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EPIBLASTER-fast exhaustive two-locus epistasis
detection strategy using graphical processing units

Tony Kam-Thong1, Darina Czamara1, Koji Tsuda2,3,4, Karsten Borgwardt5, Cathryn M Lewis6,7,
Angelika Erhardt-Lehmann1, Bernhard Hemmer8, Peter Rieckmann9, Markus Daake1, Frank Weber1,
Christiane Wolf1, Andreas Ziegler10, Benno Pütz1, Florian Holsboer1, Bernhard Schölkopf2 and
Bertram Müller-Myhsok*,1

Detection of epistatic interaction between loci has been postulated to provide a more in-depth understanding of the complex

biological and biochemical pathways underlying human diseases. Studying the interaction between two loci is the natural

progression following traditional and well-established single locus analysis. However, the added costs and time duration required

for the computation involved have thus far deterred researchers from pursuing a genome-wide analysis of epistasis. In this paper,

we propose a method allowing such analysis to be conducted very rapidly. The method, dubbed EPIBLASTER, is applicable to

case–control studies and consists of a two-step process in which the difference in Pearson’s correlation coefficients is computed

between controls and cases across all possible SNP pairs as an indication of significant interaction warranting further analysis.

For the subset of interactions deemed potentially significant, a second-stage analysis is performed using the likelihood ratio test

from the logistic regression to obtain the P-value for the estimated coefficients of the individual effects and the interaction term.

The algorithm is implemented using the parallel computational capability of commercially available graphical processing units

to greatly reduce the computation time involved. In the current setup and example data sets (211 cases, 222 controls, 299468

SNPs; and 601 cases, 825 controls, 291095 SNPs), this coefficient evaluation stage can be completed in roughly 1 day. Our

method allows for exhaustive and rapid detection of significant SNP pair interactions without imposing significant marginal

effects of the single loci involved in the pair.
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INTRODUCTION

Understanding the effects of genes on phenotypes and diseases
has long been suggested to embed a complex form of interaction
as a result of inter-inhibitory and -excitatory effects, with any
attempt to explain these effects simply as additive effects of the
individual genes being an overly simplistic model that ulti-
mately provides an incorrect view of the genetic influence on the
phenotype.
The study of interactions between polymorphic loci can stem from

both a biological and statistical genetics perspective. The first
approach establishes a model based on a priori knowledge of how
the genes function and interact. The latter, being a ‘biological blind’
approach, helps to draw inferences from previously unknown inter-
dependencies between genes. The ultimate objective, similar to all
black-box studies, is to merge the conclusions drawn from both
approaches; however, as the observations made cannot be measured
at a level more finite than the eventual system output, the former

approach is more likely to be refined by first having a solid statistical
finding as its basis.
As our effort primarily focuses on drawing statistical inference on

epistatic actions/interactions between genes, a new method is pro-
posed to help improve our capability to search and sift out significant
interactions. This paper will discuss the performance of our method in
its current implementation. The results applied to a simulated subset
of SNPs and to two real genome-wide data sets recorded from panic
disorder and multiple sclerosis studies will be presented, followed by a
discussion of some properties of the approach.

MATERIALS AND METHODS

Overview of the two-stage search strategy
The strategy consists of a two-stage approach. First, a filtering stage using the

difference of Pearson’s correlation coefficients that performs an exhaustive

two-locus interaction multiplicative effects1 search across all possible pairwise

SNP combinations is performed. This is followed by logistic regression analysis

on those subset of pairs deemed significant in the previous stage.
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*Correspondence: Professor B Müller-Myhsok, Statistical Genetics Group, Max-Planck-Institute of Psychiatry, Kraepelinstrasse 2, Munich D-80804, Germany.
Tel: +49 89 30622 246; Fax: +49 89 30622 642; E-mail: bmm@mpipsykl.mpg.de

European Journal of Human Genetics (2011) 19, 465–471
& 2011 Macmillan Publishers Limited All rights reserved 1018-4813/11

www.nature.com/ejhg

http://dx.doi.org/10.1038/ejhg.2010.196
mailto:bmm@mpipsykl.mpg.de
http://www.nature.com/ejhg


