R is an augmentation of all
the request matrices (from all the service providers) as given
below.

R =









r1
r2
...

rU









=









r11r12r13...r1v
r21r22r23...r2v
... ... ... ... ...

ru1ru2ru3...r
j
UV









(4)

We assume that a particular job can be allocated to at most
one host; and various resources mean CPU, RAM, storage
and network. Moreover, for a particular host h, a possible
resource allocation state can be described as an allocation
matrix Ah:

Ah =









ah
1

ah
2

...

ahu









=









ah
11
ah
12
ah
13
...ah

1v

ah
21
ah
22
ah
23
...ah

2v

... ... ... ... ...

ahu1a
h
u2a

h
u3...a

h
uv









(5)

where ahab represents the amount of resources b on a partic-
ular host h allocated to a container or VM a. Similar to the
request matrix R, the allocation metric A is an augmentation
of all the allocation matrices (from all the service providers)
as given below.

A =









a1
a2
...

au









=









a11a12a13...a1v
a21a22a23...a2v
... ... ... ... ...

au1au2au3...auv









(6)

For every host, an allocation decision D is a possible al-
location status from a set of all possibilities based on the
resource requirement matrix R:

D =
[

A1, A2, A3, ..., Ah, ..., Ap
]

(7)

The aim of the resource allocation problem, given the re-
source requirement matrix R and the capacity sets of hosts
C, is to calculate a reasonable mapping from resources to
user’s jobs. In our game, various players (resource, appli-
cation and network providers) collectively arrive at a single
decision that describes VM allocations which are collectively
best for the whole MEC system; and also ensuring that
the allocations are both energy and performance (runtime)
optimized.
If we assume the above problem as a single objective opti-
mization problem, then each service provider, individually,
wants to maximize its utility through allocating its available
resources such that: (i) energy consumption and workload



5

performance (runtimes) are minimised (IaaS); (ii) applica-
tions’ runtimes are minimised (SaaS); and (iii) network traf-
fic is minimised (NaaS). From a single objective optimisation
problem of a single service provider, the objective of all
providers is given by:

maxA

(

∑

j∈N

un
j .A

n
i∈M

)

(8)

Moreover, for each VM or application i its allocation ma-
trix to each service provider N ∈ {IaaS, SaaS,NaaS} is
given by XiN = {0, 1} such that

∑

Xi,N ≤ 1 i.e. each
application is allocated exactly once to every provider. Once
allocated, each user pay p (utility of server providers) for
its application i to each service provider n ∈ N ; where p is
the sum of pIaaSin , pSaaS

in , and pNaaS
in that represent the cost

own by IaaS, SaaS, and NaaS, respectively. Therefore, the
utility of the whole MEC system from a particular user with
application i is given by Ui = Xij(p

IaaS
ij + pSaaS

ij + pNaaS
ij ).

For m applications, the total utility of the MEC system is
given by:

U =
m
∑

k=1

Ui (9)

Therefore, the objective of the whole MEC system with
respect to users’ monetary costs is given by:

max(U) (10)

The two constraints of the above optimisation problems
are: the allocated resource capacities cannot exceed the total
capacities; and each user is allocated resources exactly once
in their proximities.

4.2 The Optimisation Problem

We can formulate the above problem as a Min-Max multi
objective optimisation problem. Consider a MEC which
comprises a datacenter, several edge locations (hosts), and
users’ jobs that run on a variety of VMs. Find the VM to host
mapping, such that: (i) the cumulative energy consumed by
the MEC is minimized; and (ii) the performance of the VM is
maximized (or VM runtime is minimized). Similarly, regard-
ing SaaS performance of various applications is ensured.
Moreover, from networks point of view the available band-
width (B) is maximised. We further assume performance
as the VM runtime, the longer the VM runs the worse will
be its performance and vice versa. Mathematically, we can
integrate all these into Eq. 11:

min

(

N
∑

i=1

M
∑

j=1

eij .xij .

N
∑

i=1

tij .xij +
M
∑

k=1

tk

)

+

max
∑

B +maxA

(

∑

j∈N

un
j .A

n
i∈M

)

+max(U)

(11)

where the mapping factor xij equals 1 if a particular VM i

is mapped to host j. Furthermore, eij represents the energy
consumed by host j when a VM i is run. Moreover, tk
denotes the execution time of application k and B is the
available bandwidth. The constraints of the above optimisa-
tion problems are:

∑

i

xn
ik ≤ Cn

k &
m
∑

l∈N

xl
ik ≤ rnik (12)

where the first one indicates that various resources allocated
to VMs cannot exceeds the hosts (providers) capacities while
the second one ensures that only the required resources
are offered to VMs. Note that, application runtimes, net-
work performance, and energy consumption are inversely
proportional to each others i.e. an increase in one value
can decrease the other one’s value. In the single objective
optimisation, the SaaS provider wants to maximize income
by minimizing monetary costs (i.e. lower costs may increase
number of customers) – and so cost minimization implies
minimizing SLA violations; SLA violations, then, depends
on resources procured from their providers of network and
IaaS (who, presumably want to achieve the same for the
same reasons). In such scenarios, an assumption would
be needed, so that the IaaS provider who is trying to get
the SaaS provider to use more resources, unnecessarily,
can be avoided (left-hand side of Eq. 12). Furthermore, it
is also possible that various providers are satisfying the
highest paying customers first - in which case an additional
constraint would be necessary over the allocation. The later
one can also be assumed similar to native applications of
IaaS providers - Gmail on Google cluster will get preference
than running on Azure cluster [7]. This means that the MEC
allocation problem is complex and cannot be easily solved
with simple optimisation techniques.
An alternative approach is to account for individual player’s
objectives, separately. For example, the providers (IaaS,
NaaS) deploying the MEC services aim to maximize their
profits through selling more resources (using certain price
models) and/or reducing energy consumption (paying less
energy bills). Moreover, the SaaS has to account for: (i) gains
from selling their applications; and (ii) the amount paid to
providers (IaaS, NaaS), when deciding on their resource de-
mands. The providers, first, set prices for their services. The
SaaS providers, decide later on their required computing
and network resources for running users application, being
aware of the providers’ prices. The utility function U of each
player comprises: amount for selling; and cost incurred in
providing resources [14]. We can divide the whole game into
two sub games, subject to various constraints, as discussed
in Sec. 4.1:

1) every SaaS decides on the resource demand while
maximizing the expected utility, given all other
SaaS’ demands, i.e., strategies, as well as the MEC
resource prices (Eq. 8); and

2) the profit of each provider (IaaS, NaaS) is the rev-
enue obtained from charging the SaaS for IaaS, NaaS
and MEC resources (SaaS x pays a unit price px to
each MEC provider) minus the incurred cost (Eq.
10);

where cost is a function of the resource demand, e.g., energy
consumed, performance gains and etc. Moreover, the SaaS
providers may want to run users’ applications in their close
proximity (nearest available resources) in order to ensure
expected levels of performance (in terms of low latency).
Furthermore, IaaS, NaaS compete each other for providing
resources and the SaaS compete for provisioning better ser-
vices. The game solution guarantees that the resource price
or allocation, chosen by various providers (IaaS, NaaS),
increases their profits, such that SaaS providers achieve



6

optimal performance for applications which also increases
their utility.

