{: SCISPACE

formerly Typeset

@ Open access - Journal Article - DOI:10.1007/S00211-004-0571-4
Epi-convergent discretizations of stochastic programs via integration quadratures
— Source link (4

Teemu Pennanen, Matti Koivu

Institutions: Aalto University

Published on: 01 Mar 2005 - Numerische Mathematik (Springer-Verlag)

Topics: Discretization

Related papers:

» Epi-Convergent Discretizations of Multistage Stochastic Programs

« Variance reduction in sample approximations of stochastic programs

« Random number generation and quasi-Monte Carlo methods

« Scenario tree generation for multiperiod financial optimization by optimal discretization

» On Rates of Convergence for Stochastic Optimization Problems Under Non-I.1.D. Sampling

Share thispaper: @ ¥ M ™

View more about this paper here: https:/typeset.io/papers/epi-convergent-discretizations-of-stochastic-programs-via-
1338eakreo


https://typeset.io/
https://www.doi.org/10.1007/S00211-004-0571-4
https://typeset.io/papers/epi-convergent-discretizations-of-stochastic-programs-via-1338eakreo
https://typeset.io/authors/teemu-pennanen-3gncf84s4g
https://typeset.io/authors/matti-koivu-pf2whlxe09
https://typeset.io/institutions/aalto-university-2r0tyngt
https://typeset.io/journals/numerische-mathematik-360901m2
https://typeset.io/topics/discretization-1gip5tg1
https://typeset.io/papers/epi-convergent-discretizations-of-multistage-stochastic-flog0eq6jk
https://typeset.io/papers/variance-reduction-in-sample-approximations-of-stochastic-38729oykzn
https://typeset.io/papers/random-number-generation-and-quasi-monte-carlo-methods-4imnqai33z
https://typeset.io/papers/scenario-tree-generation-for-multiperiod-financial-4gecvfyunl
https://typeset.io/papers/on-rates-of-convergence-for-stochastic-optimization-problems-upilkygn71
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/epi-convergent-discretizations-of-stochastic-programs-via-1338eakreo
https://twitter.com/intent/tweet?text=Epi-convergent%20discretizations%20of%20stochastic%20programs%20via%20integration%20quadratures&url=https://typeset.io/papers/epi-convergent-discretizations-of-stochastic-programs-via-1338eakreo
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/epi-convergent-discretizations-of-stochastic-programs-via-1338eakreo
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/epi-convergent-discretizations-of-stochastic-programs-via-1338eakreo
https://typeset.io/papers/epi-convergent-discretizations-of-stochastic-programs-via-1338eakreo

Epi-convergent discretizations of stochastic programs via
integration quadratures

Teemu Pennanen*and Matti Koivu
Department of Management Science
Helsinki School of Economics
PL 1210,

00101 Helsinki
Finland
[pennanen,koivu] @hkkk.fi

July 25, 2003

Abstract

Modern integration quadratures are designed to produce finitely supported approximations of a
given (probability) measure. This makes them well suited for discretization of stochastic programs.
We give conditions that guarantee the epi-convergence of resulting objectives to the original one. Our
epi-convergence result is closely related to some of the existing ones but it is easier to apply to discretiza-
tions. As examples, we will verify the conditions for discretizations of three different models of portfolio
management and we study the behavior of various discretizations numerically. In our tests, modern
quadratures clearly outperform crude Monte Carlo sampling in discretization of stochastic programs.

1 Introduction

Let X and = be complete separable metric spaces, and ¥ the Borel o-algebra on =. Let P be a probability
measure on (Z,%), and f an extended real-valued function on X x Z, with f(z,-) measurable for every
x € X. Consider the problem

mizng)r(n'ze E” f(x) :z/:f(x,f)P(dﬁ), (SP)

where the integral is interpreted as +oco when f(z,-) ¢ L'(Z,%, P). The decision variable z is not a
function of &, so (SP) represents a static (one-stage) stochastic program. We emphasize that by allowing
f to take on the value 400 we can incorporate constraints into the objective, which makes (SP) a very
general model for static decision making problems under uncertainty.

