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1. Introduction 

To solve the stochastic program 

minimize f (x ,  J )P (dJ )  := E f (x ) ,  over all x E ,Y, J 
it is frequently necessary to solve instead an approximating problem, 

1 
minimize - 

v C f (x, J i )  := E" f (x),  over all x E X, 

where the probability measure P is replaced by an empirical measure derived from an 

independent series of random observations { I l , .  . . , J,) each with common distribution P .  

Generally speaking, this arises for one of two reasons: either the measure P itself is known 

only through the observations; or the numerical solution of (1.1) requires the discretization 

of P, and one very simple technique is to generate a set of "pseudo-random observations" 

from the distribution of P. Any solution to such a problem, xu = xV(J1 , .  . . , J,), is a 

random variable that depends on the observations; indeed the objective function itself is 

random in a certain sense that will be made clear below. As the number v of sample 

observations grows large, we demand that the approximations (1.2) approach the true 

problem in the sense that the functions E" f be e p i - c o n s i s t e n t  with limit E f - that is, E "  f 

ep i -converges  to E f almost surely. This implies the essential property that cluster points 

of the sequence of solutions { : u V )  are, with probability one, minimizers of the function 

E f .  In this paper, we present a systematic investigation of epi-consistency tailored for the 

special case where the function f ( a ,  J )  is a.s. convex and the approximating measures are 

empirical. 

Epi-consistency has been esplored in Dupatova and Wets [9], and Artstein and Wets 

[ l o ] .  These papers present sufficient conditions on P and f such that P H E f is continuous 

as a map from the spa.ce of probability nleasures topologized by convergence in distribution 

into the space of lower semi-continuous functions topologized by epi-convergence. Related 

approximation results delivering local epi-continuity of P H E f have been reported in Kall 

[ll] and Robinson and Wets [12]. While it is true that the empirical measures converge 

in distribution to P, and therefore the present situation can conform to the topological 

setting of these papers, the empirical/convex case is special and much better results are 

to be expected. 

In this paper, the space X is assumed to be a reflexive Banach space with separa- 

ble dual X*; in particular, X could be a finite-dimensional Euclidean space. Our epi- 

consistency result applies the strong law of large numbers for sums of random closed sets, 

as proved by Hess [8], to the epigraphs of the conjugates of the E" f .  It is remarkable that 



an approach similar to the one presented here could be carried out in finite dimensions, 

based on the strong law of Artstein and Hart [13], but would not yield a better result than 

that for Banach spaces. 

The organization of the paper is as follows. In Section 2, we set the definitions and 

discuss lower semicontinuity of integrals for not-necessarily-convex integrands. The main 

result appears in Section 3, accompanied by a brief discussion of epi-convergence. In 

Section 4, we prove epi-consistency for stochastic linear programs with recourse, under 

standard assumptions. 

The situation considered here has many similarities with maximum likelihood estima- 

tion in statistics. In the terminology of that field, xu = x u ( t l , .  . . , tu)  is a stat is t ic  and of 

the many important properties of a statistic consis tency stands first, i.e. there is a con- 

stant x* with xu  + x* a s .  This concept does not transfer very well to optimization where 

in many practical situations a unique minimizing x* for (1.1) is unlikely. For a detailed 

discussion of these similarities a.nd contrasts, and for a much more complete presentation 

of the definitions, notations, and motivations than is possible in the confines of the present 

work, we refer t,he reader to Dupacova and Wets [9]. 

2. Lower Semicol~tinuity of Integrals 

The analysis will be based on the geometrical point of view that associates to each extended 

real-valued function g : X + := R U { -m.  + m }  its epigraph 

epig = { ( r , a )  E S x R i a  2 f (x )} .  

The function g is called lower sem,icont in~ious (1.sc.) if epi g is a closed subset of X x R, 

this corresponds to 

lim inf g ( z l )  _> g(.zl), V.zl E X, 
z f+z  

and it is convex if epi g is a convex subset of X x R. 

