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Abstract—The world has experienced many epidemic diseases
in the past, SARS, H1N1, and Ebola are some examples of these
diseases. When those diseases outbreak, they spread very quickly
among people and it becomes a challenge to trace the source
in order to control the disease. In this paper, we propose an
efficient privacy-preserving contact tracing for infection detection
(EPIC) which enables users to securely upload their data to the
server and later in case of one user got infected other users
can check if they have ever got in contact with the infected
user in the past. The process is done privately and without
disclosing any unnecessary information to the server. Our scheme
uses a matching score to represent the result of the contact
tracing, and uses a weight-based matching method to increase
the accuracy of the score. In addition, we have developed an
adaptive scanning method to optimize the power consumption of
the wireless scanning process. Further, we evaluate our scheme
in real experiment and show that the user’s privacy is preserved,
and the accuracy achieves 93% in detecting the contact tracing
based on the matching score in an energy efficient way.

I. INTRODUCTION

Outbreaks of infectious diseases such as SARS in 2002,
H1N1 in 2010, Ebola in 2014, lead to health and economic dis-
asters, as well as the global anxiety. These infectious diseases
usually spread through human-to-human contact, including
direct contact with bodily fluids or respiratory droplets of
infected people, or with surfaces and materials contaminated
with these fluids. When the outbreaks of these diseases occur,
it is urgent to discover the human-to-human contact backward
such that patients and people at a higher risk can be identified
and then physically isolated from the public. Contact tracing
is defined as finding out if a person has been physically
in contact with another infected person in the past [1]. The
process of contact tracing helps in diseases control, creating
social networks, and building trust model among people [2],
[3], [4]. For example, contact tracing methods have been
introduced to control epidemic disease such as Ebola, H1N1,
and SARS [5]. The contact tracing has been used to create a
social network based on the frequency of the human contact.
Moreover, contact tracing is used to build a trust relationship
among people, which helps people to make decisions.

Contact tracing could be implemented with different tech-
nologies. First, using short-range wireless technology as WiFi
and Bluetooth; with the number of these devices growing
rapidly around us, each device is associated with a unique
identifier which helps the process of contact tracing to match
between users. Second, adapting a GPS technology which
could be an effective solution to perform contact tracing. The

area covered by GPS service is much bigger compared to
the short-range wireless technology, and the cost of a GPS
receiver is much affordable [6], [7]. Third, using data from
social networks is also an approach to perform contact tracing
[8], [9]. Events or specific location could indicate important
information about people, who might they met or got in contact
with, or even places they have been.

However, most of these contact tracing approaches face
some challenges such as accuracy, privacy, and energy con-
sumption efficiency. First, accuracy is difficult to achieve
because of some technique limitations and various application
needs. Most of disease infections happen indoor; however,
the data collected using GPS service is lacking of indoor
coverage which leads to a data loss and inaccurate information
about users. Second, sharing information about the user’s
contact history could lead to a huge privacy issue for any
user. Therefore, applying strict rules on what information can
be shared and protect them is very important in the contact
tracing process. Third, the cost of obtaining user’s information
plays a significant role in designing the contact tracing process.
Scanning for nearby devices is an expensive task to perform
on the user’s devices and repeatedly executing this task could
lead to a power consumption problem.

In this paper, we propose an efficient privacy-preserving
contact tracing for infection detection (EPIC) which uses
short-range wireless technologies to perform contact tracing
to provide fined-grained information about human-to-human
interaction information. In particular, EPIC keeps privacy of
the user as a priority by applying matching techniques over en-
crypted content, and enhances the accuracy by using a weight-
based matrix that includes data from a large number of short-
range wireless devices. Our scheme uses an energy-efficient
method to collect data, we use data from the accelerometer
to develop the adaptive wireless network scanning strategy,
which reduces the power consumption on the user’s device.
Our contributions can be summarized as follows:

• We propose an effective fine-grained human-to-human
contact tracing scheme (EPIC) with hybrid wireless and
localization technology. The EPIC scheme identifies if
two users have been physically in contact with each other
in the past.

• We further show that our scheme can achieve the privacy,
accuracy, and the energy efficiency required to perform
the contact tracing process. The privacy module protects
the user’s recorded contact data from unnecessary disclo-
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sure, and the weight-based matrix enhances the accuracy
of the result. In addition, the proposed contact tracing
scheme employs the adaptive wireless scanning method
for energy efficiency.

• We evaluate the performance of EPIC in real world
experiments. We show that the accuracy of our scheme
can reach 93% on performing contact tracing. We conduct
the experiments in two different environments and we
have designed the experiments for covering possible types
of human contacts.