5 PROPOSED SOLUTION

Game theory is largely used for analysing competitive inter-
action among various providers [15]. We model the above
problem as a non-cooperative game where customers - SaaS,
resource providers - IaaS, and access networks (or network
providers - NaaS) act selfishly according to their own partic-
ular objectives [14], [16], as described in Sec. 4. As described
in [12], multi-objective optimisation problems can be solved
in two ways: (i) concurrently solve all objectives; and (ii)
solve one objective first, and then make it a constraint on the
next one. Moreover, various objectives can be combined into
a single metric, and then solved as a single objective prob-
lem [10]. To concurrently solve multi objectives, Lagrange
multipliers is one of the classical technique to address such
problems. The Lagrangian will converge all objectives to a
single saddle point. The Hungarian method is also used to
solve such problems, particularly, cooperative games where
coalition can formed among various service providers [16].
Since, we assume our game of non-cooperative nature [8],
[17], and auction theory is a suitable tool to solve such
kinds of games [14]. Therefore, we also solve the allocation
problem with an auction theory using the bidding strategy.
Our game theoretical approach is inspired from the previous
work, as presented in [16].
We assume the whole MEC as a multi-agent system that
consists of three different layers. At the top-level, a global
resource manager (broker) is responsible to assign VMs
requests to a particular MEC. In the middle layer, a local
manager is associated with each MEC that is responsible
for assigning VMs requests to appropriate computational
resources (also knows as agents). In the third layer, agents
are responsible to run VMs. In our game, the local manager
can submit bids for execution contracts to the global man-
ager. Subsequently, the broker will select the winning MEC
through a sealed-bid auction. The bids are computed (by
a local manager) using a particular strategy at each server
provider using various characteristics of the application
and infrastructure. To effectively estimate the runtime for
a contract bid, every local manager will ask all agents in
its related MEC for estimates in order to create a runtimes
matrix. The local manager then chooses which VMs it can
execute and at what price. These details are then passed to
the global resource manager for taking appropriate alloca-
tion decisions.
The steps involved in resource allocation are described in
Algorithm 1. The core module of the proposed allocation
technique is the bidding strategy. Each service provider is
associated with its own and a particular biding strategy,
which is described later in Sec. 5.1. All the bids from var-
ious providers i.e. IaaS, SaaS, NaaS, are computed, sorted,
and are converted to a single (combinatorial) bid which
is shared with the global resource manager. The global
resource manager, then, chooses the local manager with the
highest bid to run the VM. We can also use the Hungarian
method to choose the optimal allocation strategy for a
particular application (SaaS) [12]. Besides resource alloca-
tion, the global resource manager (broker) is responsible to

Algorithm 1: VM placement algorithm

Input: List of MECs (N ), List of hosts in nth MEC
(Hn), List of VM requests (V )

Output: Efficient VM placement
1 for each player p ∈ N do
2 for each mec ∈M do
3 resource manager de-queues its job queue and

announces that a VMi is ready for bidding ;
4 for each agent j do
5 estimate runtime for VMi ;
6 tempraray en-queues VMi into local job

queue to check its possiblity of execution ;
7 if VMi is executable on j then
8 bidj = compute bid using Eq. 13
9 else

10 bidj = 0 (since runtime =∞)
11 end if
12 end for
13 sort agents in ascending order of their bids ;
14 end for
15 take bid from network provider ;
16 take bid from application provider ;
17 end for
18 sort all bids in ascending order w.r.t group value ;
19 agt← the agent with the lowest bids (Hungarian) ;
20 allocate VMi to agt ;
21 return output

consolidate workloads within the remote cloud and across
several cloudlets. The consolidation process ensures that all
cloudlets are balanced (w.r.t workloads) and can be achieved
using service migration technique, as described in Algo-
rithm 2. Moreover, appropriate service migration techniques
guarantee energy savings and workload’ expected levels of
performance. Furthermore, VMs reallocation through ser-
vice migration techniques, across various servers or MECs,
can be modelled as a cooperative or semi-cooperative game
in which various agents or local resource managers can help
each other to run them, on appropriate resources [16]. In
this paper, albeit we consider service migrations, however,
they are modelled and considered as a semi co-operative
game, but, not a complete co-operative game. In the near
future, we will consider service migrations a complete co-
operative game; an will try to ensure the existence of the
Nash equilibrium.

5.1 The Bidding Strategy

The core component of the proposed technique is the bid-
ding strategy that varies with respect to various service
providers involved within the MEC system. Each bid rep-
resents a possible VM schedule at certain cost of energy. For
example, for IaaS with H total number of hosts the bid of
each server h is computed using:

bidh∈H =
(

he −
1

he

)

× rh (13)

where he represents the energy consumed and rh denotes
the expected runtime (therefore, performance w.r.t SaaS) of
a particular VM on host h ∈ H . The lowest bid demotes



7

Algorithm 2: Service migration technique

Input: optimize(), M , Tv , Tl

Output: migration decision d

1 for each cloudlet ∈M do
2 compute utilisation level of the cloudlet (Te) ;

compute network condition (Tc) ;
3 if Te ≥ Tv or Tc ≥ Tl then
4 select module m from cloudlet ;
5 choose cloudlet t as destination node ;
6 d← true ;
7 else
8 continue with the for loop ;
9 end if

10 end for
11 return m, t, d

an optimal agent from both IaaS and SaaS perspective. For
NaaS, we assume that the bandwidth is offered in sub-
channels and is, largely, used for data transmission and com-
munication. Important parameters, here, include the total
distance between the IaaS and user, data size, transmission
rate, execution delay, and link power consumption. These
parameters should be considered in computing the NaaS
bid. Furthermore, the broker is aware of the agent’s distance
from each user. The NaaS bid is given by:

bidb∈B = D × bcost (14)

where D denotes the distance between the edge cloud and
the agent, while bcost is the channel (bandwidth) cost. We
assume that NaaS offers various channels with numerous
capacities at different costs just like EC2 instance types. The
above bidding strategy can be converted to combinatorial
bidding approach where all bids can be computed in one
go [18]. In such scenarios, each VM request R can be
represented as a 2-tuple i.e. R(C,B) where C denotes the
instance type (size) and B the required number of band-
width channels. Note that, the required number of channels
Bij are computed using the transmission rate Trate, as given
by:

Trate = Bij .log2(1 +
Pij .hij

N
) (15)

where Bij represents the bandwidth allocated to VM or user
j, hij denotes the channel gain for user j at service provider
i and Pij is the transmission power of user j. Further, N
is the background noise [18]. Due to experimental simpli-
fication, we use, here, the combinatorial bidding approach,
given by [

∏

bidh∈H .bidb∈B], in order to allocate IaaS, NaaS
resources to different services i.e. various modules of the
applications.