Data representation
Each SNP is represented as integer values ranging from 0 to 2 based on the

count of a chosen reference nucleotide of the selected SNP for an allele dosage

model, or as 0 or 1 depending on the genotype for a dominance or recessivity

coding. In the current study, the allele dosage model is applied. An overall

matrix is generated to store the information of all SNPs as column vectors and

the recorded values for individual subjects along the rows. Column vectors are

then analyzed in pairs and the correlation coefficients are tabulated for cases

and controls separately. Correlation coefficients are calculated from a 3�3

ordered genotype matrix, the genotypes being encoded 0, 1, 2. The difference

between the correlation coefficients in cases and controls is then computed and

used as an indication of the SNP pair contributing significantly to the

classification between cases and controls (equation (1)).

Correlation coefficients (Pearson’s) difference between case-only and

control-only for each SNP–SNP pair. Note that no assumptions, such as

HWE to hold, are needed here.

Difference of correlation coefficients¼D

¼
X
i2cases

ðSNP1i � SNP1iÞ ðSNP2i � SNP2iÞ
ðni � 1ÞsSNP1isSNP2i

( )

�
X

j2controls

ðSNP1j � SNP1jÞ ðSNP2j � SNP2jÞ
ðnj � 1ÞsSNP1jsSNP2j

( )
ð1Þ

The variance of each of these correlation coefficients is, as shown by Wellek

and Ziegler,2 equal to 1/(n�1), where n is the respective number of cases and

controls. As the cases and controls obviously constitute, independent samples,

the total variance Vtot is then the sum of the two single variances. As a

consequence, and from both Gretton et al3 and Wellek and Ziegler,2 we can

conclude that T¼DVtot
1/2 B N(0, 1).

The first stage of analyzing the difference of correlations approach searches

for significant interaction terms. The second stage then computes the fit using a

full rank logistic model (equation (2)), including the intercept and additive

marginal effects, on the subset of loci pairing deemed significant from the first

stage, from which a statistical test can be conducted to test for the coefficient of

interaction term being significantly different from zero.

Full rank logistic regression model:

Phenotype ¼ Intercept+aSNP1+bSNP2+gðSNP1�SNP2Þ ð2Þ

Hardware and software setup
The hardware used in the experimental setup consists of two pairs of

commercially available NVIDIA GTX295 GPUs (Santa Clara, CA, USA)

running on an Intel Core i7 920 with 2.67GHz (Santa Clara, CA, USA)

central processing unit host (CPU) using 12GB of DDR3 RAM (Corsair Inc.,

Fremont, CA, USA). The software program is implemented in R (version 2.9.2;

R Development Core Team4) with the ‘gputools’ package beta version

0.1-4 (Buckner et al5) installed (http://cran.r-project.org/web/packages/gputools),

in which the function ‘gpuCor’ permits correlation coefficients to be tabulated for

all possible pairwise interactions across the column vectors using the Compute

Unified Device Architecture (CUDA)-enabled NVIDIA graphic cards. The

graphical card uses its parallel computational capability to process independent

evaluations faster than conventional CPU-based computation. As the correlation

coefficients between each SNP pair can be tabulated independently, this can take

full advantage of the inherent parallel computation performed on graphical cards.

The overall time performance depends on the sample size and desired marker

coverage. A total evaluation of (number of SNPs choose 2) interactions is

typically accomplished within 24h for the entire data set (2000 individuals

consisting of 1000 cases, 1000 controls with 500000 SNPs) with the available

GPU resources and the given results retention criteria. Limitations on speed can

originate from local main memory storage, memory transfer speed and number

of on-board GPU cores present. Some data partitioning to take advantage of all

current GPU resource are thus required to render this method most efficient. The

data set for the study is first partitioned into blocks containing 2000 SNPs each,

which can be handled by the memory on the graphic card. Hence, for a genome-

wide data set of 500K SNPs, 250 partitions are required.