We next introduce some fundamental measurability concepts for which the standard 

references are Rockafellar [ 5 ] ,  and Castaing and Valadier [6]. Let (E, A, P) be a probability 

space completed with respect to P. We say that a closed-valued multifunction G : E 3 
X x IR is measurable if for all closed subsets C c X one has 

Following usual practice, we shall also call G a r a n d o m  closed set .  The d o m a i n  of G is the 

measurable set dom G = {t E E I G([) f 0 ) .  



The epigraphical viewpoint leads to the following definition for the integrand in (1.1). 
- 

We say that a function f : X' x = -, IR is r a n d o m  lo we^ s emicon t i nuous  (random 1.sc.) if 

the epigraphical multifunction ( H epi f (., (), where 

is a random closed set. Random l.sc. functions were introduced, under the name "normal 

integrands", by Rockafellar [5] as a generalization of Caratheodory integrands - functions 

that are continuous on X and measurable on Z. If f is random l.sc. then the in f imal  

f unc t i on  

(2.3) ( H inf f ( a ,  [ )  := inf { f (x,  () I x E -Y) 

is measurable, and the opt imal  solzltion mu l t i f unc t i on  

(2.4) ( H argmin f ( . ,  () := { r  E I f (x ,  ( )  = inf f ( . .  ( ) }  

is a random closed set. 

( A  random l.sc. function call take the value + m ,  permitting the implicit represen- 

tation of constraints. The set of points x with f ( x ,  () = + m  is obviously undesirable 
- 

from the point of view of ininiinization; thus if in the event ( E = we wish to limit our 

possible decisions to x E M ( ( ) ,  then this can be accomplished by setting f ( a ,  () = +m for 

x $ Ad((). The resulting objective is called the essent ial  objectzve and will be a random 

l.sc. function if n/l is closed-valued and measurable.) 
- - 

A random l.sc. function f : ,Y x = -+ %f can be integrated over =, for each x E X ,  

to form the function E f  : -1- -+ in the usual way as the difference of the integrals 

of f+ (x ,  () := max[O, f (x ,  ( ) I  and f -(x, () := max[O, - f ( x ,  ( ) I ,  once we decide which 

is the proper value to assign when both the positive and negative parts turn out to be 

+m.  The natural convention is ( + m )  - (+m) = +m, incorporating the principle that 

infeasibility ( + m )  dominates. The integral so defined is order preserving and subadditive, 

i.e. E( f + g) 5 Ef + Eg. However, the implicit constraints (the tnduced constraints), 

defined as the set of points x for which f(x,  () < + m ,  can be satisfied only with probability 

one in this definition of the integral. The situation is spelled out in the following result, 

where, following the traditions of stochastic programming, we define the weak feaszbility 

~ e t  

(2.5) IC2 = { X  E X I f (x , ( )  < +m with probability one} 



Proposition 2.1. The weak feasibility set I<, is closed and can be writ ten in the form 

where C is the measurable set 

and, moreover, P ( C )  = 1 .  

Proof. See Appendix A of Walkup and Wets [17]. 

From the definition of the integral, minimizing E f (x)  over x E X is equivalent to min- 

imizing Ef (x)  over x E K 2 .  The above proposition shows that generally this formulation 

can take into account the implicit coilstraints f (x ,  [ )  < +ca only for the events [ E C. A 

study of the set C is beyond the scope of this paper; cf. [17] for more on this subject in 

the setting of stochastic linear programming. 

To obta.in lower semi-continuity of the integral E f we must concern ourselves with 

the lower boundary of epi f (., 0, a.nd, in particular, when f (., ( )  approaches -m. The 

following proposition is essentially from [19; 5.131. 

- 
Proposition 2.2. Let f : X x z -+ IR be random l.sc. and suppose 

Then E f : X + IR is lower semicon tinuous. 

Proof. It suffices to show for an arbitrary point .r E .Y and sequence { x u )  converging to 

x that 

lim inf Ef(.xU) > E f (x).  
u -+m 

We have 

lim inf E f ( x u )  2 f (x", [) P(d[) > E f (x);  
v-+m 

the first inequality follows from Fatou's Lemma applied to the nonnegative functions [ H 

(f (x", E) - inf f (., 0) and the second follows from lower semicontinuity of f (., [). 

