EphPub: Toward Robust Ephemeral Publishing

Claude Castelluccia Emiliano De Cristofaro
INRIA Rhone Alpes, France University of California, Irvine

claude.castelluccia@inrialpes.fr edecrist@uci.edu

Abstract—The increasing amount of personal and sensitive
information disseminated over the Internet prompts commen-
surately growing privacy concerns. Digital data often lingers
indefinitely and users lose its control. This motivates the desire
to restrict content availability to an expiration time set by the
data owner. This paper presents and formalizes the notion of
Ephemeral Publishing (EphPub), to prevent the access to expired
content. We propose an efficient and robust protocol that builds
on the Domain Name System (DNS) and its caching mechanism.
With EphPub, sensitive content is published encrypted and the key
material is distributed, in a steganographic manner, to randomly
selected and independent resolvers. The availability of content
is then limited by the evanescence of DNS cache entries. The
EphPub protocol is transparent to existing applications, and
does not rely on trusted hardware, centralized servers, or user
proactive actions. We analyze its robustness and show that it
incurs a negligible overhead on the DNS infrastructure. We also
perform a large-scale study of the caching behavior of 900K
open DNS resolvers. Finally, we propose Firefox and Thunderbird
extensions that provide ephemeral publishing capabilities, as well
as a command-line tool to create ephemeral files.

I. INTRODUCTION

As the amount of private information disseminated over
the Internet increases, so do related privacy concerns. Private
data is increasingly often cached, stored, or archived, in the
cloud and, in numerous occasions, its ownership is lost. Users
are often unable to successfully delete published content:
for instance, social network providers maintain daily backup
tapes and do not physically erase “deleted” content from all
backups [13], ascribing to the expensiveness of this operation.
As a result, everlasting information may endanger user privacy
and become a prey of subpoena, government surveillance, or
data leaks. For instance, a college student may upload (e.g.,
on a social network) pictures where she/he and her/his friends
are evidently drunk; even after years, pictures may regrettably
re-surface, e.g., during job hunting. Similarly, a blogger may
post some controversial messages, which can later compromise
an election campaign or even personal safety. In essence, if
private data is perpetually available, then the threat for user
privacy becomes permanent.

One natural step toward enhancing privacy is ensuring data
confidentiality, i.e., by encrypting sensitive content. How-
ever, besides the well-known key-distribution problem, this
approach faces some challenges: (1) privacy is lost if cleartext
copies of the sensitive content or the decryption keys are
leaked, and (2) access cannot be revoked. In particular key
holders who had little interest in the data at the time of

Aurélien Francillon Mohamed-Ali Kaafar
ETH Zurich, Switzerland ~ INRIA Rhone Alpes, France
& Institute Eurecom, France mohamed-ali.kafaar@inrialpes.fr
aurelien.francillon @inf.ethz.ch

distribution can later decide to use the key to access the
data at any future time. Consider, for example, a friend
that has become an enemy, an employer that wants to dig
through an employee’s past data, or subpoenas for old records.
Unfortunately, not much can be done with respect to the first
problem where content or keys that are leaked or redistributed.
In this paper we address the later problem; namely the problem
of revoking encryption keys from key holders who try to access
the data after some future expiration time set by the user.

Our approach, called Ephemeral Publishing (EphPub), not
only encrypts content, but also uses a key escrow mechanism
that ensures a keys automatic erasure, after an expiration
time set by the user. Our approach is similar to the concept
explored by Vanish [16], where key shares are distributed
on a Distributed Hash Table (DHT). Since peers store data
only for a limited period of time, so called churn, key shares
are eventually erased. However, DHTs are vulnerable to Sybil
attacks [11]. It has been shown by Wolchok et. al. [31] that, at
a reasonable cost, an attacker can collect the keys distributed
over the DHT. As we will show, EphPub uses a novel key
distribution mechanism based on the DNS system that avoids
such attacks and also improves the usability and availability
of the system.

The notion of Ephemeral Publishing is useful, for instance,
in the following scenarios:

Online Social Networks (OSNs): Content published on
online social networks—such as pictures or wall posts—has
often time-limited value to the users. As reported by [8],
users would often like to delete their content after a small
period of time (e.g., a few hours or days). However, deletion
is not always effective, as data is often cached without users’
knowledge by the service provider [6]. In contrast, EphPub
lets a user publish encrypted content and ensures that intended
recipients (e.g., OSN friends) can access decryption keys
— hence, content — only within a specific period of time,
assuming the OSN friend has not cached the decryption key for
future use. While EphPub cannot prevent OSN friends from
caching content or decryption keys for future access to the
data, it can prevent friends from viewing data in the future if
they did not cache the key or the content (e.g., they had no
interest in the data at the time and did not access the content
or key)'.

! Our implementation of EphPub never caches unencrypted keys or
content, which means users cannot access the content after the key expires.

claude.castelluccia@inrialpes.fr
edecrist@uci.edu
aurelien.francillon@inf.ethz.ch
mohamed-ali.kafaar@inrialpes.fr

Outsourced Data: Web users increasingly outsource per-
sonal and confidential data to the cloud, e.g., using backup
services, such as Dropbox. Such private data must be stored
in an encrypted form to prevent access by the service provider
(e.g., for data mining purposes or in response to a subpoena).
However, encryption would not be effective unless all the users
of the data proactively delete the decryption keys since the
keys may be subject to subpoena. Note that in this case we
assume there is no risk of leaks or redistribution because all
users want to keep the data private. However, it requires all
users to remember to delete the decryption keys they have been
given. EphPub addresses this issue by distributing information
that allows users to retrieve the key online. This information
does not need to be deleted because it becomes useless after
a fixed amount of time.

A naive solution for the EphPub problem would be to pub-
lish encrypted content and store the corresponding encryption
keys on a server that she owns so that the keys can be deleted
when the content’s lifetime expires. However, this solution
requires keys to be constantly accessible (thus, introducing a
single point of failure), and raises additional privacy concerns
as the publisher can always trace users accessing her content.

Technical Roadmap. In this paper we present Ephemeral Pub-
lishing (EphPub), a protocol aimed at guaranteeing retroactive
privacy [16], i.e., allowing users to set an expiration time on
their information and preventing an adversary from retrieving
messages after expiration. EphPub leverages a fully-distributed
and ubiquitous Internet service: the Domain Name System
(DNS). We exploit its caching mechanism, as DNS resolvers
cache the response to a recursive DNS query for potential
further requests. These cache entries are kept for a fixed period
of time, i.e., the record’s TTL (Time To Live). Once the TTL
has expired, the resolver erases the record from its cache. We
implement encryption keys as ephemeral keys. Each key is
composed of ephemeral bits, i.e., it is divided into single bits
that independently become inaccessible after a period of time.

Ephemeral Bits. To set an ephemeral bit to 1, a recursive
DNS query for an existing domain name is performed to a
DNS resolver. This resolver caches the response for as long as
the domain’s TTL permits. Whereas, to set an ephemeral bit to
0, no DNS request is performed. An ephemeral bit is thereafter
coded by the domain name and the resolver address. Before
the TTL expires, one can retrieve the ephemeral bit with a non-
recursive DNS query: if the resolver answers the query (i.e.,
an entry in its cache exists) then the bit 1 is read, otherwise if
no response is returned the bit 0 is read. We use domain names
selected at random, so that they have a negligible probability
to be queried by entities external to the system. To deal with
events that may generate faulty bits (DNS churn, connectivity
problems, caching implementations, policies issues, failures,
etc.), we use a Reed-Solomon error correction code [26].

Contributions. This paper formalizes the notion of Ephemeral
Publishing (EphPub), by defining requirements, adversarial
capabilities, and privacy goals. Then, it presents a practical and
robust protocol that uses the DNS and its caching mechanism.