6 PERFORMANCE EVALUATION

Resource allocation and consolidation can be seen as a kind
of bin-packing problem by means of different sizes and costs
of bins – where bins represent the MEC’s resources (hosts)
and items represent various applications for placement.
Furthermore, the size of bins represent host’s CPU, RAM,
storage capacities and costs relate to hosts’ energy consump-
tion. Energy and performance efficient resource allocation

can be assumed as a multi-objective optimisation problem
with the objective(s) to reduce the number of used hosts –
as fewer hosts, possibly, decrease the energy consumption.
However, this statement may not hold for heterogeneous
MECs [19]. Therefore, an alternative approach for hetero-
geneous systems is to minimise the sum of total bins costs
instead of number:

min

n
∑

i=1

Chi
(16)

where Ch is the cost of host h. We consider C as the product
of energy (E) and performance – execution time (T). Usually,
bin-packing problems are solved using various heuristic
approaches which may not guarantee optimal results but
they are considered fast enough to deal with, particularly,
large problems [20]. It is possible to assume an analogous
resource allocation problem as moving from a particular
state of the datacenter to an ideal state – the one using
the fewest hosts. We achieve a datacenter state through
implementing various placement techniques (Cloud-Only,
Edge-ward and bidding-based Game-theoretic - epcAware),
with application packing then needing to ensure energy and
performance efficiency.

6.1 Modelling Applications

To demonstrate the efficiency of the proposed technique, we
use two kinds of applications: (i) near real-time – where we
model the well-known electroencephalography (EEG) trac-
tor beam game (EEGTBG); and (ii) delay-tolerant – where
a video surveillance/object tracking (VSOT) application is
modelled. In respect of (i), several players attempt to collect
items through concentrating on them - the better the con-
centration, the higher chances to collect more items. A true,
on-line, real-time, experience can be observed through fast
processing and low response times.
The EEGTBG application has 5 modules: (a) EEG sensor;
(b) display; (c) client; (d) concentration calculator; and (e)
coordinator. The EEG headset probes user concentration and
communicates raw data to the client module. Subsequently,
the client module transmits reliable data to the concen-
tration calculator module, which calculates the user level
of concentration. Furthermore, the computed concentration
level is sent back to the client module, to update the game
status (display) on the player’s device. The coordinator
module collects and distributes measured concentration
among all players. As described in [9], the three modules i.e.
sensor, display, and client are placed in the mobile device.
However, the other two modules i.e. the concentration cal-
culator and coordinator could be placed either in cloudlets
or datacenter. Various modules of the EEGTBG application
are shown in Fig. 2.
The VSOT application depend on a set of distributed cam-
eras that could track movement, having six modules: (a)
camera; (b) motion detector; (c) object detector; (d) object
tracker; (e) user interface; and (f) pan, tilt, and zoom (PTZ)
control. The camera streams video to the motion detector
that, subsequently, filters the streamed video and transmits
the video of interest, i.e. in which motion was detected, to
the object detector module. The object detector recognises



8

Fig. 2: EEGTBG application modules [9]

the moving objects, and sends their identification and po-
sition data to the object tracker module. Sequentially, the
object tracker calculates the required PTZ and sends the
command to PTZ control. We further deliberate that the two
modules i.e. motion detector and PTZ control are perma-
nently located within the camera, whereas the user interface
runs in the cloud (datacenter). The other two modules i.e.
the object detector and object tracker might be placed either
in a cloudlet or datacenter.
The above applications can be set up in a MECs infrastruc-
ture to yield benefits of lower latency due to the use of edge
devices. Moreover, VSOT can work reasonably well under
datacenter-distance latencies (greater than 100 milliseconds)
[9]. Alternatively, higher delays in EEGTBG application can
impact the players real-time observation, making the game
weird as its playability might be damaged. We contemplate
that both these applications belong to two diverse classes
of applications types i.e. delay-sensitive and delay-tolerant,
that could benefit from a MECs infrastructure. Various mod-
ules of the VSOT application are shown in Fig. 3.

Fig. 3: VSOT application modules [9]

6.2 Experimental Set-up

We use the “iFogSim” simulator [5] to evaluate the per-
formance of various resource placement policies because
it: (i) supports the hierarchical composition of IaaS clouds,
cloudlets and edge devices; (ii) runs on top of “CloudSim”
[21] – the most widely used simulator in the cloud research
community; and (iii) supports the measurement of applica-
tion performance in terms of delays, response and execution
times. We assume twelve instances of the VSOT applica-
tion that run in cloudlet-2 and thirty six instances of the
EEGTBG application that run in cloudlets-1 and cloudlet-
3, collectively. Initially, eighteen EEGTBG users are playing
the game in close proximity of cloudlet-1 location and the
other eighteen players are in close proximity of cloudlet-
3 location. To emulate mobility and to assess performance
degradation that may cause from poor resource allocation
and service migrations, we move the EEGTBG players one
by one to cloudlet-2. Due to low-latency requirements of