Remark 2.3. It is generally difficult to weaken condition (2.6). For an example that 

illustrates the complexities involved, let 2 = [O, 11 with Lebesgue measure and let f : 

[O, 11 x [O, 11 + be defined by 

1 ;<-i i f x # O a n d [ # O  

+m otherwise. 



Then for almost all (, f ( . ,  ()  is proper and even l.sc., but E f (0 )  = +m and E f ( x )  = -m 

for z # 0; thus E f cannot be l.sc. This example can be modified so that E f ( z )  > -m 

for a11 z (take max[ f (x ,  0, - :]) without altering the conclusions. However, if -Y is finite 

dimensional and f (., ()  is convex, then condition (2.6) may be weakened, as pointed out in 

Remark 3.5 

3. Epi-Consistency 

We suppose that ,Y is a reflexive Ba.nach space with separable dual -Y*. Our asymptotic 

study will be based on the concept of the epi-convergence of sequences of extended real- 

valued functions on -Y, and this in turn can be defined via a certain convergence of the 

sequence of epigraphs as subsets of ,Y x IR. In Proposition 3.1, we see why epi-convergence 

is important in approximation theory for optimization. We only give the bare outlines 

here; for more details, see [I.], [2], and [3], for example. 

Let r be a topology on a inetrizable space Y ,  and let (-4,) be a sequence of subsets 

of Y. We define the following set limits: 

T-limsup -4, = {y = T -  lim y, 1 y, E -4, for infinitely many v ) ,  
V 

(3.2) r- lim inf A, = { y = r- lim 9, I y, E A, for all but finitely many v) .  
/ 

Now let gu be a sequence of estencled real-valued functions on -Y. We say that y u  Mouco- 

epi-converges to g, Mosco- epi - lim,, g u  = y ,  if 

(3.3) epi g = U I -  linl sup(+ g")  = S- lim inf(epi g"),  

where the to- lim sup is taken with respect to the product of the weak topology on ,Y and 

the usual topology on IR, and the s- lim inf with the product of the strong on X and the 

usual topology on IR. This type of convergence is neither implied by, nor does it imply, 

pointwise convergence; cf. [ I ] .  Its superiority to pointwise convergence for applications 

in optimization theory is evident from the following proposition, where we see that epi- 

convergence implies that weak cluster points of sequences of points z u ,  each a minimizer of 

gu ,  must minimize g - an essential property in numerical approximation that is generally 

false for pointwise convergent sequences of functions. 

Proposition 3.1. If g = Mosco- epi - lim g" then 



and 

(3.5) lim sup(inf g" ) 5 inf g. 

Proof. Cf. [4; Theorems 1 and 31 whose arguments easily generalize to the infinite di- 

mensional setting. 

Of concern in this study is that cluster points of minimizers to the approximates (1.2) 

should minimize (1.1). We shall show, in a moment, that the objective functions E" f are 

random l.sc. on a certain probability space. The epi-convergence, therefore, need only 

take place on a set of probability one. We formalize this in the following definition. 

Definition 3.2. A sequence {h") of random l.sc. functions is epi-consistent if there is a 

(necessarily) l.sc. function h such tha.t 

(3.6) hllosco- epi - lim h" = h 

with probability one. 

The main result of this pa.per provides conditions under which the functions E" f in 

(1.2) are epi-consistent with liinit E f .  The proof employs conjugate duality arguments to 

a.rrange things so that a, centra.1 limit theorem for sums of random closed sets can be applied 

to the epi-graphs of the conjugates of E U f .  For this reason the functions are required to 

be convex. We pause here to review seine of the facts about convexity that will be used; 

these results are sta.ndard and may he found in Rockafellar [5], and Castaing and hraladier 

[6], for exa.mple. We shall continue to use the notation established in Section 2. 

A random 1 s .  function f : -1- x E + is said to be conwx if the epi-graphical 

multifunction { w epi f (., { )  is closed. convex-valued and measurable. It is almost surely 

proper if for almost all { the function f ( . ,  { )  is proper. The conjugate of a random l.sc. 

convex function f is the mapping f *  : -y* x Z + given by 

the conjugate f *  is a random l.sc. convex function that is a s .  proper if and only if f is 

a s .  proper. The szibgradient of a random l.sc. convex function f at a given pair ,r E -Y 
and { E 5 is the set 

(3.8) d f (a , ( )  = {x* E S I f(rl.{) 2 f ( . x , ( )  + (x*,xl  - x), Vx' E X). 