In solving (SP), one often replaces P by a finitely supported measure of the form

P, = pider,
=1
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where 56;’ denotes the unit mass located at &;. This results in the problem
.. . P, R v v v
minimize  B™ f(a) = 3_p!fa.€), (SP")

which, for moderate values of v, is usually easier to solve than (SP). Several approaches for constructing
the measures P” have been considered in the literature. In general, the aim is to choose P” so that
(SP") is a good approximation of (SP) and that the number v of support points of P is small enough
to allow for numerical solution of (SP”). The simplest and perhaps the most popular choice in stochastic
programming applications is to use empirical measures of the form P = "7 | %55;’, where {€/}/_; is a
random sample from P. It is clear that a random sample can lead to a bad approximation of P, which
in turn, may lead to an equally bad approximation of the optimization problem. Indeed, in practice,
the optimal values and solutions corresponding to empirical measures are often highly dependent on the
sample. There have been attempts to improve the accuracy of crude Monte Carlo sampling by using
ideas from importance sampling technique; see Infanger [19] and Dempster and Thompson [10]. Hgyland
and Wallace [18] proposed to use moment matching where P” is constructed so that it has the first few
moments of the original distribution; see also [17]. In barycentric approximation, one constructs P” so
that, under some convexity properties of the function f(-,-), the optimum value of (SP") provides an
upper/lower bound to that of (SP); see Frauendorfer [14]. Pflug [28] proposed to construct discrete
measures P” so that they are as close as possible to P in the sense of the so called Wasserstein-distance.

This paper studies the use of modern integration quadratures in constructing the discretizations
(SP”). Such quadratures have the attractive feature that they have been designed to give discrete
measures that approximate a given measure as well as possible. Moreover, they are just as easy to use
as the Monte Carlo method and they are fast compared to alternative approaches such as barycentric
approximation, moment matching or the method in [28]. We study the corresponding discretizations
both analytically and numerically.

Since we are dealing with minimization problems, a natural framework for analyzing approximations
is epi-convergence of the objectives; see Attouch [3] or Rockafellar and Wets [31] for introduction to
epi-convergence. Epi-convergence of stochastic programs with respect to perturbations in the probability
measure has been studied, for example, by Birge and Wets [8], Robinson and Wets [30], Dupacova and
Wets [11], Kall, Ruszczyiiski, and Frauendorfer [20], Lucchetti and Wets [26], Artstein and Wets [1, 2],
Zervos [35], and Schultz [32]. In these studies, weak convergence of the approximating measures P” to the
original measure P has been found an important property. In numerical integration, weak convergence
corresponds to consistency which is a minimal requirement for any integration quadrature. We derive
an epi-convergence result which is closely related to the ones in the above references but it is easier to
apply to discretizations. As examples, we verify these conditions in three different models of portfolio
management. Numerical tests on these models clearly favor modern quadratures over crude Monte Carlo.
Indeed, they seem to result in faster convergence of the approximations thus allowing for smaller values
of v and cheaper computations.

The rest of this paper is organized as follows. Section 2 gives a brief review of modern integration
quadratures and their use in generation of weakly convergent probability measures. In Section 3, we
derive an epi-convergence result for E¥ f. Tn Section 4 we combine results from Sections 2 and 3 to
construct epi-convergent discretizations of some particular problems, and we study the stability of the
corresponding optimal values numerically.

2 Constructing weakly convergent probability measures

Based on the importance of weak convergence in studying epi-convergence of stochastic programs, it is
natural to try to choose the measures P, in (SP”) so that they converge weakly to P as v~ oco. Recall
that weak convergence, which will be denoted by P, — P, means that

E™¢p - E"p, (1)



for all bounded and continuous functions ¢; see Billingsley [7]. The literature of numerical integration is
full of methods for generating such sequences.

2.1 Low dimensional spaces: Gaussian quadratures

Gaussian quadratures are usually very efficient in one-dimensional integration [29]. For different choices
of the integration limits @ and b and a weight (density) function w, they yield approximations

b v
[ etmutnan = Y w ), @)

where the quadrature points 7y and weights w; are chosen so that the quadrature has an optimal order
of accuracy: a v point Gaussian quadrature is exact for all polynomials of degree 2v — 1 or less. Given
a, b and w, the values of 7; and w; can be computed numerically. For certain choices of a, b and w, the
computation of the quadrature points and weights is particularly easy.