EEGTBG application, we assume that a particular player
in a cloudlet plays only against other players in the same
cloudlet [9]. To simulate service mobility in the context
of epcAware allocation and migration policies, appropriate
migration decisions are, then, triggered using Alg. 2. The mi-
grations may happen either: (a) among hosts of the remote
cloud – inter-datacenter; (b) among hosts of an individual
edge cloud or across several edge clouds – inter-fog and
intra-fog; and/or (c) among hosts of the edge and remote
clouds – fog-datacenter. In respect of (a) and (b), migrations
occur if hosts’ utilisation levels drop below certain threshold
value e.g. 20%. In respect of (c), application modules are
moved explicitly, as described later.
Every cloudlet has a processing capability (speed) of 3
heterogeneous servers, as shown in Table 3, that maps to
the notion of MIPS (millions of instructions per second), for
consistency with the iFogSim simulator, and is connected
to the gateway (proxy server) through a link of bandwidth
equal to 10 Mbps and latency of 4ms (milliseconds). More-
over, the link between the gateway and the cloud has 10
Mbps bandwidth and 100ms latency. We further assume that
edge devices, such as mobile and camera, are connected
to the cloudlets through a link of bandwidth equal to 10
Mbps and 2ms latency. The maximum resource (CPU, RAM,
and network bandwidth) requirements of each application’s
module are shown in Table 2. However, at scheduling time,
prior to execution, each application’s (module) resource
requirements are unknown. Later on, resources could be
predicted. Moreover, we assume that the application mod-
ule workload (modelled as tuple) is dynamic that changes
with time to time. Moreover, every tuple is assigned a
particular task (i.e. fixed number of MIPS) which utilises
the VM resources, using a normal distribution - most likely
resource usage in Google cluster, that could possibly create
variations in runtimes.
Similarly, we account for resource contention or interference
on various servers, that could, possibly, degrade applica-
tions performance. The cloud consists of 12 heterogeneous
hosts that corresponds to three different CPU platforms, as
shown in Table 3. The idle (Pidle) and maximum power con-
sumption (Pmax) of hosts were taken from the SPECpower
benchmarks. To maintain consistency with the iFogSim sim-
ulator, speed of the hosts are transformed to MIPS. Each
hosts can run several VMs where each core of a particular
host corresponds to a single vCPU of a VM instance. We,
further, assume that every module of the fog application
runs in a VM instance and the speed of VM is exactly
equal to the CPU requirement of each module, as shown
in Table 2. We also account for migration costs [19], resource
heterogeneity (in terms of CPU architecture) and resource
contention due to co-location i.e. when similar modules of
same applications are placed on same host and compete
for same resources [22]. The resource contention and CPU
heterogeneity parameters for various hosts, as shown in
Table 3, were taken from our previous work. Each migration
degrades the VM performance by 10%, as investigated in
[23]. Moreover, the energy cost of each VM migration Em is
modelled using Eq. 17:

Em = 0.512× VMdata + 20.165 (17)



9

TABLE 2: CPU, RAM and network bandwidth (BW) requirements (in MIPS, MB, and Mbps, respectively) for both
applications and their various modules [9]

VSOT EEGTBG
Object Motion Object User Client Concentration Coordinator

detector detector tracker interface calculator
CPU 550 300 300 200 200 350 100
RAM 30 25 25 20 50 60 30
BW 100 100 100 400 500 200 200

where VMdata denotes the amount of memory (measured
in MBs) allocated to the VM plus memory pages dirtied
during the migration process [10]. Note that, speed of hosts
and VMs are transformed into the notion of MIPS in order
to keep consistency with the CloudSim and iFogSim sim-
ulators. Moreover, each service requirements (CPU) are ac-
cording to the default setting of iFogSim (number of MIPS).
We assume that each module of various application utilises
its provisioned VM resources in whole. Furthermore, each
provider’s utility is computed using a particular cost model.
In our experiments, there are 12 servers in cloud, 1 proxy
server, and 3 servers per cloudlet. Each service is placed on
the most energy, performance and cost efficient host, using
Alg. 1, in such a way that every service requirements are
ensured [24], [25].

TABLE 3: Different characteristics of various hosts used
in the simulated MEC system [Pidle and Pmax denote the
host’ idle (0% utilised) and maximum (100% utilised) power
consumption, respectively]

CPU Speed No of Memory Pidle Pmax Total
model (MHz) cores (GB) (Wh) (Wh) amount
E5430 2830 8 16 166 265
E5507 2533 8 8 67 218 100
E5645 2400 12 16 63.1 200

6.3 Evaluation Metrics

The metrics used to evaluate the energy, performance and
cost efficiency of the proposed resource allocation and mi-
gration policies are: (i) total energy consumed (E) measured
in KWh; (ii) execution time (T) measured in seconds – as
application’s performance is inversely proportional to T;
(iii) delay (D) among various modules which is measured
in milliseconds; (iv) total number of migrations – fewer
migrations may ensure higher performance levels and lower
energy consumption; and (v) provider’s utility. Note that,
the providers’ utilities actually describe the money (in US
dollars - $) for energy consumption bills (IaaS), resources be-
ing sold (NaaS, IaaS) and instances being purchased (SaaS,
IaaS). We assume the energy cost at the rate of 0.08$ per
KWh, VM instances and bandwidth costs at 0.07$ and 0.02$
per hour, respectively. We also assume that VMs running
in cloudlets incurs an additional cost of approximately 20%
greater than the cloud VMs [24].

6.4 Experimental Results and Discussion

Table 4 describes experimental results for various resource
placement, consolidation and management policies. The
results show that various approaches to resource placement

and placement methodologies (cloud-only, edge-ward) offer
variations in energy consumption, and workload perfor-
mance. Largely, our findings are consistent with previous
outcomes [9] that the edge-ward approach is approximately
3.24% to 8.94% energy and ∼0.81% performance efficient
than the cloud-only placement method. However, if re-
source contention (due to co-located VMs) and platform
heterogeneities (due to CPU architectures) are considered
at the cloudlets, then the edge-ward approach cannot en-
sure performance benefits. Therefore, performance gains are
obtainable if certain performance-aware placement policies
such as “epcAware-NC” or “epcAware-SC” are taken into
account.

TABLE 4: Experimental results - energy is the sum of both
dataceneter and cloudlets usage and R means total execu-
tion time [without migrations]

Allocation Providers utility ($) Energy R
Policy IaaS SaaS NaaS (KWh) (hours)

Cloud only
Random 279.3 1.82 0.48 3,491.7 26.12

FCFS 262.8 1.75 0.5 3,285.3 24.98
Delay-priority 239.7 1.68 0.5 2,996.0 23.93
epcAware-NC 225.8 1.68 0.52 2,822.1 23.87
epcAware-SC 223.0 1.68 0.53 2,787.9 23.51

Edge-ward
Random 270.2 1.96 0.44 3,377.0 27.95

FCFS 239.3 1.89 0.47 2,991.5 26.69
Delay-priority 231.9 1.75 0.5 2,898.9 25.07
epcAware-NC 216.1 1.68 0.52 2,701.0 23.87
epcAware-SC 215.4 1.61 0.53 2,692.5 23.32