If f is a.s. proper, then the multifunction ( ++ gph a f (., J )  is non-empty, closed-valued 

and measurable. An important relationship between the subgradient and conjugate is the 

following: for fixed J E E and T E S, a point x* belongs to af ( x ,  J )  if and only if 

The continuity set of a proper l.sc. convex function g : X -, is the set of points cont(g) 

where the function is finite and continuous; when X = IRn, this set is equal to the relative 

interior of domg [7]. 

We will also need the following (epigraphical) operation: by 2 we denote the epi- 

addition defined by the identity: 

with, as usual, oo - CG = fm. The subscript "e" refers to the fact that the operation takes 

place on epigraphs. Indeed, 

where epi, h is the strict epigraph of h ,  i.e., 

In the literature one also finds the epi-sum f +g denoted by f og (or fVg)  and called 
e 

the inf-convolu tion of f and g. The reference to "convolution" is formal, whereas the 

epigraphical terminology refers to the geometric interpret ation of these operations. The 

use we make of this concept in the proof of the next lemma should be enough of an 

illustration. 

First, we construct, via I\;olmogorov's method, the sample probability space, ( Z , 2 ) ,  

whose elements are sequences < = {J1, J2, . . . ), and equip it with a measure p that is 

consistent in the sense that if T,  : Z -, t is the v- th coordinate projection and if -4 E A, 
then p ~ ; l ( A )  = P{(, E A ) .  

Lemma 3.3. Let X be a reflexive Ba.nach space and  f : X x E -, be a P a s .  proper ran- 

dom l.sc. convex function, and  suppose that for p-almost all sequences ( = {J1, J2 , .  . .)  E Z 

one has 



Then for a.11 u = 1,2, .  . . the conjugate f~znctions (EV  f )*  are p-a.s. proper random 1.sc. 

convex functions a.nd, moreover, 

Proof. We have 
. V 

Usually we write EV f ( x ) ,  the ( dependence being implicit. By assumption (3.10), for 

almost all C, the function EV f ( a ) ( ( )  is proper, convex, and 1.sc.; cf. [6; 1-21]. The argument 

of [5;  2M] then applies to show that the EV f are random l.sc. convex functions. Applying 

the conjugacy formula (3.7) we find 

and hence by [6; 1-19] -- since f * *  = f - we have 

Finally, by [6; 1-18 and 1-20] and assuinption (3. l o ) ,  we have 

The formula (3.11) follows, since ( . r * ,  n )  E bS epi( f *( . ,  {,))  if and only if 

We are ready to state and prove the main result. For the convenience of the reader, 

we have collected all needed assumptions in the statement of the theorem. Denote by I (  . (1, 
the norm on the dual X*. 

Theorem 3.4. Let -Y be a reflexive Ba.na.ch space with separable dual X*,  and f : X x -t 

- 
IR be a ra.ndom I.sc. convex function that satisfies the three conditions: 

(3.12) there is a point .t such that Ef(.t.) is finite. and a measurable selection 

.(() E d f ( ~ ,  <) such tha.t Ilii({)ll.P(d() is finite; 



E f ( . ) is lower semi-continuous; 

for ~i-a. ln~ost  a.ll secluences ( = [*, . . .) one has 
V 

n ~ o n t ( f ( . , [ ~ ) ) # 0 ,  V v = 1 , ?  , . . . .  
i= 1 

Then {E" f )  is epi-consistent with limit Ef, and, with probability one, any weak cluster 

point of any sequence of nlinimizers of the E" f is a minimizer of E f 

Proof. The existence of a mea.sura.ble selection u ( [ )  E d f ( 3 ,  () is assured by the first part 

of (3.12), since ( I-+ d f ( E ,  () is an a.s. nonempty, closed-valued measurable multifunc- 

tion. Thus the second pa.rt of coilclition (3.13) only requires that among those measurable 

selections there exist, one tha.t is integra.ble. 