Our solution has several strong points compared to related
work (e.g., Vanish [16]): besides being immune to Sybil at-
tacks, (1) it allows users to set data expiration times with finer
granularity (in Vanish it is bounded to DHT churn, typically
8 hours); (2) it does not require any additional infrastructure
(e.g., a DHT or trusted servers); (3) it is lightweight, and does
not force users to install extra software (e.g., DHT client),
thus, it can be deployed on smartphones. Further, we propose
two prototype implementations: a command-line tool to create
files that can be decrypted only before expiration time, and a
stand-alone Firefox and Thunderbird extension that makes any
web text ephemeral. The source code of our implementations
is available at http://code.google.com/p/ephpub/. Finally, in
the process of designing our EphPub solution, we analyze
the behavior of DNS cache resolvers: our measurements
show that, from a dataset of 225K resolvers, 10% behave as
recommended by the IETF.

Once again, we stress that the goal of EphPub is to pro-
tect information privacy against third-party service providers,
government surveillance, and future subpoena. EphPub is not
designed to safeguard published content from targeted attacks,
e.g., within content’s lifetime. It does not provide a DRM-
like mechanism that prohibits recipients from copying or
republishing content, before expiration time. In other words,
aiming at preventing data access affer expiration time, Eph-
Pub proposes a new automated technique (i.e., without user
proactive intervention) geared for time-bounded content.

Paper Organization. The rest of the paper is organized as
follows. In Section II, we define system model, requirements,
and privacy properties. Then, we describe the EphPub protocol
in Section III and analyze its security in Section IV. Next,
Section V presents the details of our prototype implementa-
tions, Section VI presents our extensive experimental analysis,
and Section VII overviews relevant related work. Finally,
Section VIII concludes the paper and discusses future work.

II. PRELIMINARIES

In this section, we model system assumptions and require-
ments. Finally, we present adversarial models and our formal
definition of retroactive privacy.

System Model. An Ephemeral Publishing (EphPub) system
involves a sender, .S, and one or more receivers. For ease of
discussion, and without loss of generality, in the rest of the
paper, we assume a single receiver R. S sends to R time-
bounded messages M. A message M is time-bounded if it
can only be read for a given period of time specified by S,
that we denote with 7). We denote with ¢ the time at which
the validity of the message starts, e.g., when the sender posts
the message. Thus, the “life cycle” of M starts at ¢ and ends
at t, = t + T,. EphPub also involves an encoding function
Encode(-,-). Specifically, Encode(M,t,) denotes the encod-
ing of time-bounded message M as a function of M itself and
the expiration time ¢,,. This is the information that is actually
exchanged between S and R. The function Decode(-) denotes
the inverse operation, i.e., Decode(Encode(M,t,)) = M.

http://code.google.com/p/ephpub/

System Requirements. We require that a practical and robust
Ephemeral Publishing (EphPub) protocol meets the following
minimum requirements. Specifically, it should:

1) Guarantee retroactive privacy, which we define under
two different adversarial models (below).

2) Work for synchronous and asynchronous communica-
tions. The sender and receiver could have intermittent
connectivity and do not need to be connected at the
same time. In particular, the sender and receiver could
be turned off at anytime in [¢;¢,].

3) Rely only on existing primary services, and not on yet-
to-be deployed services or infrastructure. In addition,
to avoid single points of failure or trust, it should not
depend on centralized services or require the existence
of specific hardware or devices, such as a TPM (Trusted
Platform Module).

Assumptions. We rely on the following assumptions. (i) S and
R securely erase the plaintext message M or key material from
their local storage. (ii) Messages are only stored or transmitted
encrypted. (iii) S and R know the expiration time t,,.

Retroactive Privacy against a Weak Adversary. A weak
adversary (W-ADV) has access to the same primitives and
services as any user S and R. She can inject, alter, and
replay any message between S and R. Besides, after message
expiration time, W-ADV may have full access to S and R’s
internal memory. Further, we assume that W-ADV does not
have access to Encode(M,t,) before expiration time i, i.e.,
she does not obtain information exchanged between S and R.
Formally, we say that EphPub is retroactive-private against
a weak adversary if any efficient weak adversary W-ADV can
win the following game with probability non-negligibly over
1/2. The game is between W-ADV and a two-sided challenger
Ch = (Chg,Chg):
1. W-ADV announces two equal-length messages My, M7,
validity starting time ¢ and expiration time ¢, =t 4+ T},.
2. At time ¢, Ch randomly selects a bit b € {0,1},
computes Encode(Mp,t,), and transfers it from Chg
to Chp according to EphPub.
3. W-ADV may inject, replay, and modify messages in the
communication between Chg, Chg.
4. After time ¢,, W-ADV accesses Encode(My,t,).
5. W-ADV outputs b’ (and wins if b’ = b).

An example of such adversarial setting is an investigation
authority wishing to obtain emails previously sent or received
by a user, e.g., Alice. The authority may obtain a court order
to seize Alice’s PC, as well as to subpoena emails stored
by Alice’s email provider. That is, even if email messages
were encrypted, the authority may obtain the related keys.
However, the authority is assumed not to (constantly) monitor
the communication channel used to exchange emails.

Retroactive Privacy against a Strong Adversary. A strong
adversary (S-ADV) has the same capabilities as a weak adver-
sary. Additionally, S-ADV may have access to Encode(M, t,)
at any time. In other words, she may eavesdrop all information

exchanged between S and R.
Formally, we say that EphPub is retroactive-private against
a strong adversary if any efficient strong adversary S-ADV can
win the following game with probability non-negligibly over
1/2. The game is between S-ADV and a two-sided challenger
Ch = (Chg, ChR)Z
1,2. Same as above.
3. S-ADV may eavesdrop, inject, replay, and modify mes-
sages in the communication between C'hg, Chg.
4. At any time, S-ADV accesses Encode(My, t,).
5. Same as above.

An example of this stronger adversarial setting is a company
concerned with behavior of one of its employees, e.g., Bob.
The company may obtain his emails from the internal mail
server and seize Bob’s PC, but it may also log all traffic in
corporate network.

III. THE EPHPUB PROTOCOL

In this section, we describe our EphPub construction, which
relies on DNS caching. Our intuition is as follows. A user
S wants to send a message to user R with validity period
T,: S encrypts the message using a key k, so that the key
is accessible only within the validity period. Each bit of the
key is distributed on separate DNS cache resolvers. Entries in
the DNS cache expire according to their Time-To-Live (TTL),
thus, the encryption key can no longer be recovered.

A. Building Blocks

DNS Caching. DNS Caching allows to reduce the load
on individual DNS resolvers [22]. After a successful name
resolution (following a DNS query), the DNS resolver keeps
the record in cache for the time specified in the record’s Time-
To-Live (TTL) value (in seconds). This speeds-up responses to
subsequent queries, since these will be answered directly from
the cache, without any other query. The TTL is defined by
the domain administrator for each authoritative DNS record.
Typical values of the TTL are from 1 to 5 days, but this period
may vary from seconds to weeks [3]. We will present the
results of our own measurements in Section VI.

Open DNS Resolvers. The Internet features a large number of
open DNS resolvers? — devices that respond to DNS queries
on port 53. EphPub relies on open DNS resolvers allowing
recursive queries and performing caching. In the rest of the
paper, we denote them as DNS cache resolvers. During our
experiments, we collected 900,000 open DNS resolvers’ IP
addresses scanning arbitrary address ranges. Our study reveals
that more than 10% of the identified open DNS resolvers
perform caching properly. As Dagon et al. [7] estimated the
number of open recursive DNS resolvers to 17 million, we
could estimate the number of open DNS cache resolvers to
1.7 million. For additional measurement studies on the DNS,
we refer to [19], [29].