Migrations which may happen due to cooperation among
various players (service providers) can increase energy,
performance, therefore costs saving. However, if migration
costs, resource heterogeneities and contention are consid-
ered, then migrations could potentially degrade applica-
tions’ performance up to -10.97. The figures, as described in
previous paragraph, can further be improved i.e. ∼11.95%
energy savings and ∼3.56% performance gains, if certain
epcAware service migration techniques are considered, as
shown in Table 5. The total number of migrations, as
shown in Fig. 4, affect the overall performance degradation
– higher number of migrations potentially lead to appli-
cations lower performance. The migrations may happen
either inter-fog nodes or/and intra-fog platform. Moreover,
inter-datacenter migration and fog-datacenter migrations
are also possible. Our investigation suggest that, in MEC,
migrations may, largely, happen inter-datacenter which is
justifiable due to increased number of nodes in datacenter.
Moreover, since the Random policy puts modules scattered,



10

therefore creating maximum opportunities for migrations,
as shown in Fig. 4. However, if mobility is considered [9],
then moving application modules across several cloudlets
or between cloudlets and datacenter would be essential.
This also demonstrates that migrations can be reduced up
to 52.8% if providers cooperate and schedule workloads on
appropriate resources.

TABLE 5: Experimental results - energy is the sum of both
dataceneter and cloudlets usage and R means total execu-
tion time [with migrations]

Allocation Providers utility ($) Energy R
Policy IaaS SaaS NaaS (KWh) (hours)

Edge-ward
Random 237.9 1.96 0.44 2,973.5 28.03

FCFS 219.6 1.89 0.45 2,745.2 27.4
Delay-priority 224.3 1.96 0.44 2,803.6 27.82
epcAware-NC 215.8 1.61 0.54 2,697.7 23.02
epcAware-SC 215.4 1.61 0.54 2,691.8 23.01

Random FCFS Delay-priority epcAware-NC epcAware-SC
0

50

100

150

200

250

300

350

400

N
u

m
b

er
 o

f 
M

ig
ra

ti
o

n
s

Inter-Datacenters
Inter & Intra-Cloudlets
Inter-Fog-Datacenter

Fig. 4: Total number of migrations [including inter-
datacenter, inter and intra-fog, and fog-datacenter]

Table 6 shows the percentage improvements in energy ef-
ficiency and performance gains when resource allocation
problem is modelled, using a game approach, among dif-
ferent service providers with conflicting goals. Our findings
demonstrate that cooperative-based game approaches to
allocation ensure higher efficiencies. To study the impact of
long-running monitoring services and short-running game
applications, we changed the runtimes of applications in the
above experiment, accordingly [10]. We observed that mon-
itoring applications (VSOT) modules are more cost-effective
to migrate than game application (EEGTBG) modules in
terms of total number of migrations (reduced), and perfor-
mance loss (reduced). Longer runtimes could guarantee re-
coverability of the migration costs [19] through subsequent
running over the target and, therefore, cost savings. This
create further gap for investigation of placing and running
modules of monitoring services in VMs and game modules
in containers. This will also ensure reduction in application
migration times since container images are smaller than VM
images.
The scheduling and migration decisions in fogs also affect
the total network use, as shown in Fig. 5. For example,

TABLE 6: Percentage improvements of using game-theoretic
methods to placement [Base is the delay-priority approach,
E and P denote energy and performance (%), respectively]

Policy Base epcAware-NC epcAware-SC
E P E P E P

cloud-only - - 5.8 0.25 6.94 1.76
——————————————————————

edge-ward - - 6.83 4.79 7.12 6.98
- - 3.78 17.25 3.98 17.29

migrations increase the utilisation levels, that could be up to
9.65%, of the used bandwidth irrespective of the network ca-
pacity. Moreover, if network provider allocate their channels
or bandwidth capacities in such a way that each application
or user gets exactly what is needed for quality of service
(QoS). Then the allocated bandwidth can be decreased, but,
utilised more. When placement and migration decisions
are taken based on the cooperation among various service
providers, then approximately 3.83% to 12.86% network
capacity could be saved which translate to cost saving from
NaaS perfective.

Random FCFS Delay-priority epcAware-NC epcAware-SC
8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2
N

et
w

o
rk

 u
sa

g
e 

(b
it

s 
p

er
 h

o
u

r)
×104

No migrations
With migrations

Fig. 5: Network usage for various policies [higher values are
better than the lower values]

Table 7 shows average delays (measured in seconds) for
various applications and resource placement and migration
policies. The delay actually represents the time needed to
complete a particular task (tuple). For example, in case of
the VSOT application, the delay represents the time between
a sensor notices an object and PTZ controller to identify the
object. The edge-ward approach is somehow offering lower
delays than the remote cloud-only technique - which is
justifiable due to short distances. Moreover, the application
delay is affected through increasing the number of users
(or application modules), network usage (available band-
width), and total number of migrations, which may possibly
produce contention if same modules are placed on same
resources. We observed that the classical FCFS policy offers
the least application delays since it prefers to put application
modules on the remote cloud. Moreover, the delay-priority
policy [9] offer acceptable delays, however, for large number
of users (concurrent application modules) it cannot guaran-
tee consistent lower delays. Albeit, our proposed policies



11

can ensure lower delays if migrations are not taken into
account. However, since the proposed algorithms look for
opportunities to reduce network (bandwidth) provisioning
– the NaaS objective; therefore, combined with migrations,
improvement in delays is not trivial and this needs further
work.

TABLE 7: Average application delays (in seconds) the ±
denotes standard deviation over the average [minimum
values are ’best’]

Policy epcAware-NC epcAware-SC
EEGTBG VSOT EEGTBG VSOT

cloud-only 18.7±1.1 17.8±1.3 23.8±1.9 20.1±2.2
——————————————————————-

edge-ward 13.6±2.4 15.1±2.1 16.7±2.3 15.9±1.8
30.0±3.3 29.9±2.8 24.6±2.6 23.2±2.6