In the case a = —o0, b = oo, w(n) = exp(—n?), (2) is known as Gauss-Hermite quadrature. A
C-routine for computing the the points 1y and the weights w; of the Gauss-Hermite quadrature can be
found in [29]. Gauss-Hermite quadrature can be used to approximate the expectation under the normal
distribution P as

Efp= [ \é—ﬂf%np(s)d& = [ %67"250(\/572)@7 ~ Z %wi”so(\/im”)

It turns out that w; > 0 and >_,_, \’7; = 1, the latter following from the fact that the quadrature is
exact for constant functions. Thus,

v w?
P,, = Z —16\/5 v
i=1 \/7_1' "

defines a probability measure which satisfies ET* ¢ = ET ¢ for all polynomials ¢ of order 2v — 1 or less.
(In particular, P, matches the first 2 — 1 moments of the normal distribution; compare with [17]).
Weierstrass approximation theorem then implies that the measures P, converge weakly to P as v .~ co.

Gaussian quadratures do not directly extend to higher dimensions. The generation of integration
quadratures of optimal order in arbitrary dimension is an open problem [29]. If a random variable can be
expressed as £ = G({), where G is almost everywhere continuous, and ¢ = ({1, ...,(s) for independent
random variables (; with densities w;, we can approximate the distribution of each (; with a Gaussian
quadrature to get discrete measures Q% and then construct the measure

P, =(Q.,...,Q0G™ Y ®3)

see Theorem 1 below. Such approximations work well in dimensions 1,2 or 3, but in higher dimensions
they suffer from the “curse of dimensionality”: if one approximates each @; with an k-point quadrature,
a 10-dimensional approximation of the above form would have k'° quadrature points. Fortunately, there
are better integration quadratures for high dimensional spaces.

2.2 Higher dimensions: low discrepancy point sets and the method of
inversion

In the scalar case, a usual thing to do is to approximate the uniform distribution on [0, 1] and to transform
each point with the inverse of the distribution function of the desired distribution. This is known as the

method of inversion. The same idea works whenever P = QG ™', where @ is the multivariate uniform
distribution and G is @Q-a.s. continuous, in other words, whenever

§=G(u),



where u is uniformly distributed in the unit cube [0,1]¢, and G : [0,1]? — Z is almost everywhere
continuous. This is based on the following very useful result from Billingsley [7] where U is any metric
space with Borel algebra B.

Theorem 1 (Billingsley) Let G : (U,B) — (E,%) be a measurable function and @ a probability dis-
tribution on (U,B). Then QG '(A) := Q(G™'A) defines a probability measure on (2,%), and if G is
Q-a.s. continuous, then

Q. —»Q = Q.G '-QG "

Given a @Q-a.s. continuous G and a discrete approximation @, = >_7_, pidur of @, Theorem 1 says
that the discrete measures

P, = QuG™" =) pidawy)
i=1

converge weakly to P = QG ™" whenever Q, — Q. Tt is then natural to try to choose discrete approxi-
mations ), which are as close as possible to the uniform distribution @Q. Modern methods of numerical
integration do exactly this; see the books of Niederreiter [27] and Sloan and Joe [33]. Much of this theory
has evolved around the following notion of distance from Q.

Definition 2 The star-discrepancy of a point set {u1,...,u,} C [0,1]% is defined as
D™ (ur,... un) = Sup Q. (C) = QO (4)
where ,
?=3 b
and Cy is the set of rectangles C C [0,1]¢ with 0 € C.

The following is a direct consequence of Corollary 11 in Lucchetti, Salinetti and Wets [25].

Proposition 3 For each v, let {uf,...,u,} be point sets in the unit cube. The measures
@=3 1
v — ot v ul-
converge weakly to the uniform distribution if and only if D*(uy,...,u;,) — 0.

Thus, if we can find point sets whose star-discrepancy approaches zero as v ./ 0o, we obtain weakly
convergent discrete approximations of the uniform distribution. If P = QG ™!, we can then use the
method of inversion to get weakly convergent discretizations of P. In the literature of numerical inte-
gration, many methods have been proposed that are aimed at producing point sets that have as small
star-discrepancy as possible. It is thus natural to employ them in the construction of discrete measures
P and the corresponding approximations (SP"). This is what the present paper is about.