2A DNS resolver is open if it provides resolution for clients outside of
its administrative domain. This is not to be confused with the OpenDNS
company.

B. Ephemeral Bits

We now describe how EphPub encodes ephemeral bits:
the existence (resp., the absence) of a record in a particular
resolver’s cache is associated to the bit 1 (resp., 0). To store
an ephemeral bit 1, S performs a recursive DNS request of
an existing domain name, dname, to a DNS cache resolver,
res. The resolver replies with the domain’s record and caches
the response for a period of time corresponding to domain’s
TTL3. Hence, the existence of an entry in the cache for a
given domain name is interpreted as a bit 1. Whereas, a non-
existing entry is considered as a bit 0. At time ¢, .S can transfer
the bit 1 to R by sending the triplet {dname, res,t,} (being
t, =t + T,). To store an ephemeral bit 0, S sends the same
triplet to R without performing any recursive DNS request. To
read the bit R performs a non-recursive DNS request of the
domain name dname to res. If dname is in the cache, res
replies with the corresponding entry and the bit is read as 1.
If the entry is not in the cache the bit reads as 0.

If a DNS request is performed once ¢, has passed, res
will reply with an empty record, i.e., the bit will read as 0
independently of its original value.

C. Protocol Description

We now extend our approach to implement ephemeral
bits to distribute (resp., retrieve) an entire encryption (resp.,
decryption) key.

Message Encryption. First, the sender selects a random n-
bit key k, for a semantically secure cipher, such as AES. k;
denotes the ¢-th bit of the key. Then, the sender encrypts a
message M, under key k, and produces the corresponding
ciphertext, CT.

Key Distribution. The distribution of ephemeral key bits
over DNS cache resolvers is illustrated in Fig. 1. Note
that this instantiates the Encode(-,-) function introduced in
Section II. The sender S generates Rs = {resy,...,resy},
a list of n random (different) DNS cache resolvers, and
Dn = {dname,...,dname,}, a list of n random valid
domain names that have a TTL significantly close to T.,.
Each domain dname; is selected as follows: S first picks a
candidate dname; at random from a (precomputed) list of
domains with the related TTL; then, it verifies if dname; is
already in the cache of res;, through a non-recursive DNS
request of dname;. If res; replies with a valid record, dname;
is discarded, otherwise it is added to Dn.

Note that the list of random domains is precomputed and
distributed to users. Specifically, we generate a random IP
address, execute its reverse lookup, and check whether the
corresponding domain name had a satisfactory TTL*. Next,
for each bit k; of the key such that k; = 1, S performs a
recursive DNS request of the domain name dname; to the
DNS cache resolver res;. Consequently, the resolver resolves

3To ease exposition, we assume for now that TTL is equal to the desired
validity period, T%.

4An example of domain names is: softbank126060235192.bbtec.net.
Also, one could use existing databases of host names, e.g., robtex.com.

Domain | IP Addr | TTL

an dname;
A el (recursive) kel dname; | XXXX| T
|
K |- dname: Domain [IP Addr | TTL
kj g (non-recursive)
resj

Fig. 1: EphPub Key Distribution.

the domain name, replies to the sender, and populates its cache
with the corresponding record.

EphPub Object. The sender S builds the EphPub Object
(EPO), defined as the output of the Encode(-,-) function, in-
troduced in Section II and instantiated above. Thus, we define
EPO(M,t,) = {CT, Rs, Dn,t,}, i.e., the EPO is composed
of the ciphertext (C'T'), the list of DNS cache resolvers (Rs),
selected domain names (Dn), and content expiration time,
defined as ¢, = t 4+ T),. The ciphertext is the result of the
encryption of message M using an ephemeral key whose bits
are distributed over DNS cache resolvers (resq, - - ,res,) by
querying domains (dnamey, - -- ,dname,,), respectively.

Key Retrieval. Upon reception of the EPO, ie.,
EPO(M,t,) = {CT,Rs,Dn,t,}, the receiver checks
whether the current time is smaller than ¢,. If this is the case,
she reconstructs the key k' as follows. The retrieval of key
bits from DNS cache resolver (at a time ¢ +d, s.t. t +d < t,)
is also illustrated in Fig. 2. For each domain name dname;,
(¢ € 1,n), the receiver performs a non-recursive request to
the DNS cache resolver res;. If res; replies with a valid
record, then k] is set to 1, otherwise, k/ is set to 0. Once the
key is retrieved, she decrypts the ciphertext C'T" to retrieve
the message M. These operations instantiate the Decode(-)
function introduced in Section II.

Note that the message is mever transmitted or stored in
cleartext, but only in its encrypted form, specifically, in its
“EPO” form. This guarantees that the message M cannot
even be retrieved with a forensics analysis on the hosts after
t,. Remark that, after the message validity time ¢,, the DNS
records will be removed from the cache of the DNS resolvers
listed in Rs. Thus, the key will “disappear” and the ciphertext
can no longer be decrypted.

D. EphPub+: Extending EphPub Against a Strong Adversary

In case the EPO is transmitted over a communication chan-
nel, the confidentiality of the channel becomes relevant. Con-
sider the case of the strong adversary presented in Section II:
such an adversary may eavesdrop on the communication
channel, get hold of the EPO before expiration time, and hence
retrieve the ephemeral key and the message M. We extend
the EphPub protocol above to be robust even in presence of
a strong adversary. Besides executing the EphPub protocol,
the sender super-encrypts the EPO, using, for instance, an
asymmetric encryption scheme, such as PGP, and the receiver’s
long term public key. Note that, if there are several receivers,

Domain | IP Addr | TTL :

. dname; L
- ’

(x.X.X.X) 1

X.X.X.X | Ty-d
res;

dname;

Domain | IP Addr | TTL . dndmei M
— 3 4
. (empty) Q kJ

res;

Fig. 2: EphPub Key Retrieval.

broadcast encryption techniques [5] can be used to minimize
related overhead. In the rest of the paper, we will refer to
EphPub+ as the protocol enforcing super-encryption of the
EPO prior to transmission, and we refer to £(EPO) as the
encryption of the EPO.

Remark. One additional potential concern with respect to
a strong adversary is related to monitoring (cleartext) DNS
messages between the sender and the cache resolvers. Because
of this, queries to the DNS resolver have to be performed in
random order. Thus, assuming 128-bit keys, a strong adversary
monitoring a server’s DNS traffic learns the Hamming weight
of the key (i.e. the number of ones), which corresponds to
reducing the entropy of the key by roughly 5 bits’.

If this marginal reduction of the key strength is problematic,
slightly increasing the key allows to compensate for it. For
example, using a key of 134-bits provides slightly more than
128-bits of security when the Hamming weight of the key is
known to the adversary. Alternatively, the sender can tunnel
DNS requests, e.g., using Tor [10]. Note that, as a positive
side effect, the use of Tor provides higher anonymity, as DNS
requests cannot be correlated to senders.

E. Handling Errors and Erasures

Bit errors may occur in the ephemeral key: for instance, if
a resolver is re-started while its cache is populated with one
record used by EphPub, the corresponding bit will be decoded
as a 0, instead of a 1. A bit can also flip from 0 to 1 if the
corresponding record is requested by another user, after the
sender performed key distribution. Note that the probability
of this event is negligible if the domain name is selected at
random, among a virtually unlimited number of host names,
e.g., if wild-card domains are used. Finally, erasures occurs
when the corresponding bit cannot be set, for example when
a resolver does not reply during key retrieval.