The process goes through the entire data set and calculates the correlation

coefficients in blocks of 2000 SNPs. The very first correlation analysis

performed is on the first partition to itself, a ‘partition-based autocorrelation’,

resulting in 1 999 000 unique correlations. The process then increases the

partition index of the second partition by one and completes a correlation

between two distinct sets of 2000 SNPs, a ‘partition-based cross-correlation’,

to yield 4 million unique results. This process of increasing the nested loop

index is repeated until it reaches the last partition set, at which point the

top-level loop index gets increased by one. The process can be summarized in

the following steps:

(1) Partition the data set into a size of 2000 SNPs. Note that this number may

increase or decrease depending on the number of individuals studied.

(2) Set up a two-level nested loop to apply the partition-based correlation

for all possible SNP pairs for cases and controls separately.

(3) Compute the difference of correlation coefficients between cases and

controls after each partition-based autocorrelation or cross-correlation is

complete.

(4) Compute the P-values of each difference given that the distribution of the

differences follows a Gaussian distribution (refer to the Results section).

(5) Retain only SNP pairs that show a P-value below a selected threshold.

(6) Repeat steps 3–5 across all partition pairs.

(7) Proceed to stage 2 by performing a logistic regression on the selected

pairs.

RESULTS

Simulated data
A simulated data set is generated consisting of 2000 SNPs and a
subject size of 5000 controls and 5000 cases. This simulated data set is
created without any specific model allowing for any a priori knowledge
of which particular pair will be significant. The purpose is to
demonstrate validity in the approximation of the resulting logistic
regression interaction term P-value to the approximation based on the
difference in correlation coefficients. The distribution of the differ-
ences of correlation coefficients is noted to exhibit a Gaussian
distribution within each partition set, referring to the histogram
plot in Figure 1. This observation has been examined in greater detail
by Gretton et al,3 stating that when samples are indeed drawn from
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Figure 1 Histogram of differences of correlation coefficients of all two-way

interactions of 2000 SNPs exhibiting the expected Gaussian distribution

shape.
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two different distributions the distribution of the discrepancy of the
chosen function, difference of estimated mean correlation coefficients
in this study, will converge to a Gaussian distribution. An additional
proof for the difference of correlation coefficients to exhibit a Gaussian
distribution can be found in Wellek and Ziegler,2 who have also shown
that the variance of any single difference under the null hypothesis and
thus also of the distribution of the sum of all differences is the sum of
the reciprocals of the number of cases and controls. For this Gaussian-
ism, equal numbers of cases and controls are not needed.
In practice, to test for the significance of each pair, a Z-score is

tabulated for each difference within the partition set. This Z-score is
computed on the basis of the mean and standard deviation of all the
differences noted within the partition set, which is a close approxima-
tion to the overall mean and standard deviation, given that the
partition size is chosen to be large enough, typically resulting in a
few million pairs for each partition set. Those interactions exhibiting a
high overall Z-score are then taken as an indication that the effect of
the interaction term of the two SNPs in question is deemed valuable
enough to be passed on to the second stage. This filtered subset is then
subjected to a second level of mathematical-intensive evaluation using
the likelihood ratio test on the logistic regression model.
Referring to Figure 2, the P-values of the interaction product term

in a general linear fit are plotted against their correlation coefficient
differences between cases and controls. To help delineate any loga-
rithmic trend, the P-values are shown as negative logarithmic values.
As shown in Figure 2, there is a strong relationship between the two
variables, of a parabolic function in the region centered around the
origin to a linear relationship in the region of higher values. The
region that is of most interest to the study is the higher numerical
value region, as the P-values are the smallest and the differences are
the largest. As the differences closely follow a Gaussian distribution
(Figure 1), a Z-score threshold can be used to estimate the retention
rate. The statistic is then estimated using the fact that the Z-score
would follow a standard T-distribution with a sufficiently large

number of degrees of freedom. A plot comparing the P-values
obtained between the approximation and the validation step is
illustrated in Figure 3 and demonstrates a high R2 value of 99.9%.
To help address the issues of limited physical disk space and

of retaining only those interactions that show strong significance, a
Z-score of 4.5 was chosen as the cutoff threshold, which corresponds
to a probability of 6.8�10�6 retention rate. Thus, for the partition-
based autocorrelation generating B2 million (2000 choose 2) correla-
tion coefficient differences, only the top 14 interaction pairs are
expected to be retained. Overall, we expect the top B8.5�106 pairs
out of a possibleB1.25�1011 retained from the first stage in a marker
coverage of 500K SNPs.