This approach to discretization of stochastic programs is close in spirit to the method proposed in
Pflug [28], where the aim is to find discrete measures P” that are as close as possible to P in the sense of
the so called Wasserstein-distance. In general, the problem of finding a discrete measure that minimizes
a distance from a given measure can be very hard. Fortunately, in the case of star-discrepancy, many
efficient methods are already available.

Example 4 (low discrepancy sequences) Low discrepancy sequences are infinite sequences whose
first v points have low discrepancy for all v. Examples are

1. Faure sequence [12]. A FORTRAN 77-routine for Faure sequence has been implemented by Foz as
ACM Algorithm 647 [13].

2. Sobol sequence [84]. A C-routine for Sobol sequence is available in GSL (Gnu Scientific Library,
www.gnu.org/software/gsl/gsl.html).



3. Niederreiter sequence [9]. This is also available in GSL.
These satisfy
. (log )"
D*(uy,...,u) < C——— Wy, (5)

v
for a constant C independent of v. These examples fall in the general class of (t,s)-sequences; see [27,
Chapter 4]. Figure 1 displays the first 15 and 127 points for Faure and Sobol sequences in the 2-

dimensional unit cube.
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Figure 1: Discretizations of the uniform distribution by 15 and 127 points

In direct numerical integration, infinite low discrepancy sequences are useful in that after evaluating a
v-point quadrature, one can continue to compute the next (v + 1)-point quadrature simply by evaluating
the function at one new point. In stochastic programming this advantage is lost since, in general, the
solution x and thus the integrand f(z,-) changes every time a new point (scenario) is added to the
problem. This raises the question whether it is possible to obtain more accurate quadratures if it is not
required that v points of a (v + 1)-point quadrature are the points of the v-point quadrature. This is
indeed possible.

Example 5 (low discrepancy point sets) A set of points {u1,...,u,} in the unit cube is called a
low discrepancy point set if it has low discrepancy. Ezamples are

1. Hammersley point sets [16]. Hammersley point sets can be obtained quite easily from the Halton
sequence [15] that has been implemented in [15].

2. (t,m,s)-nets are a general class of low discrepancy point sets that are described in detail in [27,
Chapter 4].

These satisfy i
D*(ul,...,uy)SCM, (6)

v



for a constant C independent of v. Figure 1 displays 15 and 127 Hammersley points in a 2-dimensional
unit cube.

There is another class of quadratures designed to take advantage of additional regularity properties
of integrands.

Example 6 (lattice rules) Lattice rules are a general family of methods for generating point sets with
low discrepancy; see for example [27, Chapter 5], [38] and L’Ecuyer and Lemieux [24]. For each d and v
there exist lattice rules that give point sets satisfying (5); see [27, page 115]. This is not as good as (6),
but for certain classes of functions much tighter error bounds can be derived.

Figure 1 displays lattices of 15 and 127 points produced by the so called Korobov lattice rule [23].
Parameters required by the method were provided by Pierre L’Ecuyer and Christiane Lemieux (personal
communication,).

It can be shown that if Q, = Y 7| +8,v, then

i=1 v
E9 p—E9| < V(e)D*(uf,..., uy),

where V() is the variation of ¢ in the sense of Hardy and Krause; see [27, Section 2.2]. In direct
integration, the above methods thus achieve the asymptotic convergence rate of v~!, whereas for pure
Monte Carlo methods the rate is v~ %; more precisely, in Monte Carlo integration, the standard deviation
of the integration error is a(ap)u_%, where o(p) is the standard deviation of . It should be noticed,
however, that in Monte Carlo, the error bound is independent of the dimension of the space, whereas
the bounds in the above examples may depend on the dimension so that the actual error bound achieved
in practice is much greater than o(¢)r~ 2. In numerical tests, however, low discrepancy point sets and
sequences are often much more efficient than pure Monte Carlo; see for example [33]. In the tests of
Section 4, one can see a similar effect in discretizations of stochastic programs.