II. RELATED WORK

The area of using technology to perform contact tracing
has been widely studied [10], [11], [12]. Al Qathrady et al.
[13] introduced a systematic infection detection framework
utilizing mobile communication technologies including mobile
networking and encounter statistics during infection breakouts.
They used an extensive WLAN campus traces of six buildings
and over 34K users to perform the experiment. However, the
wireless signal strength has not been considered in this study
which could indicates there is a margin of around 150 meters
on the encounter area. Zhang et al. [14] proposed an integrat-
ing wireless body area networks (WBANs) for body vital signs
collection with mobile phones for social interaction sensing to
help in epidemic control and source tracing. Unlike EPIC, this
study requires users to mount sensors on their bodies which
make the system harder and costly to implement. Sareen et al.
[5] proposed a novel architecture based on Radio Frequency
Identification Device (RFID), wearable sensor technology, and
cloud computing infrastructure. The aim of their work is
to prevent the spreading of the Ebola infection at the early
stage of the outbreak. However, they haven’t proposed enough
information about the privacy issues that could be involved in
their scheme, where in EPIC, we consider user’s data privacy
as a main goal and we proposed a privacy module that help
to protect the user’s information.

In addition, there were many works on how to collect and
store a user’s data in a privacy-preserving way. Zhang et
al. [15] proposed protocols based on proximity-based mobile
social networking (PMSN) to enable two users to perform
profile matching without disclosing any information about
their profiles. These protocols allow finer differentiation be-
tween PMSN users and can support a wide range of matching
metrics at different privacy levels. Li et al. [16] introduced
a privacy-preserving profile matching schemes for proximity-
based mobile social networks (FindU). The user can find from
a group of users the one whose profile best matches with
his/her; sharing only necessary and minimal information about
the private attributes of the participating users is exchanged.
They proposed a novel protocol that realize each of the
user privacy levels, which can also be personalized by the
users. The difference between our work and previous works
is that we focus on protecting data that could indicate the
user’s daily activities such as events and human contacts.
However, previous works focus on the privacy of a user’s
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Fig. 1: System entities
profile information which the updates on these information
is less frequent.

III. SYSTEM MODEL

In this section, we will introduce the system entities and the
design goals.

A. System entities
As shown in Fig. 1, our system model includes smartphones,

wireless short-range devices such as Access Points and Blue-
tooth devices, and a server.
• Smartphones un: A study shows that people stay within

arm-reach form their smartphones 48% of the time, and 82%
of the time within 5 meters from their smartphones [17].
These high numbers of usage make smartphones a great tool
to perform contact tracing. We are using smartphones to
collect required data from each user by performing adaptive
wireless scanning from time to time. As shown in Fig. 1, u1’s
smartphone collects necessary raw data about nearby short-
range wireless signals WiFi and Bluetooth and then encrypts
these data before uploading them to the server. Specifically,
the smartphone collects the following data in each network
scan, a) wireless device unique identifier BSSID b) wire-
less Received Signal Strength Indication (RSSI) c) wireless
signal type (WiFi, Bluetooth). Smartphone then uploads the
encrypted data along with the timestamp for each network
scan to the server.
• Wireless Signals WiFi, BL: Short-range wireless devices

are becoming very popular in crowded areas as IoT emerges.
The connectivity of those devices is better in an indoor envi-
ronments compared to the GPS service [18], and they usually
broadcast their names SSID and unique identifier BSSID to
any device nearby, which enable the user’s smartphone in our
case to collect the required data. The average coverage range
of the WiFi is around 80 meters outdoor and 50 meters indoor,
that means, the longest distance between two different users
connecting to the same WiFi is around 160 meters or 100
meters in the case of indoor coverage. This distance between
users is not very helpful for our case of contact tracing which
require more narrowed down range between users. Thus, using
data from multiple wireless devices and using weight-based
matching score calculation is crucial in our scheme EPIC.
• Server S: In EPIC, we use the server for two main tasks.

First, the server is responsible for storing all encrypted data



received from users, those data are encrypted by the user and
not disclosed to the server or any other users. Second, the
server is performing the score matching calculation on the
user’s encrypted data. When the status of a user changed to
“infected”, the server will ask users to check their contact
tracing matching score with the infected user. Users will send
requests to find out their scores and the server then responds
back with matching scores for different timestamps the regular
user came in contact with the infected user. All these calcu-
lations happen without the server knowing any unnecessary
information about the infected user or knowing any extra
information about the user who requested the matching score.