To address potential errors and erasures, we use error
correction codes [20], which make data resilient to a defined
number of errors. Specifically, we use Reed-Solomon (RS)
codes [26]. We select a (63,55) RS code allowing to correct
between 8 and 48 erasures or between 4 and 24 errors
(depending on where the errors occur, since symbols are 6
bits long) or a combination of those, within the capacity of
the error correction code. The use of this code in EphPub

SIn average [21], the key search space for a key of size m with known
n\2

Hamming weight is of 7 _, ~5¢—.

increases the number of DNS requests only by 20%, e.g., for
a 128-bit key, the increase is from 128 to 176. Note that the
receiver needs to fetch the correction bits only when errors
or erasures are present. Our experiments show that the Reed-
Solomon code guarantees accurate key decoding with very
limited overhead. If needed, error correction capabilities can
be tuned by changing the parameters of the code, allowing
higher reliability or more efficient network usage.

IV. SECURITY ANALYSIS

In this section, we analyze the security and privacy provided
by EphPub. We also discuss several attacks that may target the
EphPub protocol as well as potential issues that might be used
to compromise system’s security.

A. Retroactive Privacy in EphPub

Theorem 1. EphPub is a retroactive-private in presence of a
weak adversary.

Proof (Intuition). We observe that no efficient weak adversary,
W-ADV, targeting an EphPub execution, has a non-negligible
advantage over 1/2 in the game introduced in Section II.
First, remark that, as the weak adversary does not get any
additional information during [t,t,], the only advantage for
her may derive from accessing EPO(My, t,), at time 7 > t,,
i.e., after the EPO has expired. Intuitively, an adversary
accessing an expired EPO retrieves the ciphertext of the target
message, the list of DNS cache resolvers with the related
queried domain names. Assuming the underlying encryption
scheme is semantically secure, the ciphertext does not reveal
any additional information, unless the corresponding key is
retrieved. Recall that EphPub uses the expiration of DNS cache
records to encode the key: this inherent property of DNS
resolvers causes significant challenges to attackers that do no
target their attacks prior to data expiration. Indeed, although
the EPO still contains the list of DNS cache resolvers that
were used for key storage, these resolvers no longer contain
key information. In fact, even if resolvers are subpoenaed or
subject to forensics, related key bits would not be present in
the cache. Thus, after the TTL has passed, attackers cannot
learn whether the domain name has ever been in the cache.
Also, observe that, since the receiver erases the encryption
key and the message M before its expiration time, potential
compromise of the receiver does not help the attacker.

As a result, the adversary cannot use information obtained
from an expired EPO to recover the original message, thus,
EphPub is retroactive-private.

B. Retroactive Privacy in EphPub+

Theorem 2. EphPub+ is a retroactive-private in presence of
a strong adversary.

Proof (Intuition). We remark that no efficient strong adversary,
S-ADV, targeting an EphPub+ execution, has a non-negligible
advantage over 1/2 in the game introduced in Section II.
Recall that S-ADV has access to the communication between
Chg and Chp, as opposed to W-ADV. Thus, the advantage

for S-ADV may derive both from accessing EPO(M,,T),)
at time 7 > ¢t + T, and from accessing E(EPO(M,,T),))
at any time before t + T,. However, one can reduce the
retroactive privacy in presence of S-ADV to the security
of the encryption scheme £ and the retroactive privacy in
presence of W-ADV. Indeed, £(EPO(My,T,)) is a ciphertext
produced using a secure encryption scheme (as discussed in
Section III-D), hence, it is straightforward to show that, if
S-ADV has a non-negligible advantage in distinguishing M;,
given the knowledge of E(EPO(My,T,)), then S-ADV can
be used to break the security of the underlying encryption
scheme. In fact, since the adversary’s view is again restricted
to EPO(My,T,) after expiration time ¢+7,, we can use the
same arguments of Theorem 1.

C. Infeasibility of Key Recovery Attacks

Brute Force Attack. In order to reconstruct an EphPub
key, an attacker may attempt to crawl all existing DNS
cache resolvers with DNS requests, and try to identify some
bits of the key. However, since the number of DNS cache
resolvers and, especially, that of all possible domain names
is extremely large, this approach is not feasible. Note that,
in early 2011, http://www.whois.sc/internet-statistics reported
126 million active registered domain names. Moreover, relying
on a sufficiently large set of wild-card domains would virtually
remove any limit.

DNS Infrastructure Infiltration and Sybil Attacks. An
additional adversarial strategy could involve infiltration in
the DNS infrastructure, somehow similar to the Sybil attack,
performed against the DHT used by Vanish [31]. Recall that, in
a Sybil attack, an attacker controls several hosts that generate
many virtual identities, hence, she receives a very large portion
of the traffic. However, DNS resolvers are uniquely identified
by their IP addresses and do not have virtual identities. A Sybil
attack or an infiltration attack on the DNS infrastructure would
require either (i) a very large number of public IP addresses
pointing to a few hosts, (ii) a very large number of hosts acting
as DNS resolvers or (iii) compromising or obtaining traffic
logs of a large amount of the DNS resolvers.

We argue that those options are far from being viable.
In fact, unless the attacker controls an extremely significant
portion of DNS resolvers used to store the key of the target
EPO, the amount of information that the attacker could learn is
very limited. Since resolvers are chosen at random, e.g., among
a million servers, an attacker that compromise a fraction of
those would obtain, on average, the same fraction of key bits.
That is, controlling 100K resolvers would lead to recovering
only 10% of key bits.

Also note that an attacker cannot use newly deployed
resolvers or compromised bots, which are often unstable and
online for a relatively short period of time. In fact, in the
design of EphPub, we make sure that resolvers are picked
from a list that is generated and maintained conservatively
(see Section VI).

D. Denial of Service

We now consider potential DoS attacks against EphPub. We
identify two scenarios. In the first one, the attacker knows the
EPO and her goal is to prevent the receiver from recovering the
message. In the second scenario, the attacker is not focusing
on a specific target, whereas, her goal is to attack the entire
EphPub service.

Attacking a known EPO. An attacker with access to an EPO
has a couple of potential approaches to prevent decryption.
First, all key bits could be flipped to 1 by performing recursive
DNS requests of all the EPO domain names. However, after
this attack the records corresponding to bit O in the initial key
will have a larger TTL than the records corresponding to bit
1. Therefore, the initial key could still be recoverable by the
receiver. Second, the attacker could target the caches of DNS
resolvers, which have finite memory. As a result, an attacker
could launch a DoS to EphPub by filling caches with random
entries until the entry used to store a bit is removed from the
cache. However, the default Bind behavior does not limit the
cache size, making this attack almost impossible. For DNS
cache resolvers with cache size limitations® the attack would
be feasible at the cost of a huge number of DNS queries.
Finally, the attacker could perform a DoS attack on the DNS
cache resolvers themselves, by flooding them with bogus DNS
requests. Note that as for most of Internet protocols, DoS (or
even worse, DDoS) attacks are very difficult to prevent and
are in general unrelated to the privacy of the system. One
natural countermeasure is to always enforce EphPub+, i.e.,
super-encrypting the EPO, so that an attacker would not have
access to the DNS information.

E. Traffic to Top Level Domains and Root Servers

When a bit is stored in a DNS cache resolver, the resolver
will need to walk the DNS hierarchy to resolve the hostname’s
components it does not currently have in cache. Assuming
a completely empty cache, the following steps will be pre-
formed by the DNS cache resolver to resolve the hostname
“sub.domain.tld’:

e A root server R;, among Ri,...,R,, is queried for
sub.domain.tld R;’s will answer the addresses of the
authoritative servers for #ld (Top Level Domain servers),
eg., Th,...,T,.

o A TLD server T} is queried for the record sub.domain.tld.
It will answer the list of authoritative servers for the
domain domain.tld, A4, ..., A,

o Finally, an Aj will be queried for the domain
sub.domain.tld., and will answer with the requested
record or a negative answer if this record does not exist
(or a list of DNS resolvers in case there is further sub
domain delegations).