3 Epi-convergence of the objectives

Given efficient procedures for constructing finitely supported measures P, that converge weakly to P,
our next step is to find conditions that guarantee the epi-convergence of E™* f to ET f. Recall that the
lower epi-limit of a sequence {F"} of functions is the Isc function given by

(e-liminf F*)(z) = inf liminf F*(z,)

Ty —T V—0o0

and the upper epi-limit is the lsc function given by

(e-limsup F”)(z) = inf limsup F"(z,).
Ty =Ty o0
Ife-liminf F” = e-lim sup F"”, then the common limit, denoted e-lim F"”, is called the epi-limit of { F”} and
the sequence is said to epi-converge to it. Epi-convergence has many important implications in studying
approximations of minimization problems. The following is one of them; see Attouch [3, Section 2.2].

Theorem 7 Ife-lim F¥ = F, then
limsup inf F¥ < inf F,
vV — 00
and if there is a convergent sequence x — = such that x) € argmin F* for some subsequence {vi}ie,
then x© € argmin F' and inf F** — inf F'. In particular, if there is a compact set C' such that argmin F” N
C # 0 for all v, then inf F¥ — inf F.



Our proof of epi-convergence for (SP”) is based on ideas from Artstein and Wets [2], where {P, }7%,
was a sequence of empirical measures, and the main tools were the strong law of large numbers and
an approximation algorithm due to Beer [4]. In our case, {P,}52; is a weakly convergent non-random
sequence, and our main tools are the algorithm of Beer and Theorem 8 below. Recall that a sequence of

functions {p, }52, converges continuously to a function ¢o at £ € = if

o (€v) = #o(8),
whenever £, — £. The following is based on [1, Remark 4.3] and [32, pp. 67-68].
Theorem 8 If P, — Py, ¢, — @o continuously at Po-almost every £ € =, and if for each € > 0 there
exists a measurable set K. C E and a bound be € R, such that for each v =10,1,2,...
1. |pu(&)| < be for P,-almost every € € K.,
2 Jue, I (©IP.(d8) < ¢,

then
lim Ep”gp,, = Epocpg.

v—00

Proof. Choose an € > 0 and let b € R and K. C E be the bound and the measurable set, respectively,
provided by the last condition. For each v, let ¢; be the bounded function whose value at a point £ is
the projection of ¢, (£) to the interval [—be,be]. Then o5 | < |pu|, @5 (€) = pu(§) for P,-almost every
¢ € K., and ¢;, = ¢§ continuously Pp-a.s. We have

|E™ ¢, — E™po| <|E™ @, — E™ )| + |[E™ ¢}, — P g5| + |[E™ g5 — E™ o),

where the second term on the right converges to zero by [6, Theorem 5.5], and for v =0,1,.. .,

B g, — B 4| =

/: IOREACIEAES

<2 / e @R () <2c

Since € > 0 was arbitrary, the result follows. (|

In particular, if ¢ is Pp-a.s. continuous and bounded, then
E o — EPoo.

Note that this is also implied directly by Theorem 1.
Recall that the domain of an extended real-valued function g is the set dom g = {z | g(z) < 00}, and
its lower closure is the function

x

(clg)(z) = lim inf 9(y)-

A function is called lower semicontinuous (Isc) if it is equal to its lower closure. We can now state our
epi-convergence result for ETv f.

Theorem 9 Let P, — Py. If for each x € X,
1. there is an open set N > x such that f is bounded from below on N X Z,
2. (A f)(z,7) = f(z,") Po-aus.,

then
eliminf E™ §f > ET f.

If for each € dom E° f,
3. there is a sequence T, — x such that P, and p, := f(zv,-) satisfy the conditions of Theorem 8,

then
ellimsup B f < ETf.



Proof. To verify the first claim, fix an z € X and let z, — z. According to [4] (see also the proof of
[6, Theorem 7.14]), the first condition implies that there exists a sequence {fi} of bounded from below
Lipschitz functions on N x Z such that fi .~ cl f. The functions g, = min{fy, k} are also Lipschitz with
gr / cl f but, in addition, they are bounded. Then

E™ f(x,) > E™ gi(x,) > E™ gi(x) — Lid(x,,x) Vv, k
where Ly, is the Lipschitz constant of g and d is the metric on X. Since P, — P, we get

liminf E® f(z,) > liminf E™ g (z) = E™ gy (z) Vk,
v—00 v—00

where EF0g;,(z) #E™ (cl f)(z) as k.” 0o by the monotone convergence theorem. Since by the second
condition, E°(cl f)(x) = E° f(z), and since z € X and x, — & were arbitrary, the claim follows.