B. Design goals
Our scheme has three design goals and they as follows:
Data Privacy. Our scheme deals with very sensitive infor-

mation about users. They could include health information re-
garding the possibility of a user disease infection. In addition,
it could disclose some of the users’ behaviors and activities
since it contains the user’s daily contacts. Hence, protecting
such information is important. All of the users’ information
are encrypted by the user’s smartphone before uploading them
to the server. Moreover, we introduce a privacy-preserving
matching method which uses Homomorphic encryption to
match common wireless devices between the infected user and
the regular user. All operations happen without the need of the
regular user to disclose other uncommon wireless information.

Accuracy. In order to increase the accuracy of the matching
score, we need to collect as much information as possible
about the user’s surrounded wireless environment such as
WiFi and Bluetooth. We design a weight-based matching score
method, which uses different features such as the RSSI values,
and the number of common wireless devices.

Power Efficiency. Since our scheme uses smartphones to
collect data, it’s necessary to use the users’ device resources
wisely. Performing WiFi and Bluetooth scans frequently will
exhaust the user’s smartphone power quickly and will not be
an efficient scheme to apply. Thus, we introduce an adaptive
wireless scanning method, which employs the accelerometer
with the wireless scanning process so the smartphone only
performs scanning when it’s needed. The accelerometer allows
the wireless scanning methods to know if the users is moving
which could indicate that a new wireless scan is needed.

IV. PROPOSED SCHEME

In this section, we propose our scheme EPIC, which allows
the server to perform an efficient privacy-preserving contact
tracing to identify users who have been in contact with an
infected user in the past. Consider a user ui identified as an
infected user, her data will be disclosed only to the server to
calculate the matching score with other users un. As shown
in Fig. 2, the server is able to calculate and return matching
scores for any user securely. We first introduce the contact
tracing process, then the concept of adaptive scanning. We
further propose the weight-based matching score method, and
finally introduce the privacy-preserving method.
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Fig. 2: Contact tracing

ui Infected user
un Regular user
te Timestamp for each wireless scan

m The BSSID for each wireless device hashed with
a hashing function

rm The RSSI value for the wireless device m

pm Type of each wireless signal WiFi, or Bluetooth

TABLE I: Notations
A. Contact tracing

To better explain the details of the scheme, we put all
notations in Table I. Let us assume that the user ui has been
identified as an infected user, the user then must disclose all
information to the server so the server can use them later to
calculate matching scores. The data uploaded to the server by
the infected user ui is represented as follows, ui={scani,1,
scani,2, ..., scani,w} where scan={te, [mi,1, rmi,1 , pmi,1 ],...,
[mi,j , rmi,1 , pmi,1 ]}.

All other regular users un will be notified to check their
matching scores, which indicate if user un has been in contact
with the infected user ui in the past. Each regular user un

sends a tracing contact matching score request which includes
her public key. The server first matches between timestamps
te of the regular user un={scann,1, scann,2, ..., scann,w}
with the infected user ui, this matching is done in plain text
since te is always disclosed to the server. It is important
to note that we consider two timestamps as matched if the
difference between them is 15 seconds or less. The server
then has to match between common wireless devices using the
privacy-preserving method (described in section IV. D). This
process will assure that matching is done without the need to
expose uncommon wireless devices unnecessarily. After that,
the server receives RSSI values for common wireless devices
and calculates the matching score (described in section IV.
C). The server then returns an array of scores and timestamps
where score is below our threshold.

B. Adaptive wireless scanning
As mentioned earlier, scanning for nearby wireless devices

is an expensive task to perform on the user’s device, thus we
introduce an adaptive wireless scanning method which opti-
mizes the power consumption. Since the data collected from
the wireless scanning process indicates the nearby wireless
devices, we then only need to scan again if the user has



been moving for a while. For that reason, we integrate our
scanning method with the user’s smartphone accelerometer.
Smartphones will only perform a new scan if the user moves
continuously for more than ten seconds. Also, if the user is
staying still for more than two minutes, we perform a new
scan to refresh the collected information. In order to make
the matching between an stationary user and a moving user
possible, the smartphone will send the last scanning results if
the stationary user did not move for more than ten seconds.
This will assure that when the user stays still in a place such
as sitting in an office, the phone is not constantly performing
any new wireless scans. All scan results are encrypted the
uploaded to the server periodically (once a day).