During the above process, the key might be disclosed to R;,

T}, even if they are not malicious themselves, their network
traffic might be logged, e.g., for forensics purposes. If an

%Note that BINDO has an option to limit cache size max-cache-size,
however it has been reported to be nonfunctional.

http://www.whois.sc/internet-statistics

attacker gets access to the logs of all root and/or all TLD
servers involved, she can then retroactively recover the original
message from an EPO.

An effective counter-measure is to “pre-fetch” TLD and
domain records, independently of the value of the bit to store,
by performing a recursive query for an arbitrary record of
the same domain, e.g., www.domain.tld. This will force the
cache resolver to obtain the records for #ld and domain.tld.
Therefore, this will only exposes a hostname independent of
the hostname actually used to store EphPub bits. Also, the
information received by root and TLD servers is the same,
independently of the value actually stored in the DNS cache.
Our prototype implements “pre-fetching” by default, this has
a moderate impact on the performance and overall network
load, as it performs requests independently of the value of the
bit to store.

FE. Irrelevance of Known DNS Security Issues

DNS Flushing Periods. Older versions of the BIND DNS
Server do not periodically erase expired entries from the DNS
cache. Therefore, a forensic analysis could allow to recover the
entries (i.e., key bits), after their normal expiration date. This
analysis would reveal parts of a key that should not otherwise
be available. Fortunately, only BIND versions older than 4.9
lack a regular cache cleanup [2]. In our experiments, there
were only 4 out of 90K resolvers which were fingerprinted
as using BIND versions before 4.9, thus, we excluded them.
More recent BIND versions define a 1-hour default cleaning
interval. Expired entries encoding the key bits are therefore
removed from the cache with at most one hour delay.

DNS Poisoning Attack. The DNS system has been the target
of well-known attacks, such as DNS cache poisoning [18].
In such an attack, an attacker is able to inject a fake record
associating a legitimate host name to a bogus IP address.
This attack is used for redirecting users to a malicious site.
Variants of this attack rely on injecting fraudulent glue records
together with normal response [30] in order to redirect queries
to malicious resolvers. This attack does not interfere with
EphPub as long as records can be cached by resolvers, even
if the stored values point to malicious IP addresses.

Domain Name System Security Extensions. DNSSEC have
been recently designed to provide authentication and data
integrity of DNS records [12]. The main idea of DNSSEC
is to digitally sign answers to DNS lookups using public-
key cryptography. EphPub is not affected by the deployment
of DNSSEC since these extensions do not impact the DNS
caching mechanisms EphPub is built on.

DNS Proxying. A few enterprise networks and ISPs im-
plement transparent DNS proxying [4] to reduce bandwidth
overhead. While not recommended, DNS transparent proxying
forces a sender to use the DNS resolver chosen by the ISP.
The DNS proxy intercepts any incoming DNS request and
redirect them to the configured resolver. As a result, a sender
cannot select the DNS resolver to resolve her request and,
therefore, EphPub cannot operate. A similar problem arises

when full packet capture and storage is performed within
a close network distance to the sender or receiver. In this
case, captured packets, together with the EPO, can result
into recovering the message. However, these problems can be
addressed by tunneling EphPub’s DNS requests, e.g., using
Tor [10].

V. THE EPHPUB PROTOTYPE

We have implemented an EphPub prototype with a simple
modular architecture made of two components: the “DNS
core” (backend) and the user interface (frontend). In this sec-
tion, we present the details of the components and the interface
between them, as well as the description of our software
implementations — the source code of our implementations is
available at http://code.google.com/p/ephpub/.

Backend. The crucial component in EphPub is the soft-
ware layer responsible for performing DNS queries to dis-
tribute/retrieve key bits. In the EphPub prototype, this layer
has been implemented in Python, enhanced by the open-
source PyDNS module (http://pydns.sourceforge.net) for DNS
queries. Given the simplicity of DNS queries, EphPub can
easily be ported to any other system/architecture. To dis-
tribute ephemeral keys, EphPub uses randomly picked DNS
cache resolvers and domain names. The implementation of
key storage is straightforward, by means of recursive and
non-recursive DNS queries. As a result, the footprint of
our core implementation is extremely compact. Encryption
is done with AES, relying on the PyCrypto python module
(http://www.dlitz.net/software/pycrypto) and 128-bit keys.

Frontend. Given the simple structure of our Python-based
core, the development of the user interface is not limited by
particular assumptions that may affect portability or usability.
Besides a simple command-line tool for ephemeral files, we
developed a Firefox anf Thunderbird extension prototype, us-
ing the python support provided by the pyxpcomext extension
(http://pyxpcomext.mozdev.org). Therefore, all DNS opera-
tions are performed from within the extension. This extension
allows: (1) the sender to encrypt any web content using
EphPub and publish the corresponding EPO, (2) the receiver
to open an EPO and decrypt the corresponding information
(as long as that expiration time is not passed).

Usability. The EphPub functionality is completely included
in a stand-alone Firefox and Thunderbird extension, i.e., we
do not require the user to install or launch any additional
background software, as opposed to Vanish [16]. We believe
that this is crucial in order to improve the usability of the
solution. Specifically, the Vanish Firefox extension requires an
underlying DHT backend (i.e., Vuze) that needs to be launched
independently. This also involves potentially “invasive” oper-
ations, such as the installation of the Java Virtual Machine. In
contrast, our prototype only requires installing the Firefox or
Thunderbird extension, thus, it addresses a larger variety of
potential users and devices.

Availability. Our prototype does not incur a setup delay, as
opposed to Vanish, where the use of the extension is subject

http://code.google.com/p/ephpub/
http://pydns.sourceforge.net
http://www.dlitz.net/software/pycrypto
http://pyxpcomext.mozdev.org

to the Vuze backend to bootstrap. This can take 5-10 minutes
according to [16], and it may increase, as we have experienced,
depending on local network configuration. Furthermore, we
stress that P2P-based solutions may be prevented by fire-
walls and network filters, whereas, EphPub uses simple DNS
queries, which are unlikely to be firewalled.

VI. MEASUREMENTS & EXPERIMENTS

We now overview our measurements, performed over sev-
eral months, to select DNS cache resolvers, and present our
experimental analysis of EphPub’s efficiency and robustness.

A. DNS Cache Resolvers

EphPub uses a set of randomly chosen DNS cache resolvers
to distribute encryption keys. Thus, the related software layer
must be equipped with an appropriate list. Although EphPub
addresses potential errors and failures using error correcting
codes, we need to assess DNS resolvers’ reliability to min-
imize error rate. To this end, we build a list containing the
highest possible ratio of resolvers that: (i) successfully respond
to both recursive and non-recursive queries, (ii) have a small
rate of connection errors, (iii) maintain entries in the cache for
the entire TTL time and not longer. Since an accurate list of
such resolvers would evolve over time, we design EphPub
to mirror this evolution by providing users with automatic
periodical updates.

We now overview our methodology. We remark that it might
be worth investigating how to maintain an optimal dataset, e.g.,
drawing from existing studies, such as [7], [19], [29].

Initial DNS Resolvers Dataset. We started from a list
of 900K IP addresses responding to DNS queries, from a
previous probing performed several months earlier. We re-
probed these addresses and obtained a list of ~225K active
IP addresses. We validated this list by verifying whether the
addresses answered to DNS queries throughout a period of 2
months and filtered those addresses that: (i) did not answer to
recursive DNS queries, (ii) did not cache answers to recursive
queries, (iii) did not answer to non-recursive DNS queries,
(iv) performed caching or recursive resolution when receiving
non-recursive queries. This way, we built a dataset of ~130K
DNS cache resolvers.