The function E f is l.sc. (assumption (3.13)) and convex (by subadditivity of the 

integral; cf. [19]) a.nd so a.re the functions E "  f (cf. Lemma 3.3). Thus it suffices to show 

J;losco- epi - lim (E" f ) *  = (Ef )*  
"-30 

with probability one, since ( E  f ) * *  = E f ancl ( E V f  ) * *  = E U . f  and hence by Mosco's 

theorem [2], which states that JIosco-epi-convergence of functions implies Mosco-epi- 

convergence of the conjugates, (3.15) ~voulcl imply that the EV f are epi-consistent with 

limit E f .  

From Lemma 3.3 again, we have 

The random closed sets epi f *(., [;) are independent and identically distributed subsets of 

the separable reflesive Banach space S*. We seek to apply Hess's [8; p. 12-34] strong law 

of large numbers for unbounded ra.ndom closed sets, which states that: 

1 
lim - C e p i  f * ( . , ( ; )  = E F * ,  p- a.s. . 

"-00 y 

where E F* is the closed conves hull of the set 

F* = { j ( l l ( < ) ,  a ( [ ) l ~ ( d O  1 ( i l ( 0  a ( [ ) )  is an integrable selection of epi f ( ( )  , 1 



provided only that the distance funct,ion 

< H d(0,epi f * ( . , < ) )  := iilf{Ilx*II, + la1 : ( x * , a )  E epi f * ( . , J ) )  

is integrable. This last proviso is implied by our assumption (3.12), since we have 

the first term is integrable by the second part of (3.12), and by (3.9) we have 

which is integrable by both parts of (3.12). Hence (3.16) is indeed valid. It remains only to 

show that E F *  = epi(Ef)* or, equivalently, that a F *  is the epi-graph of an  l.sc. convex 

function and 

Evidently EF* is a. closed convex subset of -I-* x !R; that it is an epigraph is also clear. 

Hence 5 F* is the epigraph of some l.sc. convex function. In (3. l'i), note that the supre- 

mum is unaffected if we replace E F* by F*, and it is thus equal to 

where + is the a.s. proper rancloin l.sc. conves function 

0 i f ( c c , a ) E e p i f * ( . , ( )  
U'!( t l ,Q,<)  = 

+xi otherwise, 
- 

and C' is the space of P-integrable ftlnctions froin z into X* x IR. Since L1 is decomposable, 

we may exchange supremum and int(egratioi1 in (3.15), cf. [6; VII-141 or [5; 3-A] for example, 

and obtain 

sup{(r*.  r )  - a 1 ( r * ,  a )  E EF*} = sup {(x*, x) - f * ( x * ,  J)}P(d[) .  L x*E,\-* 

The right hand side is evidently equal to Ef(.z:); hence (3.17) is proved. This verifies 

epi-consistency. The final conclusion, concerning cluster points of minimizers, is evident 

from epi-consistency and Proposition 3.1; see also [9]. 

Remark 3.5. Assumption (3.13), of the lower semi-continuity of E f ,  can be proved in 

several ways. Proposition 2.3 gives one possibility. If -Y is finite dimensional and f is 

a random l.sc. convex function, it is shown in [18] that one can get by with a weaker 

condition, namely 

E f ( z )  > -m, Vz E X. 



4. Application to Stochastic Recourse Problems in Finite Dimensions 

In this section, we show how the conditions of the epi-consistency theorem may be satisfied 

in the important class of two-s tage  s tochast ic  l inear  programs w i t h  recourse: 

(4.1) minimize c ' . ~  + Q ( d )  over all x E IRn 

subject to i l x  = b, 

z 2 0, 

where the function Q : IRn x 1 -, is the minimum value in the second s tage l inear  

program 

and where c' denotes the trailspose of c. We regard ( as the random vector consisting of 

the vectors and matrices in the second sta.ge program, i.e. ( = ( q ,  W', T, h). This class of 

problems models decisions that must ta.ke into account future costs Q(x, (), represented 

as linear programs, responding to presently uncertain events ( E E, distributed according 

to P; see, for example, [14], 1151 a.nd [IG]. As in the introduction, we suppose that (4.1) 

cannot be solved as stated, because either P is not known or must be made discrete. 