For the second claim, it suffices to consider points 2 € dom E™° f. The result then follows from the
third condition and Theorem 8. O

Note that choosing P, = P, for all v, the first claim shows that under conditions 1 and 2 E™ f is Isc.

Theorem 9 is close to the epi-convergence results in [26, 1, 35], but it has some advantages. The results
of [35] concerned real-valued functions which do not allow modeling constraints as infinite penalties. In
[26, 1], the tightness-like conditions are much stronger than condition 3 above. In particular, condition 3
only asks for a measurable set K. instead of a compact one, and instead of all sequences z, — z, it only
involves one sequence for each € dom E™0 f. This is important since it is the tightness-like conditions
that are usually hard to check for discretizations in practice. Also, requiring condition 3 to hold at all
z € X would imply dom EF°f = X. In a sense, we have traded the stronger tightness-like conditions for
conditions 1 and 2, which are often much easier to check; see Section 4. The lower-boundedness property
in condition 1 holds in many applications arising in practice. Condition 2 holds in particular if f is Isc,
which was assumed in [5, Section 8.3] and [26]. According to the remark after Theorem 7, we thus have
the following simplified version, which is often sufficient in applications.

Corollary 10 Let P, — Py and assume that f is Isc. If
1. for each x € X, there is an open set N O x such that f is bounded from below on N x E,
2. for each x € dom E™° f, f(z,-) is Po-a.s. continuous and bounded,

then the functions ET¥ f both pointwise and epi-converge to ET f.

4 Numerical tests

4.1 Markowitz model

We start the testing with a model which can be solved exactly. Of course, discretization is unnecessary
in such cases but here we get to compare the approximate solutions with the exact one. We will study
the following mean-variance model

minimize E™(r-z—r7-x)° (MP)
rER™

subject to T-x > w,

ze€C,

where r = (z1,...,T,) is a portfolio of assets, r = (r1,...,ry,) is the vector of returns (that is, r; is the
ratio of the final and initial price of asset i), r - = 377_, riz; is the terminal wealth, w is the required
level of expected wealth and C' is the set of feasible portfolios. The components of the return vector r



are random variables with joint distribution Py and expectation 7. As is well-known, the expectation in
(M P) can be computed explicitly as

EP( -z —7-a)’ =EP[(r—7) -2’ =EPz-(r —#)r—7)"z] =z Va,

where V' = EP0[(r — 7)(r — 7)7] is the covariance matrix of r. If V and 7 are known, (M P) can then be
solved without discretization with standard solvers yielding the optimal value and optimal solution.

To test the performance of integration quadratures in discretization, we will approximate problem
(M P) by the discretizations

minimize Zp:' Yz —7-xz)’ (MPY)

zER™

subject to T-x > w,

reC.

Under mild conditions, convergence of optimal values and solutions can be guaranteed. Recall that
the support, supp P, of a measure P is the intersection of all closed sets of full measure. For a Borel
probability measure supp P is well defined and unique with P(supp P) = 1.

Proposition 11 Assume that supp Py is bounded, C is closed, and that the measures

P, = Zu:p:(sT:'
i=1

converge weakly to Py and satisfy supp P, C supp Py. If the feasible set is bounded, then the optimal values
of (MP") converge to that of (MP) and the cluster points of the solutions of (M P") are solutions of
(MP).

Proof. This fits the format of (SP) with £ = r and
fl,r)=(r-z _F'x)Q +dcr (),

where C' = {:c eC | Ferx>w, Y m < 1}. So by Theorem 7, it suffices to verify the conditions of
Corollary 10. Lower semicontinuity and condition 1 are clear. Since supp P, C supp Py, we can assume
that = = supp Py, and then condition 2 holds by boundedness of supp Po. g

In our test, the number of assets n = 10 and
i 1
r=7+12L(u — 56)’

where u is uniformly distributed in the 10-dimensional unit cube, L is a 10 x 10 matrix and e is a vector
of ones. Then supp Py is bounded, r has mean 7 and variance V = LLT. We can then solve (MP)
exactly by standard QP-solvers and the discretizations (M P") are easily generated by the integration
quadratures described in Section 2.2. Note that the objective of (M P”) can be written as z - V" z, where
VY =E™[(r—7)(r—7)"] =30 pl(r! —F)(r! —7)", so (MP") can also be solved with a QP-solver.
We chose C' = R’} , which means that “short selling” is prohibited.