7 RELATED WORK

Gupta et al. [5] proposed two application placement poli-
cies: (i) cloud-only that places all modules of the applica-
tion in cloud datacenter; and (ii) edge-ward that favours
to run modules of the application on edge/fog devices.
However, in case of (ii), if the allocation of a fog device
is not appropriate, then resources from other fog devices
or cloud datacenters could be provisioned. Moreover, a
simulator “iFogSim” is developed to simulate mobile edge
cloud platforms. Empirical evaluation of both allocation
policies for two real-time applications suggests that the
edge-ward policy significantly improves the application’s
performance and reduces the network traffic. Bittencourt
et al. [9] investigated three different allocation policies; (i)
concurrent – the requests at cloudlet are served in the same
cloudlet; (ii) FCFS – requests are served in the order of their
arrival (edge-ward); and (iii) delay-priority – the lowest
delay applications are scheduled first and the remaining
applications are placed according to edge-ward placement.
Moreover, application (modules) migration is supported;
and if a particular module is moved to a target device, all
other modules are also moved. Their investigation suggests
that if an application performance is the worst on a fog
device, probably, due to more number of connected users, its
migration to the cloud datacenter is performance efficient.
Moreover, network traffic is reduced.
Guerrero et al. [26] suggested a decentralised placement
policy that runs popular and most widely used applications
closer to the end-users (close proximity). Popularity of the
applications is computed through statistical distributions of
their access rate i.e. service request rate (λ). For each device,
the algorithm analyses λ of every service, and migrate the
lower requested services to upper devices (in edge-ward
fashion). Their experimental evaluation suggests that such
a placement method significantly improves the network us-
age and service latency of the most widely used and popular
applications. However, the existing trade-off between the
network usage and applications’ latencies (delays) is not
investigated.
Taneja et al. [27] suggested an application placement policy
that puts various modules of the fog application on suitable
resources. The proposed policy first sorts all the network
nodes and application modules in ascending order of their

capacities and requirements, respectively. Then it searches
for most efficient nodes that could meet the module require-
ments; and the module is run. Their research suggests that
the proposed allocation scheme could significantly reduce
the network usage and improve application latency as com-
pared to traditional cloud allocation policy. Moreover, over-
all energy consumption varies with respect to the number
of fog devices in the infrastructure. For small number of fog
devices, traditional cloud allocation policies could beat fog
placement. However, energy consumption of the proposed
placement strategy could be optimised for large number of
IoT and fog devices.
Skarlat et al. [28] have modelled the service placement prob-
lem in fog as integer linear programming – find the optimal
mapping between services (applications) and computational
resources; to optimise fog utilisation while meeting QoS
requirement, particularly, deadlines. Moreover, services are
prioritised base on their deadlines. When a service request
is received at a particular node, the application is placed
on it; and if cannot be accommodated there, then it is
placed either: (i) in the same fog colony [28]; (ii) on the
closest neighbouring nodes (fog colony); or (iii) on the cloud
(in an edge-ward fashion). The experimental results show
that the proposed method could utilise the fog landscape
for approximately 70% of services, and could reduce the
execution cost up to 35% as compared to execution in the
cloud only approach.
Brogi et al. [29], [30] have proposed a software prototype
“FOGTORCH” that could deploy applications over the fog
infrastructure such that all hardware, software and QoS
requirements (i.e. bandwidth, latency) are fulfilled. A smart
agriculture application has been modelled [30]; and a 3-layer
fog infrastructure has been suggested for its deployment.
Empirical evaluation of the proposed prototype shows that
it could successfully return all eligible deployments (re-
source provision) for several optimisation scenarios, re-
quirements and needs. Tuli et al. [25] proposed HealthFog, a
framework which integrates deep learning methods within
the fog infrastructure to run health monitoring system i.e.
heart disease analysis using IoT devices.
Plachy et al. [31] have discussed dynamic service placement
in mobile edge clouds. Mobility of a fog user is predicted,
and, instead of migrating the application (running inside
a virtual machine), an alternative network path is selected
to connect user at the target. Experimental results show
a minimum 10% improvement in response time (delay).
Furthermore, a service placement technique, based on pre-
dicted future costs of its placement, is also presented. To
model user mobility, service migration between cloudlets,
and, cloud datacenter is also investigated in [32]. Several
prediction models are suggested to estimate the cost of
running and migrating a particular service. Both, off-line
and on-line service placement problems are solved using
various placement algorithms.
Various techniques for migrating (live) services in fog infras-
tructure are proposed and evaluated in [33]. To minimise the
migration time of an application, a three layer architecture is
presented; where an idle copy of the application is stored at
an intermediate layer. Before migrating the memory states of
the application from any source, the application idle copy is
migrated first. Later on, only memory pages are copied, that



12

TABLE 8: Summary of the related work, closest to epcAware, with respect to various evaluation criteria

Related Work
Parameters [5] [9] [26] [27] [28] [29] [25] [31] [34] [8] [24] epcAware

Cloud X X X X X X X

Platform Fog X X X X X X X X X X X X

IoT X X X X X X

IaaS X X X X X X X X X X X

Provider SaaS X X X

NaaS X X X X X X

Energy X X X X

Performance X X X X X X X X X X X

Evaluation Migration cost X X

metrics User costs X X X X

Co-location X X

Deadline X

Single party X X X X X X X X X X

Placement Bi parties X

Multi parties X

Allocation X X X X X X X X X

Management Migration X X

policy Allocation+Migration X X X X

Game-theoretic X X

could significantly reduce the migration time. Moreover, a
comparison of VM and container based service migration
is also elaborated. Mahmud et al. [24] proposed a profit-
aware service placement policy for resource provisioning
in fog infrastructure. Their outcomes suggest that cloudlet
instances are approximately 20% expensive than the cloud
instances. However, service migrations and user mobility
are not considered.
Urgaonkar et al. [34] have also discussed various strategies
for migrating services, in mobile edge clouds, in order
to minimise operational costs. The “never migrate” policy
places each application at a particular cloudlet with no
reconfiguration that may happen due to user mobility. User
requests are always routed to the original location of the
application. In the “always migrate” policy, user requests
are routed to the closest cloudlet with reconfiguration, in
such a way that queues with the largest backlogs are served
first. Moreover, if the arrival rate of requests at a particular
cloudlet exceed its capacity, they are routed towards the
cloud (in an edge-ward fashion). The “myopic” policy ac-
counts for reconfiguration, transmission and routing costs;
and takes appropriate migration decision such that the sum
of these costs could be minimised. The work presented
in [34], assume the user mobility as a Markovian pro-
cess that is solved using Markov Decision Process (MDP)
technique. However, as mentioned in [35], users mobility
cannot be accurately predicted. A mobility-aware dynamic
service placement technique (heuristic based on the Markov
approximation) is presented in [35], that accounts for: (i)
costs of migrating services; and (ii) the trade-off between
performance and operational cost.
Gillam et al. [36] have also discussed VMs, containers and
code/functions (Function as a Service – FaaS) in order
to explore edge computing for on-vehicle and off-vehicle
computation that will be needed to support connected and
automated/autonomous driving. To minimise end-to-end
latency, the authors suggest that it is essential that com-
putation should be more local to vehicles. However, vehi-
cle mobility will create opportunities for application/code
migration, and with notable exception of [33], it is rarely