Instead, one solves the problen~s 

1 
(4.3) minimize cl.r + - 1 Q ( r ,  ti ) over all s E IR" 

1)  

subject to -4,r = h 

where the (; a.re iildepeilderlt ra.ndoin varia.bles with conlmon distribution P .  We shall 

show that the essential objectives of (4.3) are epi-consistent with limit equal to the essen- 

tial objective (4. I ) ,  under a.ssuinptions that are standard in the stochastic programming 

literature. 

A comprehensive study of the properties of Q(x, () appears in the papers of Walkup 

and Wets [17] and [18], and Wets [20] .  Most of what follows is drawn from these papers. 

For convenience, let us denote by IC1 the set of x satisfying the constraints of (4.1), i.e. 

We make here the blanket assumptions that the matrix W is f ixed, i.e. nonrandom, and 

that for every .r E IC1 the secoild stage problem is feasible a.s., i.e., I<1 C h-;! where K2 is 

the w.p.1 feasibility set 

(4.5) I b  = {x E IR" I Q ( s . ( )  < +a with probability one). 



When these two a.ssumptions are satisfied, the problem (4.1) is called a stochastic linear 

progra,m with f ixed,  re lat ive ly  com.plete recourse.  Finally, we shall also assume that the 

random vector ( satisfies the ,weak co.onrl,an,ce cond i t ion:  

(4.6) For all i ,  j, I; the randoin va.riables q,h, and q;Tjk have finite first moments. 

This assumption is obviously satisfied if ( is square integrable. 

Let us now define the essential integrand as follows: 

where Slcl (x) = +a if x is not in Iil and zero otherwise. Clearly, the essential objective 

of the problem (4.1) is E f ,  and that of the estimated problem (4.3) is Eu f .  The essential 

objectives for the estinlated problems are therefore epi-consistent with limit equal to the 

essential objective of the original problem. by Theorem 3.4, if f is a random l.sc. convex 

fnnction that satisfies (3.12-14). 1A;e present the results of our investigations in a single 

theorem ~vi th  a single set of assumptions. S tronger partial results are obviously possible; 

these may be found in the citations. 

T h e o r e m  4.1. Suppose that tlle stocllitstic liileai. pr.ogr.arn (4.1) has fixed, relatively com- 

plete recourse and that the random elenlerlts satisfy the weak covariance condition (4.6). 

If there exists a single point 2 E Iil ~ v i t h  EQ(.?) > -m, then the Eu f are epi-consistent 

with limit Ed, and. ~vith probabilitj- one. all cluster points of' sequences of'rninin~izers to 

the problems (4.3) are 1llinimize1.s of the 01-iginal problem (4.1). 

P roof .  The essential integrand f can be written as the sum of Q and the conves lower 

semi-continuous f ~ ~ n c t i o n  c'.r + hl,-, (.r ). that does not depend on (. Hence, f is random 

l.sc. convex if and only if Q is, and the function Q is random l.sc. by a standard result 

in measurability of n~ul t i f~~nct ions .  e.g. [5; 'R], and Q( . ,  ( )  is conves by [17; 4.31. We 

next show (3.13). The assumptions of fixed recourse and weak covariance imply that E Q  

is either identically -a or finite and Lipschitz on I<,, by [20; 7.61. Our assumption 

of the existence of .T E IC1 with E Q ( s )  > -a implies that the latter is true. Hence 

E Q  is in particular lower semicontinuous, and therefore so is E f .  It remains only to 
- 

prove (3.12) and (3.11). The functions f ( . ,  (), ( E 3,  are continuous on the relative 

interiors of their domains 171, and the assumption of relatively complete recourse implies 
- 

that ri(dom f ( - . ( ) )  = r i I i l  for allnost all ( E =. (cf. Proposition 2.1); hence (3.14) is 

satisfied. To establish (3.12), let tl(() be a selection from 8 f (.?. (). By convex analysis 

[7; 29.1, 30.5) me have C(( )  = y(() 'T + n,  where a equals c' plus a fised element from the 



normal cone to the contraint set Iil at .F, and where y(6) is the solution to the dual of 

(4.2): 

subject to y'W 5 q. 

It follows that y(6) = B-'q', where B is some invertible square submatrix of W'; hence 

and this is integrable by the weak covariance assumption. 
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