With our choices of 7 and V, the optimal value in the original problem (M P) turned out to be
1.9221. Figure 2(a) shows the development of the optimal value of (M P") as a function of the number
of quadrature points v = 100, 200, ...,10000 for five quadratures. In our implementation, the number
of points in the lattice rule is restricted to powers of 2. Each quadrature produces discretizations whose
optimal value seems to converge toward the exact value 1.9221. The objective values corresponding to
Halton sequence seem to behave most stably whereas Niederreiter exhibits largest variations.
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Figure 2: Optimal values of (M P") as a function of v.

For comparison, we discretized the problem also with Monte Carlo sampling. Almost sure epi-convergence
of such discretizations have been established under quite general conditions in [2]. These conditions are
strictly weaker than those in Theorem 9, which guarantees sure (not just almost sure) epi-convergence.
For each v = 100, 200, ...,10000, we generated 250 discretizations and computed the average and the
90% confidence interval of the corresponding optimal values. The results are displayed in Figure 2(b).
The optimal values obtained with Sobol sequence are repeated for reference. The average of the Monte
Carlo values seems to converge towards the correct value but the convergence of the confidence interval
seems slow.

Figure 3(a) displays the logarithmic error in the optimal value for Sobol discretizations as a function
of Inv. Figure 3(b) does the same for Monte Carlo. Interestingly, in both cases, there seems to be an
upper bound on the log-error which is linear in Inv. For Sobol, the slope is roughly -1 whereas for MC
it seems to be close to -1/2. This kind of quantitative behavior, which may have to do with the strong
convexity of the objective, is not explained by the results of Section 3. An explanation would require a
quantitative stability analysis with respect to the measures, but that is beyond the scope of this paper.

4.2 Utility maximization

The objective in the Marowitz model penalizes for exceeding the expected wealth 7 - . When the
distribution of 7 is symmetric, this does not matter, but in practice, the distribution of r is usually
nonsymmetric since 7 > 0. The following utility maximization problem still makes sense

mameimize E™u (r - z) (UP)

subject to Zml < wo,
i=1
reC.

Here z, r and C are as in the previous example and u measures the utility from terminal wealth. The
components of the return vector r are nonnegative random variables with joint distribution Pj.
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In general, (UP) cannot be solved analytically, so we will consider the discretizations
v
mafgﬂgize pru(r;’ - ) (UP")

i=1

n
subject to le < wo,
i=1

zeC.

Proposition 12 Assume supp Py C RY, u is continuous and bounded on Ry, C is closed and contained
in R} (short selling is not allowed) and that the measures

P, = Zu:p:(sﬂ"
i=1

converge weakly to Py and satisfy supp P, C R}. Then the optimal values of (UP") converge to that of
(UP) and the cluster points of the solutions of (UP") are solutions of (UP).

Proof. This fits the format of (SP) with =R}, { =r, and

f(l',?") = —u(r : m) + d¢r (1")7

where C' = {m eC | > x < wo } So by Theorem 7, it suffices to verify the conditions of Corollary 10.
Since u is continuous and C' is closed, f is Isc. Condition 1 follows from the boundedness of u on R4,
and the fact that r -z € Ry for all r > 0 and z € C C R;. Condition 2 follows from the boundedness
and continuity of v on Ry . |

Note that many familiar utility functions, like the exponential utility, are bounded on Ry. More gen-
eral utility functions are easily modified to be bounded on Ry in a way that does not affect computations
in practice.

In our test, the number of assets n = 10, r is log-normally distributed, u(w) = —exp(—w) and
C =R}. Figure 4(a) shows the development of the optimal value of (UP") as a function of the number
of quadrature points v = 100, 110, ..., 2500 for six quadratures. Again, the quadratures seem to converge
to a common value, but this time, Halton and Hammersley result in largest oscillations of the optimal
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values whereas Niederreiter seems to work best. Note, however, that in this problem, we do not know
the exact solution of (UP). Figure 4(b) depicts the development of the average and the 90% confidence
interval for the optimal values obtained with 250 Monte Carlo samples for each value of v. The values
obtained with Sobol are shown for reference. The average seems to converge to the same value as the
optimal values obtained by the quadratures but the confidence interval narrows down very slowly.