TTL Compliance. Next, we focused on selecting cache
resolvers that register the correct TTL. Indeed, looking at the
TTL of the resolution answer returned after a recursive query,
we noticed that some resolvers ignore the domains’ TTL, as
already pointed out by [7]. After a 4-week observation, we
reduced our dataset to ~80K resolvers to exclude misbehaving
resolvers. Finally, we made sure that DNS cache resolvers
used by EphPub would successfully maintain cache entries for
the intended time, i.e., domain’s TTL. Hence, we periodically
performed recursive DNS queries and subsequently test the
presence of the corresponding cache entry with non-recursive
queries. Following a conservative strategy, we discarded re-
solvers that generated failures or premature cache entry re-
movals after an observation time of 4 weeks. As a result, our

final dataset includes ~25K reliable resolvers. We summarize
our measurements in Table I.

Experiment Dataset Fail Pass
Initial dataset 900K 675K | 225K
Correctly perform cache 225K ISK 130K
Cache correct TTL 130K S0K 80K
Cache persistence 90K 65K 25K

TABLE I: Building a dataset of reliable DNS cache resolvers.

B. Domain Names

One of our requirements is to let users actively and accu-
rately control message expiration time. In EphPub, this time
is related to key expiration time, thus, to the cache entries’
TTL. To this end, EphPub performs recursive queries only
on domains that have the desired TTL. Recall that the set of
domains is generated at random, as described in Section III-C.
Although the RFC1912 [3] defines the TTL to potentially last
up to several weeks, in practice, we find that only a negligible
fraction of domains have TTL higher than 604,800 seconds
(1 week). We highlight that the range of possible TTLs a user
can select is reasonably wide. To confirm this, we generated
2 million random domains that could be successfully resolved
(i.e., we generated a random IP address and performed a
reverse lookup to obtain the corresponding domain name).
Then, we harvested their TTL provided by the authoritative
DNS server. We notice that TTLs range from 0 seconds to
7 days. The distribution of most frequent TTLs is shown in
Table II. As a result, our current techniques limit expiration
time to 1 week. In many cases such a lifetime is enough for
the application we consider (e.g., the Online Social Networks
scenario in Section I). Also, note that this is a significantly
larger interval than prior work: in Vanish [16], key shares are
deleted after (typically) 8 hours, due to DHT churn. However,
we acknowledge that it is an interesting open challenge how
to support even longer expiration times, e.g., by periodically
(and automatically) re-initializing ephemeral keys’.

TTL domains TTL domains
1200 [20m] 13,595 86400 [24h] 998,450
1800 [30m] 7,269 172800 [2days] 77,326
3600 [1h] 201,789 259200 [3days] 12,317
7200 [2h] 171,685 432000 [Sdays] 13,450
43200 [12h] 180,144 604800 [7days] 42,142

TABLE II: Number of most frequent occurrences of TTLs over 2
million random domains.

C. EphPub Robustness

We now evaluate the robustness of EphPub system: we
test distribution and retrieval of EphPub keys. Our goal is to
examine whether the keys can be successfully retrieved before
the expiration time while disappearing afterwards.

To this end, we executed the EphPub protocol introduced
in Section III-C. We fixed the encryption key size to 128 bits

7In cases where longer lifetimes are needed, it is possible (although not
very efficient) for the source of the content to extend the expiration time of
the DNS entries, by refreshing the cache after expiration, or to create a new
EPO and distribute the new EPO to users.

and chose a desired expiration time, i.e., 24 hours and 7 days.
We stored the key as follows. First, we encode the key using
the Reed-Solomon code discussed in Section III-E, obtaining
a 176-bit encoding, denoted with ey, - - - , e17¢. Next, for each
e;, we wrote e; on the randomly picked cache resolver res;
using the domain name d; chosen at random and having a
TTL equal to the desired expiration time. Then, at periodic
intervals, we retrieved the keys from the cache resolvers. For
each (res;,d;), we performed a non-recursive DNS query to
cache resolver res; for the domain d;: if an entry in the cache
existed, we read e = 1, otherwise e = 0. Finally, we decoded
the key using the Reed-Solomon decoding.

We now analyze the percentage of key bits successfully
retrieved during our experiments. We measured the correctness
of both:

1) The bits that were read/written on cache resolvers, i.e.,
whether e} = e;.

2) The key bits effectively used for encryption/decryption,
after applying error correction code.

Fig. 3 presents the results of our experiments (averaged
over 100 trials). Keys could be correctly retrieved up to the
expiration time, whereas right after TTL timeout all bit 1’s flip
to 0 in the corresponding key. At this point, the recovered key
is all 0’s (it reads on Fig. 3 as around 50% of the initial random
key bits, which were initially O’s, are correctly recovered).
Clearly, this provides no information on the original key.

One potential concern regarding EphPub’s robustness may
be related to its resilience to errors due to collisions in writing
ephemeral bits. However, one can make collision nearly im-
possible using wild-cards. Nonetheless, one can estimate the
probability of a collision (without using wild-cards), using the
birthday problem. Specifically, we model the probability of
having at least one collision as p(n;d) = 1 — e~"(n=1)/2d
where n is the number of EphPub documents with same
expiration time and generated within the same time frame,
and d is the product between the size of cache resolvers’
dataset (i.e., 25K in our experiments) and the number of
domain names with the specific TTL. For instance, considering
documents with 24-hour expiration time, using our dataset of
25K cache resolvers and 1M random domains with 24-hour
TTL, and assuming n=10K, we obtain p(n;d) ~ 10~3. Also,
recall that our error correction code can correct between 4
and 24 errors (see Section III-E). These numbers correspond
to a small to medium deployment. Scaling to a larger number
of users would require more DNS servers® and the use of
wildcard DNS domains to completely avoid the birthday
paradox problem.

We conclude that the EphPub prototype is robust and accu-
rate enough for real-world deployment. Nonetheless, a more
accurate and extensive profiling of the DNS cache resolvers
may further reduce the percentage of bit flipping.

8Based on work from Dagon et. al. [7] we estimate that 1,7 million DNS
servers on the Internet would be suitable

100 100

Percentage of recovered key bits (%)
Percentage of recovered key bits (%)

Without RS s
With RS s

0 10 20 24 30 0 2 4 6 7 8 10
Time (hours) Time (days)

(@) (b)

Fig. 3: Percentage of EphPub key bits correctly recovered with
expiration times, respectively, 24 hours (a) and 7 days (b). Before
expiration time, key bits are correctly recovered. After expiration time,
key bits 1 (on average 50% of key bits) flip to O and are no longer
correctly recovered. Whereas, key bits O (the other 50% of key bits)
conserve their value. The resulting key is a dummy sequence of 0’s
and can no longer be used for valid decryption. Note that lines are
plotted as the interpolation over periodical key retrievals.

Without RS s
With RS s

D. Performance Evaluation

We now analyze the performance of EphPub to confirm that
our approach is fast enough to be used in practice. In addition,
we discuss several ideas to optimize our implementation.
Measurements are done on a Dell PC with two quad-core
CPUs Intel Xeon at 1.60GHz with 4GB RAM, Python 2.6.2
(with pydns-2.3.3 and pycrypto-2.1.0bl) and a high-speed
Internet connection.