Real data
Real genetic data have been recruited from two separate published studies.
The first data set originated from a panic disorder study6 with a total of
299468 SNPs, where 211 cases and 222 controls have been retained after
standard quality control measures. Computing the difference of correla-
tion coefficients across all pairs and choosing a P-value threshold of
1.0�10�5 resulted in a retention of 373153 SNP pairs. Similarly, a second
larger data set from a multiple sclerosis7 study with a total of 291095
SNPs in 601 cases and 825 controls is also being investigated. Using the
same P-value threshold of 1.0�10�5, the 407660 most significant SNP
pairs are retained upon subjecting it to the first stage.
In view of verifying that indeed no significant pairs have been left

out in the adopted difference-of-correlation-coefficients stage of our
method, a comparison to the P-values of the interaction term in a
normal linear regression of all possible SNP pairs must be made. To
perform this brute-force approach in a time efficient manner, we have
used a newly released software tool, FastEpistasis (http://www.vital-it.
ch/software/FastEpistasis),8 which is an extension of the PLINK
epistasis module capable of distributing the work in parallel on
multiple CPU cores. It is important to point out that this method is
not working on the difference of odds ratio as conducted by the Plink

−0.10 −0.05 0.00 0.05 0.10

0

1

2

3

4

5

6

7

Simulation Data
Logistic Regression p−values vs. Correlation

Coefficients Difference

ΔR

−l
og

10
(p

va
lu

es
Lo

gi
st

ic
)

Figure 2 Logarithmic P-values from the interaction term of logistic

regression versus correlation coefficient differences of all two-way

interactions from 2000 SNPs.
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Figure 3 Logarithmic P-values from the interaction term of the logistic

regression model versus correlation coefficient differences P-values from

2000 SNPs (2000C2¼1999000 SNP–SNP pairs). Quality of fit (R2)

between the P-values is 99.9%.
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option bearing the same name. The program is meant to be executed
on quantitative phenotypes, but the difference in P-values, which are
the relevant measure for this comparison, has been noted to be
negligible on several sample SNP pairs (see also Table 1, comparing
the FastEpistasis column with the logistic regression interaction term
P-value column, and also simulation studies (Supplementary Figure
1)). The P-values computed from FastEpistasis is regarded to be the
‘true’ value used for comparison with the approximated method
described in stage 1 of EPIBLASTER.
The results from SNP pairs with P-values below 1�10�6 tested

against null from FastEpistasis are matched with the results obtained
from the first stage of EPIBLASTER. From the panic disorder analysis,
FastEpistasis produced 37336 SNP pairs, of which 36056 are also
found in the EPIBLASTER stage 1 retained subset (96.5%). The
unmatched pairs are indeed examples in which EPIBLASTER
stage 1 underestimates the P-values and the hard threshold prevents
it from being included. Thus, these unmatched pairs are all in fact
situated around the P-values threshold region and are of lesser
significance compared with the others. The plot of the matching
pairs is shown in Figure 4, and for ease of visualization, it is illustrated
as a smoothed color density of the actual scattered points plot. The top
10 most significant pairs from the FastEpistasis approach are listed
with greater details in Table 1, along with their annotations in Table 2,
and are marked with a dark circle in Figure 4. For EPIBLASTER stage
1 to capture all top 10 pairs of the ‘true’ approach (FastEpistasis), a P-
value threshold of 1.26�10�8 must be applied, thus resulting in the
top 387 pairs of EPIBLASTER stage 1 to be passed onto stage 2. In
other words, EPIBLASTER would have produced an additional 377
pairs to be tested in view of capturing the very top 10 true results. In
Figure 5, the top 100 SNP pairs of the panic disorder study are
marked, which would have resulted in applying a retention threshold
for EPIBLASTER stage 1 of 1.67�10�7 passing on B5194 pairs to
stage 2 (listed in greater detail in Supplementary Table 1).
From the multiple sclerosis analysis, FastEpistasis yielded 42 731