discussed. Zafari et al. [7] modelled the resource allocation
problem in MECs and, in particular, when various edge
cloud service providers share their extra resources with
each others. Moreover, various service providers have their
own utility functions which they want to improve through
coalition. To solve this multi-objective optimisation prob-
lem, a cooperative game theoretic approach is proposed
which suggests that service providers can increase their
utilities through resource sharing. The same idea has been
implemented in clouds [11], where datacenter resources are
shared among various IaaS providers that have their own
objectives. In both cases, it is ensured that each provider
allocates only required services to their native users first.
After that, free and unused resources, if available, are shared
with other IaaS providers. Compared to our approach, the
players are always IaaS providers (therefore, same objec-
tives) while we account for various kinds of players i.e. IaaS,
SaaS and NaaS (therefore, multiple objectives which often
conflict with each other).
Ahmed et al. [37] used game theory for scheduling tasks in
a multi-core system such that energy consumption is min-
imised and performance is ensured. Similarly, Khan et al.
[16] studied various game-theoretical methods for resource
allocation in multi-agent computational grids. The work
in [12] extends [16] in order to optimize grid energy con-
sumption and workload performance through game-based
resource allocation techniques. All these proposals consider,
only, a single service providers; and have ignored allocation
when services are offered by various providers, in particular,
having conflicting goals. Moreover, service migrations are
not taken into account. Li et al. [8] formulated the task
offloading problem in MEC system as a non-cooperative
game; where each player can selfishly minimise his own
pay-off through using an appropriate strategy. Moreover,
they proposed various algorithms to find the Nash equilib-
rium. Table 8 describes summary of the related work. We
believe, information in this table will help our readers to
quickly identify gaps for further research, investigation and
improvement.



13

8 CONCLUSIONS & FUTURE WORK

MEC is an evolving paradigm that combines computational,
storage and communication (network) capacities at the edge
of the network through datacenters, in an elastic infrastruc-
ture. MECs have potentials to accommodate and run various
application types such as: (i) throughput-oriented that need
huge computational capacity and network bandwidth; and
(ii) latency-oriented applications that need low latency com-
munication and computation in user’ proximity. Usually, the
computational capacity in edge locations and the wireless
access are managed either distinctly or by a single player.
Nevertheless, bringing the full potential of MECs entails
that edge locations, IaaS, and wireless networks are to be
managed in concert. In this paper, we modelled the resource
allocation problem in MECs as a non-cooperative game.
Further, resource reallocation were taken into account at
IaaS layer. We, then, proposed a bidding-based resource
allocation and consolidation technique “epcAware” in or-
der to effectively place various applications across various
service providers. Empirical evaluation of the proposed al-
gorithm suggests that it is able to manage resources energy,
performance and, therefore, cost efficiently. Furthermore,
our proposed approach could reduce up to 11.95% energy,
and approximately 17.86% user costs at non-significant loss
in performance. Moreover, IaaS can reduce up to 20.27%
energy bills and NaaS can increase their costs savings up to
18.52% as compared to other methods.
This emerging technology has still a research gap for identi-
fying the locations where such small datacenters should be
installed. For example, potentially these can be deployed in
universities, hospitals, mobile base stations and/or shop-
ping malls – where their operation and management is
more affective or possible. Once installed, what kind of
services should they host and how the available resources
should be allocated to customers’ applications. Similarly, if
mobility is involved, then how the available resources or
running services should be managed or migrated amongst
small datacenters (cloudlets), and geographic areas. The
aim of our further research would be to investigate and
answer these kinds of questions from a geographic area
perfective – while accounting for resource and energy costs
variations. The first objective would be to investigate, where
cloudlets should be deployed such that service agility and
performance is guaranteed. Our second objective would be
to study the resource allocation and placement policies in
order to decrease energy and network usage, while perfor-
mance and user costs are not affected. The third objective
would be to propose a novel management framework,
in order to efficiently manage resources using distributed
schedulers instead of a single scheduler. Moreover, in the
future, we will reconsider the aforementioned problem for
further investigation, and mathematical proof for finding a
Nash equilibrium.

ACKNOWLEDGEMENTS

This work is supported, in part, by the Abdul Wali Khan
University Mardan (AWKUM), Pakistan and, in part, by
the Higher Education Commission (HEC), Pakistan. Fur-
thermore, this work is partially supported by an Australian
Research Council (ARC) Discovery Project. We are thankful

to Dr. Luiz F. Bittencourt, from the University of Campinas
(UNICAMP), Brazil, for helping us to setup essential simu-
lation platform in order to run the experiments performed in
this manuscript. The research problem tackled in this paper
was also discussed with Prof. Erik Elmorth from Umea
University, Sweden; during an interview for the post-doc
position.

REFERENCES

[1] A. Lebre, J. Pastor, A. Simonet, and F. Desprez, “Revising open-
stack to operate fog/edge computing infrastructures,” in Cloud
Engineering (IC2E), 2017 IEEE International Conference on. IEEE,
2017, pp. 138–148.

[2] M. Abderrahim, M. Ouzzif, K. Guillouard, J. Francois, and
A. Lèbre, “A holistic monitoring service for fog/edge infrastruc-
tures: a foresight study,” in Future Internet of Things and Cloud
(FiCloud), 2017 IEEE 5th International Conference on. IEEE, 2017,
pp. 337–344.

[3] M. Chiang and T. Zhang, “Fog and iot: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
854–864, 2016.

[4] M. Ali, A. Anjum, M. U. Yaseen, A. R. Zamani, D. Balouek-
Thomert, O. Rana, and M. Parashar, “Edge enhanced deep learn-
ing system for large-scale video stream analytics,” in Fog and
Edge Computing (ICFEC), 2018 IEEE 2nd International Conference on.
IEEE, 2018, pp. 1–10.

[5] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim:
A toolkit for modeling and simulation of resource management
techniques in the internet of things, edge and fog computing
environments,” Software: Practice and Experience, vol. 47, no. 9, pp.
1275–1296, 2017.

[6] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: format+ schema,” Google Inc., Mountain View, CA, USA,
Technical Report, 2011.

[7] F. Zafari, J. Li, K. K. Leung, D. Towsley, and A. Swami, “A
game-theoretic approach to multi-objective resource sharing and
allocation in mobile edge,” in Proceedings of the 2018 on Technologies
for the Wireless Edge Workshop. ACM, 2018, pp. 9–13.