Key Distribution. The main operations involved in distribut-
ing EphPub keys are the generation of valid random domains
with intended TTL and DNS (non) recursive queries. (We
do not consider cryptographic operations, since symmetric
key encryption is relatively fast compared to the former
tasks). Random domain generation is performed as follows:
we generate random IP address and perform a reverse lookup
on the local DNS resolver to check whether the corresponding
domain name resolves and has the desired TTL. Hence, this
operation involves a number of trials that is directly related
to the popularity of the desired expiration time as domain
TTL. Due to its limited overhead, it is possible to execute
multiple instances of this operation in parallel. However, as
described in Section III-C, the random domain generation is
performed ahead of time, and not online. Nonetheless, we
measure the overhead that users would experience if they
want to independently generate the domains at run-time. Due
to potential errors or failures, it is advisable to pre-generate
a number of random domains strictly larger—e.g., twice as
many— than the bits to store. In order to generate 320 random
domains (that is almost twice the number of bits to store, when
using 128-bit encryption keys and Reed-Solomon codes), our
prototype requires around 5s for TTL equal to 86,400 seconds
(1 day). We also measure times for less popular TTLs. To
generate the same number of random domains but with TTL
equal to 14,400 seconds (4 hours), the prototype requires
around 1 minute.

On the other hand, the time overhead needed to store
key bits in DNS caches mostly depends on the delay in
executing recursive queries. Our experiments show that, ex-
ecuting queries in parallel (instantiating up to 64 threads), this

operation takes about 6 seconds. Although, DNS queries are
not computationally expensive (in our experiments, the CPU
usage never went over 2% throughout the whole execution)
we let the number of parallel threads be a parameter that can
be set by the user according to its needs.

Key Retrieval. Time to retrieve the key bits from DNS caches
depends on the the delay of executing non-recursive queries,
which is much smaller compared to recursive queries. In our
experiments, it takes only about 1s to retrieve 176 key bits.

Additional DNS traffic. One possible objection to the EphPub
system could be that it generates additional traffic towards
DNS resolvers. However, the generated traffic is extremely
limited in comparison to the number of DNS queries generated
through typical web navigation. To illustrate this, we note
as examples that opening the Firefox default homepage on
Ubuntu leads to more than 50 DNS queries. Furthermore,
opening the www.cnn.com web page generates about 140 DN'S
queries. The number of queries is related to several factors,
such as pre-fetching performed by Firefox, the number of
advertisement links, and multiple lookups for each domain
(one for each domain in the search list [1], IPv6 and IPv4
requests, etc.). When compared to these very common actions,
the network and DNS usage of EphPub can be considered
negligible. Moreover, performing those DNS requests in par-
allel (up to 64 parallel threads in our experiments) might
appear as an aggressive behavior. However, each DNS cache
resolver used will receive at most two DNS requests, which
is a negligible workload. Also, the generated network traffic
is quite limited: we measured that storing/retrieving a key
on the resolvers generates at most 32KB of DNS traffic,
corresponding to the worst case of having all bits set to 1
(given that an average request/response amounts to 180 bytes).

Message Overhead. The information contained in EPOs
naturally generates a message overhead. Indeed, beyond the
ciphertext, assuming the use of a 128-bit key and the Reed-
Solomon error correction technique (see Section III-E), the
EPO contains 176 IP addresses for the DNS cache resolvers
(each requiring 4 bytes) and 176 domain names (each requiring
approximately 20 bytes). Thus, we estimate the average size
of the additional information in the EPO at 4KB. According to
the measurement work presented in [17], this overhead would
be equal to less than one tenth of the average email size
— approximately 60KB. Nonetheless, as this information is
textual, the use of compression algorithms would remarkably
reduce related overhead.

VII. RELATED WORK

Forward Secret Privacy. Forward Secret Privacy (PFS) [9] is
the property ensuring that a session key derived from a pair of
long-term public and private keys will not be compromised,
if one of the long-term private keys is compromised in the
future. An authenticated Diffie-Hellman (DH) key exchange
protocol provides this property since the compromise of the
long term key does not provide any information about the DH

components that were used. However, a PFS system does not
guarantee retroactive privacy. In fact, messages are not time-
bounded, hence, the receiver or any party obtaining the key
can always decrypt messages without any restriction of time.

Ephemerizer. The introduction of a trusted third party for
erasing data on behalf of users has been proposed by Ephemer-
izer solutions [23], [24], [25], [28]. Users delegate deletion
of protected content to third parties (dedicated servers) that
destroy the data or the encryption keys after a specified
timeout. Again, this violates one of our main goals, i.e., to
avoid the introduction of one or more trustworthy, always-
on, and centralized services that might be compromised. For
instance, recall the case of the Hushmail email encryption
service, which was secretly providing the cleartext content of
encrypted messages to the U.S. government [27].

Vanish. Similar to Vanish [16], EphPub aims at providing
retroactive privacy, even if data storage is not trusted, compro-
mised or stolen. However, as discussed in Section I, the Vanish
architecture is vulnerable to Sybil attacks [31]. Authors of
Vanish have proposed countermeasures to this specific attack
[15]. However, as discussed in [31], this has only raised the
bar for the attacker, due to the vulnerability of DHTSs to Sybil
attack, thus, leaving as open question whether or not DHTSs
are the best choice for key-share storage.

Observe that the main flaw of Vanish design is that DHTs
are assumed to be resistant to crawling. On the contrary, mon-
itoring all DNS resolvers is realistically infeasible. Further,
EphPub provides several improvements in terms of robustness
and usability. First, it allows users to select the expiration time:
by choosing domain names matching desired lifetime period,
users assign their content a more precise expiration time (while
in Vanish this is assigned by the specific DHT implementation
and due to network churn, unless using a so-called “refreshing
proxy” that re-pushes key shares). Also, as we show next,
given its simple nature, EphPub does not require users to
install any additional software (e.g., DHT client). Thus, it
can be easily ported on any architecture and deployed even
on mobile phones. Indeed, researchers are already advocating
efficient solutions to guarantee retroactive privacy, for instance,
in location sharing applications over smartphones [14].

VIII. CONCLUSION & FUTURE WORK

This paper formalized the concept of Ephemeral Publishing
(EphPub) and presented a novel efficient and robust solution
to it, based on the caching mechanism of the DNS. It is
transparent to existing applications and services and lets the
sender to control data’s lifetime with relatively finer granu-
larity than prior work [16]. Our EphPub technique uses a
Reed-Solomon error correction code to minimize the error
ratio. Our experimental analysis attests to EphPub’s efficiency
and shows that the protocol correctly handles ephemeral keys.
Measurements conducted over several hundred thousands open
DNS resolvers may be of independent interest. We estimated
the number of resolvers suitable for EphPub to 1.7 million.

www.cnn.com

We also proposed a command-line tool and a Firefox and
a Thunderbird extension prototypes that implement EphPub.
Our software improves, by design, the usability of previous
work [16]. Our implementations use a list of selected DNS
cache resolvers that minimize error rates. Nonetheless, EphPub
users can build their own set of random resolvers.

EphPub guarantees that published content cannot be de-
coded after its expiration time, i.e., after that, an adversary
cannot retrieve the decryption key, hence, she cannot re-
construct the content. Note that this guarantee holds even
if the adversary controls (or compromises) the sender and
the receivers, and tries to recover the key or the plaintext
from their memory. Indeed, we assume that senders (resp.,
receivers) never store plaintexts and encryption/decryption
keys, after publishing (resp., reading) the content, and before
the expiration time. While one may consider this to be a
“strong” assumption, observe that EphPub’s retroactive privacy
guarantees are useful even without this assumption. In fact,
EphPub ensures that expired content cannot be retrieved by the
types of attackers (similar to honest-but-curious adversaries),
envisioned in EphPub applications. For instance, recall the
examples from Section I: even if plaintexts are not erased
by the publisher, an employer is still prevented from crawling
social networks, blogs and forums, or cached data to access
expired content published by his employees.