pairs to have an interaction term with a P-value below 1�10�6, of
which 42 524 pairs (99.5%) are also retained from EPIBLASTER
stage 1. The matching pairs, along with the respective P-values
tabulated using the FastEpistasis method versus the approximated
EPIBLASTER stage 1 method, are plotted in Figure 6. The top 10 pairs
are marked in Figure 6 and listed in Table 3, along with the SNP
annotations in Table 4. For EPIBLASTER to capture the top 10 pairs,
it would have required 48 of its top significant SNP pairs to be carried
over to stage 2, where the P-values from logistic regression are
tabulated. In addition, to capture the top 100 pairs, refer to Figure 7

(listed in greater detail in Supplementary Table 2). EPIBLASTER
would have required the top 19 242 pairs obtained from stage 1 to
be passed on to stage 2.

DISCUSSION

Although the search is conducted across all possible pairwise SNP
interactions, the main interest is to delineate interactions between
unlinked loci that influence the illness. In the first stage, the difference
of Pearson’s correlation coefficients, tabulated from the SNP pair, is
taken between controls and cases across all possible interactions. In
addition, this step can also incorporate replicating for significant
association across two or more independent studies using a number
of subjects’ weighted meta-analysis during the actual run. In the
current experimental setup with a genome-wide analysis of epistasis
study, this first stage involving the difference of correlation coefficient
evaluations can be completed within roughly 24h on commercially
available GPU setups compared with roughly a year on a single-core

Table 1 Top 10 panic disorder SNP pairs differences of correlation coefficient, FastEpistasis and logistic regression P-values

Top 10 panic disorder SNP pairs ranked by FastEpistasis

Ranking SNP1 Name SNP2 Name

Difference

of R

Difference of R

P-value

FastEpistasis

P-value

Lreg-SNP1

P-value

Lreg-SNP2

P-value

Lreg-interaction

P-value

1 rs4653309 rs17338700 0.6111244 2.26E-10 6.97E-12 1.94E-01 6.16E-01 8.98E-12

2 rs4984422 rs1967113 �0.6582624 8.86E-12 1.06E-11 2.02E-01 8.66E-01 4.72E-13

3 rs1156847 rs7246846 0.620029 1.21E-10 6.57E-11 7.45E-01 2.01E-01 4.02E-11

4 rs6455842 rs265548 0.6423732 2.81E-11 7.25E-11 3.67E-01 3.55E-01 6.17E-12

5 rs12188192 rs1317584 0.5777778 1.98E-09 8.08E-11 2.51E-01 4.90E-01 1.87E-10

6 rs2100807 rs4875302 0.6104409 1.95E-10 1.88E-10 7.15E-01 3.95E-01 1.45E-10

7 rs11900448 rs11939830 �0.6004888 5.07E-10 2.17E-10 2.27E-01 7.97E-01 2.64E-10

8 rs6762261 rs4745430 0.6062836 3.24E-10 2.36E-10 4.81E-01 1.87E-01 1.65E-10

9 rs2374344 rs1011308 0.5479708 1.26E-08 2.53E-10 3.97E-01 4.00E-01 4.41E-10

10 rs11925795 rs4731772 0.6156417 1.60E-10 3.11E-10 3.49E-03 4.37E-01 4.71E-10
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Figure 4 Panic disorder logarithmic P-values density plot: top 10 SNP

pairs (points marked in black) and threshold correlation coefficient

difference P-value. FastEpistasis P-values are on the y-axis, P-values from

EPIBLASTER are on the x-axis.