-361.5 . 357 ‘
Sobol i 'Sobol
Niederreiter --------- i MC average
-362 Halton - -358 H (Y o — i
Hammersley v MC 95% -~
Faure ------
-362.5 Lattice @ 4 -359 <
-363
-363.5 fij
-364 i 1
-364.5 4
-365 | i
-365.5

' ' 1
1000 1500 2000

'
500

' ' ' 1
500 1000 1500 2000 2500

(a) Quasi monte carlo methods.

Figure 4: Optimal values of (UP") as a function of v.

4.3 Super-replication of contingent claims

Consider the problem

min‘%m'ze V (PP)
subject to Sp-0 <V,
S-0>F, Poa.s.
0ecC,
where V is the wealth invested in a portfolio @ = (1,...,6s) of assets that have prices Sp = (S3,...,S7)

at the beginning and S = (S',...,57) at the end of a holding period and F is a cash-flow at the end of
the holding period. S and F' are random variables with joint distribution Py. (PP) can be interpreted as
a pricing problem of a seller of the cash-flow F; see for example King [21] and Korf [22, Section 7]. The
seller tries to find the least amount of initial wealth that can be used to buy a portfolio that is almost
surely worth at least F at the end of the holding period. The optimum value of (PP) is called the seller’s
price of F' and the corresponding portfolio # is called a seller’s hedge.

(PP) is a semi-infinite linear programming problem and, in general, impossible to solve analytically.
Replacing Py by a discrete measure P, = .7, PW(S:,F:) with p; > 0, for all i = 1,...v gives the
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problem
min‘%m'ze v (PP”)
subject to Sp-0 <V,

SY.9>F', i=1,...,v,
pec,

which is an LP problem for which many solvers are available.

Proposition 13 Assume that the points {(S}, F{)}i—1 are all contained in supp Po and that for some
P!}, v=0,1,2,..., withp; >0, for alli=1,...v, the measures

P, = prfs(s;,pl?)
=1

converge weakly to Po. If the feasible set is bounded, then the optimal values to (PP") converge to the
seller’s price of F' and the cluster points of the solutions of (PP") are seller’s hedges for F'.

Proof. This fits the format of (SP) with z = (V,0), £ = (S, F) and
f(Vveast) = V+5O(9) +600(‘/$9) +601(9’37F)7

where
Co={(V,0) | So-0 <V}

and
C,={6,S,F)|S-6>F}.

Since Cop and C; are closed, f is Isc. It is also clear that condition 1 of Corollary 10 holds. To verify
condition 2, note first that for each (V,0) € dom EF°f, £(V,9,-) is the constant function V on the set

Ci(6) = {(S,F)| S -0 > F}

which is of full measure. Since C1(9) is closed, we must have supp Po C C1(6) for every (V,0) € dom ET f.
Thus, condition 2 holds if we let = = supp Py, which is legitimate since supp P, C supp Po. a

In our test, the set of assets consists of cash, SP500 index and 28 European call and put options on
the index with maturity of 17 calendar days. The cash-flow F' is taken to be that of a call option with the
same maturity but different strike than any other call included in S. In this case, the value of S is fully
determined by the value of the index at the maturity which is assumed to be log-normally distributed.

Figure 5(a) displays the objective values obtained with Sobol along with the averages and 90%
confidence intervals obtained with Monte Carlo from 250 samples for each value of v = 100, 110, . . ., 2500.

Our random variable being one-dimensional in the current problem suggests using Gaussian quadra-
tures. The use of Gauss-Hermite quadrature for discretizing the normal distribution has been already
described in Subsection 2.1. We will also utilize Gauss-Legendre quadrature that gives convergent dis-
cretizations of the one-dimensional uniform distribution on [0, 1]. From this we obtain discretizations of
the normal distribution by mapping each point through the inverse of the normal distribution function.
The results are shown in Figure 5(b). With v = 60, the optimal values obtained with Gauss-Legendre
quadrature have converged to the same value as the optimal values obtained with Sobol after 2500 points.
Gauss-Hermite is almost as good but it results in slight oscillations.
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Figure 5: Optimal values of (PP") as a function of v.
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