We emphasize that EphPub does not protect against a user
that copies or redistributes decrypted content, although the
EphPub software is designed not to store it on local memory.

EphPub represents an initial foray into DNS-based
Ephemeral Publishing, thus, much remains to be done. Future
work includes a deeper analysis of existing DNS monitor-
ing systems, a large-scale evaluation on the DNS load, and
investigating alternative approaches based on other caching
mechanisms of today’s Internet (e.g., web caching).

We also acknowledge that, if EphPub was to be used by
a high number (e.g., millions) of users, it could impose a
remarkable and unwanted traffic on the (open) DNS cache
resolvers. Thus, it is unclear how resolvers’ administrators will
react. Nevertheless, we hope that the privacy protection offered
by systems like EphPub will result into a community effort,
where users may contribute by providing DNS resources. One
prominent example of this practice is the Tor Project [10],
where a volunteer network of servers route Internet traffic in
order to conceal a user’s location or web usage.

ACKNOWLEDGMENTS

The authors would like to thank our shepherd James Grif-
fioen for his very helpful feedback and editorial suggestions,
Daniele Perito for providing us the initial list of DNS servers
as well as Vincent Jugé and the anonymous reviewers for their
insightful comments and help to improve this article.

[1]
[2]

[3]
[4]
[5]
[6]
[7]
[8]

[9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]
(171
(18]
[19]
[20]

(21]

(22]

(23]

(24]
[25]

[26]

[27]

(28]

[29]
(30]

[31]

REFERENCES

The Linux man-pages project, Linux Programmer’s Manual. http://www.
kernel.org/doc/man-pages, 2011.

P. Albitz and C. Liu. DNS and Bind. O’Reilly Media, Fourth edition,
2001.

D. Barr. Common DNS operational and configuration errors. IETF,
Network Working Group, Request For Comments, RFC 1912, 1996.

R. Bellis. DNS Proxy Implementation Guidelines. [ETF, Network
Working Group, Request For Comments, RFC 5625, 2011.

D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast
encryption with short ciphertexts and private keys. In Crypto, 2005.

J. Bonneau. Attack of the Zombie Photo. http://www.
lightbluetouchpaper.org/2009/05/20/attack-of-the-zombie-photos/.

D. Dagon, N. Provos, C. Lee, and W. Lee. Corrupted DNS resolution
paths: The rise of a malicious resolution authority. In NDSS, 2008.
Danah Boyd. Risk Reduction Strategies on Face-
book. http://www.zephoria.org/thoughts/archives/2010/11/08/
risk-reduction-strategies-on-facebook.html, 2010.

W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and
authenticated key exchanges. Designs, Codes and Cryptography, 2(2),
1992.

R. Dingledine, N. Mathewson, and P. Syverson.
generation onion router. In USENIX Security, 2004.
J. Douceur. The sybil attack. In IPTPS, 2002.

D. Eastlake. Domain Name System Security (DNSSEC) Extensions.
IETE, Network Working Group, Request For Comments, RFC 2535,
1999.

Facebook, Inc. Facebook’s Privacy Policy. http://www.facebook.com/
policy.php, 2011.

J. Freudiger, R. Neu, and J. Hubaux. Private Sharing of User Location
over Online Social Networks. In HotPets, 2010.

R. Geambasu, J. Falkner, P. Gardner, T. Kohno, A. Krishnamurthy, and
H. Levy. Experiences building security applications on DHTSs. Technical
report, UW-CSE-09-09-01.

R. Geambasu, T. Kohno, A. Levy, and H. Levy. Vanish: Increasing data
privacy with self-destructing data. In USENIX Security, 2009.

L. H. Gomes, C. Cazita, J. M. Almeida, V. A. F. Almeida, and W. M.
Jr. Characterizing a spam traffic. In /MC, 2004.

A. Klein. BIND 9 DNS cache poisoning. http://www.trusteer.com/
list-context/publications/bind-9-dns-cache-poisoning, 2007.

J. Kristoff. DNS - Open Recursive Name Server Probing. http://condor.
depaul.edu/jkristof/orns/, 2011.

D. MacKay. Information theory, inference, and learning algorithms.
Cambridge Univ Press, 2003.

T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Examining smart-
card security under the threat of power analysis attacks. IEEE Trans.
Comput., 51:541-552, May 2002.

P. Mockapetris. Domain Names - Implementation and specification.
IETFE, Network Working Group, Request For Comments, RFC 1035,
1987.

S. K. Nair, M. T. Dashti, B. Crispo, and A. S. Tanenbaum. A Hybrid
PKI-IBC Based Ephemerizer System. In ISC, 2007.

R. Perlman. File system design with assured delete. In SISW, 2005.

R. Perlman. The Ephemerizer: Making data disappear. Journal of
Information System Security (JISSec), 2005.

I. Reed and G. Solomon. Polynomial codes over certain finite fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300—
304, 1960.

R. Singel. Encrypted E-Mail Company Hushmail Spills to Feds. http:
/Iwww.wired.com/threatlevel/2007/11/encrypted-e-mai/, 2007.

Y. Tang, P. Lee, J. Lui, and R. Perlman. Fade: Secure overlay
cloud storage with file assured deletion. Security and Privacy in
Communication Networks, 2010.

The Measurement Factory. DNS Surveys.
measurement-factory.com/surveys/, 2011.

US CERT. Multiple DNS implementations vulnerable to cache poison-
ing. http://www.kb.cert.org/vuls/id/800113, 2008.

S. Wolchok, O. Hofmann, N. Heninger, E. Felten, J. Halderman,
C. Rossbach, B. Waters, and E. Witchel. Defeating Vanish with Low-
Cost Sybil Attacks Against Large DHTs. In NDSS’10.

Tor: The second-

http://dns.

http://www.kernel.org/doc/man-pages
http://www.kernel.org/doc/man-pages
http://www.lightbluetouchpaper.org/2009/05/20/attack-of-the-zombie-photos/
http://www.lightbluetouchpaper.org/2009/05/20/attack-of-the-zombie-photos/
http://www.zephoria.org/thoughts/archives/2010/11/08/risk-reduction-strategies-on-facebook.html
http://www.zephoria.org/thoughts/archives/2010/11/08/risk-reduction-strategies-on-facebook.html
http://www.facebook.com/policy.php
http://www.facebook.com/policy.php
http://www.trusteer.com/list-context/publications/bind-9-dns-cache-poisoning
http://www.trusteer.com/list-context/publications/bind-9-dns-cache-poisoning
http://condor.depaul.edu/jkristof/orns/
http://condor.depaul.edu/jkristof/orns/
http://www.wired.com/threatlevel/2007/11/encrypted-e-mai/
http://www.wired.com/threatlevel/2007/11/encrypted-e-mai/
http://dns.measurement-factory.com/surveys/
http://dns.measurement-factory.com/surveys/
http://www.kb.cert.org/vuls/id/800113

	I Introduction
	II Preliminaries
	III The EphPub Protocol
	III-A Building Blocks
	III-B Ephemeral Bits
	III-C Protocol Description
	III-D EphPub+: Extending EphPub Against a Strong Adversary
	III-E Handling Errors and Erasures

	IV Security Analysis
	IV-A Retroactive Privacy in EphPub
	IV-B Retroactive Privacy in EphPub+
	IV-C Infeasibility of Key Recovery Attacks
	IV-D Denial of Service
	IV-E Traffic to Top Level Domains and Root Servers
	IV-F Irrelevance of Known DNS Security Issues

	V The EphPub Prototype
	VI Measurements & Experiments
	VI-A DNS Cache Resolvers
	VI-B Domain Names
	VI-C EphPub Robustness
	VI-D Performance Evaluation

	VII Related Work
	VIII Conclusion & Future Work
	References