EPIBLASTER fast GPU-based epistasis
T Kam-Thong et al

468

European Journal of Human Genetics



CPU. From the subset of interactions deemed significant in the
rapid filtering stage, a second-stage analysis is performed using the
likelihood ratio statistical test on the logistic regression to obtain
the P-value on the estimated coefficients corresponding to the inter-
cept, individual effects of the single loci and the interaction terms. As
this necessitates only a minor amount of computations of logistic
regressions in R using the ‘Anova’ test on the ‘glm’ fit with the
‘binary’ family option, for a retention rate of 6.8�10�6, an
expected 8.5�106 pairs, this requires B2.5 days on a single core

system of the hardware specifications listed in the methods section
in R. This is impractical, however, if we are to limit ourselves to a
range of top significant pairs that can be below a more stringent
threshold, for example, 1.0�10�8, it drops down to an expected

number of B600–700 pairs, which require around 150 s (four
computations per second) to validate. It should be noted that
dedicated software, such as INTERSNP (http://intersnp.meb.

uni-bonn.de),9 is considerably faster for this second pass than
pure R. The quoted figure of 8.5�106 interaction pairs should be

achieved between 1 or 2 hours using INTERSNP. A complete
genome-wide association analysis with INTERSNP on a single
core would be in the order of a year. FASTEPISTASIS would

have taken B70 days on a single core. Note that INTERSNP is
quoted here for a full logistic regression, whereas FASTEPISTA-
SIS has a linear regression. Of course the performance of both

INTERSNP (which again is about two orders of magnitude faster
than plain R (using the glm() function)) and FASTEPISTASIS
can be easily improved using multicore systems and clusters.

Of course, including more SNPs into the second stage is feasible. We
have found a threshold of 6.8�10�6 practical. Lowering this by, for
example, one order of magnitude will incur only a slight increase in
runtime for stage 1 and a linear increase for stage 2. Of course, if the
threshold for entry into stage 2 is lowered too much, hardware
specifics such as disk speed become an issue in the performance of
the program.
The reasoning behind the two-stage approach is threefold. First, the

computations involved in the first stage are much less extensive as

Table 2 Top panic disorder SNP pairs annotations

Top10 panic disorder SNP pairs ranked by FastEpistasis annotations

SNP1 name Chromosome Basepair Gene SNP2 name Chromosome Basepair Gene

rs4653309 chr1 37876927 rs17338700 chr2 33841677

rs4984422 chr15 94456392 rs1967113 chr18 26830011 DSC3

rs1156847 chr9 2586783 rs7246846 chr19 56705171

rs6455842 chr6 162962566 PARK2 rs265548 chr19 17763334

rs12188192 chr5 136380739 SPOCK1 rs1317584 chr6 12450775

rs2100807 chr3 117506680 LSAMP rs4875302 chr8 4028885 CSMD1

rs11900448 chr2 149650765 LOC130576 rs11939830 chr4 157150631

rs6762261 chr3 136073828 EPHB1 rs4745430 chr9 77461845

rs2374344 chr2 41994977 rs1011308 chr9 72478076

rs11925795 chr3 178001610 rs4731772 chr7 130582931
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Figure 5 Panic disorder logarithmic P-values density plot: top 100 SNP

pairs (points marked in black) and threshold correlation coefficient

difference P-value. FastEpistasis P-values are on the y-axis, P-values from

EPIBLASTER are on the x-axis.
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compared with estimating for significance in logistic regression.
Second, a readily available R package, ‘gputools’, allows the
estimation of correlation coefficients to be performed on the graphic
card, which greatly reduces the time and cost. Third, contrary to
common multistage practice, in which the single locus test is per-
formed initially, followed by higher order testing on loci that showed
single locus significance, the necessity of interaction loci to first show
significant marginal effects is not imposed, thus rendering this method
a truly exhaustive search across all two-way interactions. The results
from the MS and panic disorder analyses are used as the preliminary
basis in cases in which this statement can be founded. A Plink method
to test for univariate SNP significance is used to provide an indication
of the SNPs that would be kept using the more traditional mandatory
main effect significance. First, referring to Supplementary Tables S.2
and S.3 in the supplementary section, it is shown that a vast majority
of significant interaction pairs would not have been captured if one is
to prefilter based on univariate significance. Furthermore, referring to
Supplementary Figures S.2–S.5 in the supplementary section, univari-
ate P-values are plotted against the interaction pairs captured by
EPIBLASTER. The lack of trends helps to support the fact that the
method indeed conducts the search unbiased to the marginal effects at
the two loci. High overestimation of the significance of the pair in the
preliminary step 1 filtering stage can occur when the SNPs are very
rare. Severe underestimation of P-values using this approximation
(false negatives) has also rarely been noticed but was traced to a small
subset of those SNP pairs that are in high linkage disequilibrium,