C. Weight-based matching score

In order to calculate the matching score between two users,
they must have scanned at least three common wireless devices
with the same timestamp in the past. In most cases, having data
from one or two common wireless devices will not result in
an accurate information about whether the two users are close
enough from each other. Fig. 3 illustrates two cases where the
first one (left) has only two wireless devices, and since we are
using the difference in the RSSI values between the two user,
it will be hard to decide if u1 is close to u2. However, in the
second case (Right) in Fig. 3, it’s clear that AP3 helps us on
identifying that u1 actually not close to u2 since the difference
in RSSI values between the two users significantly increased.

Our weight-based matching calculation depends on two
main features, they are described as follows:

1) RSSI difference RD: The RSSI is a function that help
to determine the distance between the transmission power
and the receiver, it’s calculated as follows:

RSSI(dBm) = 10nlog10d + A (1)

where n is the signal decay exponent, d is the distance between
transmitter and receiver, and A is the received signal strength
at a distance of 1 meter from the transmitter. In our weight-
based matching calculations, we use the difference in RSSI
values between the two scans for the same wireless devices
as one of the features. Suppose two users u1 and u2 scanned
the same WiFi signal and their RSSI values are �36dBm and
�38dBm continuously, the difference here in this case is |2|.
However, if the RSSI values were �76dBm and �78dBm,
the difference is |2| but in our proposed scheme we need to
differentiate between these values since the difference between
�36dBm and �38dBm tells us more accurate information
compared to the difference between �76dBm and �78dBm.
For that reason, we decided to assign a larger weight on small
RSSI values when calculating the matching score, which is
described as follows:

RD = ↵
p

(median(|rssi1|, |rssi2|))(||rssi1|� |rssi2||) (2)
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Fig. 3: Wireless scanning

After applying Equation (2), the RSSI difference RD from
the previous example changed to 32.2 for the first scenario,
and 56.5 for the second, in the case of ↵ = 1.3.

2) Number of wireless devices matched ✓: As mentioned
earlier, the minimum number of wireless devices we use to
calculate the matching score is three devices, however, the
more wireless devices detected the more accurate the result
is. Thus, we use the number of wireless devices as a weight
to calculate our final matching score as shown in equation 3.

3) Calculating the matching score MS: Our proposed
scheme sends back to the user an array of matching scores
MS where each score is equal or less than our predefined
threshold. This array indicates the timestamps and the score for
each timestamp, lower score shows that we are more confident
that the regular user was in contact with the infected user.

MSte =
MAX3(RD)

ln(✓ � 1)
(3)

The above equation generates a single matching score for a
specific timestamp te where RD is the RSSI difference and ✓

is the total number of common wireless devices. We focused
only on the average of the top three largest values of RD

because these are the values that indicate the greatest distance
between the two users.

D. Privacy
EPIC aims to achieve a high level of privacy on the user’s

information so the server and the user will not be able to know
unnecessary information. By following privacy steps described
below, our scheme will achieve the privacy level needed, these
steps are explained as follows:

• After a user ui has been identified as an infected user,
the server will receive a matching score request from a
regular user un, this request includes the public key for
the user un. The first step the server does is to match
between scans based on timestamps in ui and un. Those
timestamps are stored in the server in plain text.

• The second step after matching scans is to identify if the
two users have scanned similar wireless devices m. The
server already has all information about the infected user
ui in plain text, however, the server has no information
about the regular user, since her data are encrypted in
the server. Our privacy method allows the regular user to
reveal only the necessary information to the server, which



mi,2 mi,3

mn,1 E((mn,1 �mi,2) ⇤ d1,2) E((mn,1 �mi,3) ⇤ d1,3)
mn,2 E((mn,2 �mi,2) ⇤ d2,2) E((mn,2 �mi,3) ⇤ d2,3)
mn,4 E((mn,4 �mi,2) ⇤ d4,2) E((mn,4 �mi,3) ⇤ d4,3)

TABLE II: Encrypted matrix

are in this case the matched (common) wireless devices.
The server uses the user’s public key received from un to
encrypt each mi where mi 2 ui. The server then returns
a matrix which has the encrypted subtraction result of
all pairs of mi and mn using Homomorphic encryption
[19] multiplied by a random value d added by the server
to prevent un from knowing unnecessary information
related to ui. As shown in table II, a sample of the matrix
where {mi,2, mi,3}2ui and {mn,1, mn,2, mn,4}2un.

• After the user un receives the matrix, she decrypts all
results and returns a binary array corresponded to the
decryption result where 0 indicates that two wireless
devices are matched and vice versa. The user un will
also send RSSI values for matched wireless devices in
plain text. By applying this privacy-preserving method,
the user un disclosed to the server only the common
wireless information with the infected user ui, and kept
other uncommon wireless device information secret. In
the meantime, the server only disclosed the information
about the common wireless devices to the regular user
un, while all other uncommon wireless information are
kept secret.