[8] K. Li, “A game theoretic approach to computation offloading
strategy optimization for non-cooperative users in mobile edge
computing,” IEEE Transactions on Sustainable Computing, 2018.

[9] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and
M. Parashar, “Mobility-aware application scheduling in fog com-
puting,” IEEE Cloud Computing, vol. 4, no. 2, pp. 26–35, 2017.

[10] M. Zakarya and L. Gillam, “Energy and performance aware re-
source management in heterogeneous cloud datacenters.” Ph.D.
dissertation, University of Surrey, 2017.

[11] F. Zafari, K. K. Leung, D. Towsley, P. Basu, and A. Swami, “A
game-theoretic framework for resource sharing in clouds,” arXiv
preprint arXiv:1904.00820, 2019.

[12] S. U. Khan and I. Ahmad, “A cooperative game theoretical tech-
nique for joint optimization of energy consumption and response
time in computational grids,” IEEE Trans. Parallel Distrib. Syst.,
vol. 20, no. 3, pp. 346–360, 2009.

[13] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and
Y. Yang, “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Transactions on Parallel and
Distributed Systems, 2019.

[14] Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When
mobile blockchain meets edge computing,” IEEE Communications
Magazine, vol. 56, no. 8, pp. 33–39, 2018.

[15] H. Zhang, Y. Zhang, Y. Gu, D. Niyato, and Z. Han, “A hierarchical
game framework for resource management in fog computing,”
IEEE Communications Magazine, vol. 55, no. 8, pp. 52–57, 2017.

[16] S. U. Khan and I. Ahmad, “Non-cooperative, semi-cooperative,
and cooperative games-based grid resource allocation,” in 20th
International Parallel and Distributed Processing Symposium (IPDPS
2006), Proceedings, 25-29 April 2006, Rhodes Island, Greece, 2006.

[17] W. Cai, F. Chi, X. Wang, and V. C. Leung, “Toward multiplayer
cooperative cloud gaming,” IEEE Cloud Computing, vol. 5, no. 5,
pp. 70–80, 2018.

[18] H. Zhang, F. Guo, H. Ji, and C. Zhu, “Combinational auction-based
service provider selection in mobile edge computing networks,”
IEEE Access, vol. 5, pp. 13 455–13 464, 2017.



14

[19] M. Zakarya and L. Gillam, “An energy aware cost recovery ap-
proach for virtual machine migration,” in International Conference
on the Economics of Grids, Clouds, Systems, and Services. Springer,
2016, pp. 175–190.

[20] T. C. Ferreto, M. A. S. Netto, R. N. Calheiros, and C. A. F. De Rose,
“Server consolidation with migration control for virtualized data
centers,” Future Generation Computer Systems, vol. 27, no. 8, pp.
1027–1034, 2011.

[21] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms,” Software: Practice and Experience, vol. 41, no. 1,
pp. 23–50, 2011.

[22] F. Xu, F. Liu, and H. Jin, “Heterogeneity and interference-aware
virtual machine provisioning for predictable performance in the
cloud,” IEEE Transactions on Computers, vol. 65, no. 8, pp. 2470–
2483, 2016.

[23] A. Beloglazov and R. Buyya, “Managing overloaded hosts for
dynamic consolidation of virtual machines in cloud data centers
under quality of service constraints,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 7, pp. 1366–1379, 2013.

[24] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya,
“Profit-aware application placement for integrated fog–cloud
computing environments,” Journal of Parallel and Distributed Com-
puting, vol. 135, pp. 177–190, 2020.

[25] S. Tuli, N. Basumatary, S. S. Gill, M. Kahani, R. C. Arya, G. S.
Wander, and R. Buyya, “Healthfog: An ensemble deep learning
based smart healthcare system for automatic diagnosis of heart
diseases in integrated iot and fog computing environments,”
Future Generation Computer Systems, 2019.

[26] C. Guerrero, I. Lera, and C. Juiz, “A lightweight decentralized
service placement policy for performance optimization in fog com-
puting,” Journal of Ambient Intelligence and Humanized Computing,
Jun 2018.

[27] M. Taneja and A. Davy, “Resource aware placement of iot appli-
cation modules in fog-cloud computing paradigm,” in Integrated
Network and Service Management (IM), 2017 IFIP/IEEE Symposium
on. IEEE, 2017, pp. 1222–1228.

[28] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards qos-
aware fog service placement,” in Fog and Edge Computing (ICFEC),
2017 IEEE 1st International Conference on. IEEE, 2017, pp. 89–96.

[29] A. Brogi and S. Forti, “Qos-aware deployment of iot applications
through the fog,” IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1185–1192, 2017.

[30] A. Brogi, S. Forti, and A. Ibrahim, “How to best deploy your fog
applications, probably,” in Fog and Edge Computing (ICFEC), 2017
IEEE 1st International Conference on. IEEE, 2017, pp. 105–114.

[31] J. Plachy, Z. Becvar, and E. C. Strinati, “Dynamic resource allo-
cation exploiting mobility prediction in mobile edge computing,”
in Personal, Indoor, and Mobile Radio Communications (PIMRC), 2016
IEEE 27th Annual International Symposium on. IEEE, 2016, pp. 1–6.

[32] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K.
Leung, “Dynamic service placement for mobile micro-clouds with
predicted future costs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 4, pp. 1002–1016, 2017.

[33] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis,
“Live service migration in mobile edge clouds,” IEEE Wireless
Communications, vol. 25, no. 1, pp. 140–147, 2018.

[34] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-
clouds,” Performance Evaluation, vol. 91, pp. 205–228, 2015.

[35] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge:
Mobility-aware dynamic service placement for mobile edge com-
puting,” Tech. Rep., 2018. [Online]. Available: https://mega. nz,
Tech. Rep.

[36] L. Gillam, K. Katsaros, M. Dianati, and A. Mouzakitis, “Exploring
edges for connected and autonomous driving,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS). IEEE, 2018, pp. 148–153.

[37] I. Ahmad, S. Ranka, and S. U. Khan, “Using game theory for
scheduling tasks on multi-core processors for simultaneous op-
timization of performance and energy,” in 22nd IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2008, Mi-
ami, Florida USA, April 14-18, 2008, 2008, pp. 1–6.


	Introduction
	Contributions
	Background
	Problem Description
	Mathematical Formulation
	The Optimisation Problem

	Proposed Solution
	The Bidding Strategy

	Performance Evaluation
	Modelling Applications
	Experimental Set-up
	Evaluation Metrics
	Experimental Results and Discussion

	Related Work
	Conclusions & Future Work
	References