Table 3 Top 10 multiple sclerosis SNP pairs difference of correlation coefficient, FastEpistasis and logistic regression P-values

Top 10 multiple sclerosis SNP pairs ranked by FastEpistasis

Ranking SNP1 name SNP2 name

Difference

of R

Difference of R

P-value

FastEpistasis

P-value

Lreg-SNP1

P-value

Lreg-SNP2

P-value

Lreg-interaction

P-value

1 rs1392773 rs1384731 0.35723 3.68E-11 3.78E-12 7.00E-01 9.90E-01 4.28E-12

2 rs1552621 rs6817936 0.34409 2.00E-10 5.87E-11 7.85E-01 6.75E-01 6.71E-11

3 rs11710441 rs13226149 �0.33441 5.92E-10 7.28E-11 4.79E-01 2.21E-01 8.66E-11

4 rs2218314 rs1384731 0.33107 8.68E-10 8.19E-11 6.11E-01 9.99E-01 9.34E-11

5 rs6738313 rs3752735 �0.33932 3.18E-10 1.03E-10 1.91E-01 7.18E-01 1.12E-10

6 rs7593466 rs11658318 0.34033 3.14E-10 1.07E-10 7.66E-01 1.83E-01 1.01E-10

7 rs6758449 rs10055397 0.33889 3.64E-10 1.09E-10 3.23E-01 6.90E-01 1.16E-10

8 rs17648731 rs7386137 0.34748 1.22E-10 1.10E-10 8.15E-01 6.03E-01 1.05E-10

9 rs6550306 rs10503253 0.33773 4.17E-10 1.52E-10 9.32E-01 3.58E-01 1.66E-10

10 rs2542509 rs2916433 0.33511 5.04E-10 1.71E-10 6.94E-02 9.53E-01 1.81E-10

Table 4 Top 10 multiple sclerosis SNP pairs annotations

Top10 multiple sclerosis SNP pairs ranked by FastEpistasis annotations

SNP1 name Chromosome Basepair Gene SNP2 name Chromosome Basepair Gene

rs1392773 chr4 143053312 rs1384731 chr5 10660797

rs1552621 chr3 67460533 rs6817936 chr4 167934823 SPOCK3

rs11710441 chr3 145154009 rs13226149 chr7 94863536 PON3

rs2218314 chr4 143031581 rs1384731 chr5 10660797

rs6738313 chr2 3382368 TTC15 rs3752735 chr18 49363018

rs7593466 chr2 208807724 IDH1 rs11658318 chr17 27230172 UTP6

rs6758449 chr2 68290612 PPP3R1 rs10055397 chr5 120950796

rs17648731 chr2 77575007 rs7386137 chr8 142596655

rs6550306 chr3 34873129 rs10503253 chr8 4168252 CSMD1

rs2542509 chr2 71443251 ZNF638 rs2916433 chr4 4343724 LYAR/ZNF509
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Figure 7 Multiple sclerosis logarithmic P-values density plot: top 100 SNP

pairs (points marked in black) and threshold correlation coefficient

difference P-value.
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which are not the main focus of this method. For computational ease,
no lower bound on physical distance between SNPs or on LD between
SNPs is imposed.
We also noted no inflation of the test statistic in our data sets;