V. EVALUATION
In this section, we evaluate the performance of EPIC in

real world experiments. We have built an Android application
to run it on our testing smartphones (Samsung S3), we have
also asked ten students to carry the smartphones while our
application is running. We conducted all of our experiments
in two different environments. First, we picked the science
building in our school campus where it contains four floors,
each floor equipped with at least ten access points and we have
also placed ten Bluetooth devices in each floor in random spots
within the users’ path. Second, we conducted experiments in
an apartment complex building next to our school, this building
contains nine floors and more than 150 apartments. All data
collected from the scanning process are stored locally in the
smartphone’s memory card, and manually uploaded to the
server where we perform the contact tracing calculations later.

A. Data collection
As shown in Fig. 4 (a, b, c), we have designed three

scenarios where two users come in contact with each other
in different ways. First, in Fig. 4(a), two users start from two
points far from each other such that they have no common
wireless devices in the scan process. The two users then walk
to a target spot which is in this case a restroom located in the
same floor. They stay together in a range of about three meters
for two minutes before they walk back to the original starting
spot. The second scenario in Fig. 4(b) shows the two users
start also from far away points; however, the target this time

Timestamp u1

rssi

m Type u2

rssi

1509240563.03 -64 D8:84:66:4C:D1:00 WiFi -85
1509240563.03 -69 D8:84:66:4E:E4:F0 WiFi -79
1509240563.03 -59 D8:84:66:4E:F0:04 BL -91

TABLE III: Data collection sample
is to flip spots between users, they both take same path such
that they cross each other in a middle point. Finally, in the
third scenario the two users walk together within about three
meters range for half of the path as shown in Fig. 4(c). Table
III shows a real sample of our data collection file where two
users have scanned similar wireless devices at the same time.

We divided the ten students into five pairs, each pair
conducted 18 experiments; that is six experiments for each
scenario. Those experiments have been conducted in the two
environments, where all samples cover most of the real life
scenarios such as users crossing each other on the Line of Sight
(LOS) from the APs, or in a narrowed hallway, and not on LOS
where APs located behind walls. We have collected total of 90
samples divided equally between the two environments. It is
important to mention that for each experiment, we assigned
one person to manually log the time where the two users
physically meet each other within about three meters distance.

B. Accuracy evaluation
After data collection process finished, we uploaded all

collected data to the server to calculate the contact tracing
score for the three scenarios. To identify the right value
of the matching score threshold, we have used half of the
samples to conduct a threshold assessment. We chose 200 as
the value of the threshold where ↵ = 1.3, any score below
or equal 200 considered as a positive human contact for a
specific timestamp. Figure 4 (d, e, f) shows our tracing score
results for representative data samples of the three scenarios;
it is important to note that we only calculate score when the
number of common wireless devices ✓ is equal or above 3. As
shown in Fig. 4(d), the matching score falls under the threshold
200 for almost two minutes, that because the two users are met
in the restroom and stayed with each other for two minutes
before they walked back to their original spot. Moreover, in
Fig. 4(e), it is clear that the score falls under 200 only once.
This is consistent with scenario (2) where the two users only
crossed each other for a very short period of time. Finally, the
matching score in Fig. 4(f) falls under the threshold 200 in
middle of the chart until the end, which represents exactly the
design of scenario (3) where the two users met in a middle spot
and walk with each other until the end. From our extensive
experiments and analysis, our scheme was able to calculate
the contact tracing score and correctly detect the contact with
an accuracy 93%. This is calculated as the number of the
timestamps where the contact/no-contact cases were correctly
detected divided by the number of total timestamps.

VI. CONCLUSION
In this paper, we proposed an efficient privacy-preserving

contact tracing for infection detection (EPIC) scheme which
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Fig. 4: Experiments and Results

allows the server to perform a contact tracing process in a
privacy-preserving way. EPIC uses a weight-based method
to calculate the matching score using different features such
as the RSSI values and the number of common wireless
devices. An adaptive wireless scanning is employed to collect
information from different short-range wireless devices such
as WiFi and Bluetooth. Our experimented results show the
EPIC is accurate, privacy-preserving, and energy efficient. In
our future work, we will explore more features to be added as
weight to improve the accuracy of our contact tracing matching
score. We will also enhance our experiment by expanding it
to different environments and involve more users.
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