however, in certain cases it might be advisable to include MDS or PCA
components in the analysis; for example, by working on residuals of
the SNP genotypes on these components.
Overall, a comparison of the P-values obtained from FastEpistasis to

the approximated P-values tabulated from EPIBLASTER stage 1 shows
that, although discrepancy in P-values does exist, the adopted method
does manage to capture all of the significant pairs, and the occurrence
of significant pairs being omitted is practically nil when the threshold
P-values are chosen to be far enough from the Bonferroni-corrected
global significance. Nevertheless, the computational load for the
second-stage analysis is negligible.
The concept of adopting the analysis of the difference of case-only

and control-only studies into a unified test has been suggested in
previous studies analyzing pairwise SNPs. Hoh and Ott10 initially
proposed taking the ratios of the Chi-squares of the 3�3 contingency
tables between cases and controls as a measure of significance. Zhao
et al11 and Zaykin et al12 have also proposed examining the gene
interactions with a defined linkage disequilibrium created by the
interaction between two unliked loci. Significance is evaluated with
the analysis of the difference of the LD values between case-only and
control-only populations. Hardy–Weinberg equilibrium must hold for
this measure of interaction and test statistics to be valid. Zhao et al has
further suggested that the method exhibits greater power than conven-
tional linear regression, as it does not treat the interaction as a residual
term and allows for implicit nonlinear interaction and faster computa-
tional time than the traditional four degrees of freedom logistic
regression model, rendering it more suitable for GWAS. The proposed
method in this paper conducts the search in the first stage for only the
effects of the interaction term by analyzing the difference of the
correlation coefficients as an indication for significance, and then adopts
the more conventional logistic regression method to substantiate the
findings on a subset of pairs. As the difference is based on two separate
groups, population stratification can have an effect on the power of the
method. However, considering the number of pairs retained from our
examples, the actual inflation is very low. In the multiple sclerosis
analysis, 423 680 pairs are expected to be below the 1�10�5 threshold;
an observed number of pairs captured is noted as 407 660. The method
can indeed be simplified to a case-only study, by making the assump-
tion that the correlation coefficient of the controls be null for all pairs.
This approach would further speed up the computational time by a
factor of 2 at the expense of potentially losing both power and precision.
Moreover, the approximation approach does not only apply to the
dosage coding (0, 1, 2), and also to other coding such as dominance,
recessivity and heterozygosity. In general, a P-value cutoff of less than
1�10�5 should indeed be sufficient to capture all the results with a
Po1�10�8 in the logistic regression and is, with all caution, suggested
as a cutoff to be used in a first analysis, truly making EPIBLASTER
exhaustive within this setting.
With respect to the results from MS and panic disorder that are

presented, we note that, although there is no pair beyond a Bonfer-
roni-corrected threshold for significance at a corrected P-value of 0.05,
the marginal effects in the top 10 pairs do not at all show a tendency
to deviate from a uniform distribution. This means that prefiltering
pairs of SNPs on marginal P-values for subsequent epistasis analysis

may be a less promising strategy than sometimes considered, although
more analyses and larger sample sizes will be needed for a better
founded statement on this issue.
In the editing phase of this article, it has come to our attention that

Hu et al13 have also developed a strategy involving GPUs to enhance
genome-wide significant SNP pair interaction search, quoting a
total runtime of 27h to scan through the Wellcome Trust Case
Control Consortium’s bipolar disorder data consisting of 500K
SNPs. The proposed algorithm by Hu et al helps consolidate the
improved time performance using the inherent parallel nature of GPU
to search for significance in all possible SNP pairs. This method is
distinct from ours as it uses the a difference of odds ratios measure
between cases and controls to pick significant SNP pair candidates.
We would like to point out that with EPIBLASTER it is possible to

perform genome-wide analysis of epistasis on very small-scale and
inexpensive hardware, reducing the need for large clusters for this kind
of application.
Future work is planned to incorporate the logistic regression

and other more novel definitions of gene–gene interactions onto
the graphical processing units. EPIBLASTER is available at http:/
www.mpipsykl.mpg.de/epiblaster.
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