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Abstract

We focus on multi-modal fusion for egocentric action

recognition, and propose a novel architecture for multi-

modal temporal-binding, i.e. the combination of modalities

within a range of temporal offsets. We train the architecture

with three modalities – RGB, Flow and Audio – and com-

bine them with mid-level fusion alongside sparse temporal

sampling of fused representations. In contrast with previous

works, modalities are fused before temporal aggregation,

with shared modality and fusion weights over time. Our

proposed architecture is trained end-to-end, outperforming

individual modalities as well as late-fusion of modalities.

We demonstrate the importance of audio in egocentric

vision, on per-class basis, for identifying actions as well as

interacting objects. Our method achieves state of the art

results on both the seen and unseen test sets of the largest

egocentric dataset: EPIC-Kitchens, on all metrics using the

public leaderboard.

1. Introduction

With the availability of multi-sensor wearable devices

(e.g. GoPro, Google Glass, Microsoft Hololens, Magi-

cLeap), egocentric audio-video recordings have become

popular in many areas such as extreme sports, health moni-

toring, life logging, and home automation. As a result, there

has been a renewed interest from the computer vision com-

munity on collecting large-scale datasets [8, 35] as well as

developing new or adapting existing methods to the first-

person point-of-view scenario [9, 17, 21, 32, 44, 46].

In this work, we explore audio as a prime modality to

provide complementary information to visual modalities

(appearance and motion) in egocentric action recognition.

While audio has been explored in video understanding in

general [2, 3, 5, 6, 11, 23, 27–29, 34] the egocentric domain

in particular offers rich sounds resulting from the interac-

tions between hands and objects, as well as the close prox-

imity of the wearable microphone to the undergoing ac-

tion. Audio is a prime discriminator for some actions (e.g.

‘wash’, ‘fry’) as well as objects within actions (e.g. ‘put

Figure 1: As the width of the temporal binding window in-

creases (left to right), modalities (appearance, motion and

audio) are fused with varying temporal shifts.

plate’ vs ‘put bag’). At times, the temporal progression (or

change) of sounds can separate visually ambiguous actions

(e.g. ‘open tap’ vs ‘close tap’). Audio can also capture ac-

tions that are out of the wearable camera’s field of view,

but audible (e.g. ‘eat’ can be heard but not seen). Con-

versely, other actions are sound-less (e.g. ‘wipe hands’) and

the wearable sensor might capture irrelevant sounds, such

as talking or music playing in the background. The oppor-

tunities and challenges of incorporating audio in egocentric

action recognition allow us to explore new multi-sensory

fusion approaches, particularly related to the potential tem-

poral asynchrony between the action’s appearance and the

discriminative audio signal – the main focus of our work.

While several multi-modal fusion architectures exist for

action recognition, current approaches perform temporal

aggregation within each modality before modalities are

fused [22, 42] or embedded [23]. Works that do fuse in-

puts before temporal aggregation, e.g. [10], do so with in-

puts synchronised across modalities. In Fig. 1, we show

an example of ‘breaking an egg into a pan’ from the EPIC-

Kitchens dataset. The distinct sound of cracking the egg,

the motion of separating the egg and the change in appear-

ance of the egg occur at different frames/temporal positions

within the video. Approaches that fuse modalities with

synchronised input would thus be limited in their ability
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to learn such actions. In this work, we explore fusing in-

puts within a Temporal Binding Window (TBW) (Fig 1),

allowing the model to train using asynchronous inputs from

the various modalities. Evidence in neuroscience and be-

havioural sciences points at the presence of such a TBW

in humans [30, 41]. The TBW offers a “range of temporal

offsets within which an individual is able to perceptually

bind inputs across sensory modalities” [39]. This is trig-

gered by the gap in the biophysical time to process different

senses [25]. Interestingly, the width of the TBW in humans

is heavily task-dependant, shorter for simple stimuli such

as flashes and beeps and intermediate for complex stimuli

such as a hammer hitting a nail [41].

Combining our explorations into audio for egocentric ac-

tion recognition, and using a TBW for asynchronous modal-

ity fusion, our contributions are summarised as follows.

First, an end-to-end trainable mid-level fusion Temporal

Binding Network (TBN) is proposed1. Second, we present

the first audio-visual fusion attempt in egocentric action

recognition. Third, we achieve state-of-the-art results on

the EPIC-Kitchens public leaderboards on both seen and

unseen test sets. Our results show (i) the efficacy of au-

dio for egocentric action recognition, (ii) the advantage of

mid-level fusion within a TBW over late fusion, and (iii) the

robustness of our model to background or irrelevant sounds.

2. Related Work

We divide the related works into three groups: works that

fuse visual modalities (RGB and Flow) for action recogni-

tion (AR), works that fuse modalities for egocentric AR in

particular, and finally works from the recent surge in inter-

est of audio-visual correspondence and source separation.

Visual Fusion for AR: By observing the importance of

spatial and temporal features for AR, two-stream (appear-

ance and motion) fusion has become a standard tech-

nique [10, 36, 42]. Late fusion, first proposed by Simonyan

and Zisserman [36], combines the streams’ independent

predictions. Feichtenhofer et al. [10] proposed mid-level

fusion of the spatial and temporal streams, showing optimal

results by combining the streams after the last convolutional

layer. In [7], 3D convolution for spatial and motion streams

was proposed, followed by late fusion of modalities. All

these approaches do not model the temporal progression

of actions, a problem addressed by [42]. Temporal Seg-

ment Networks (TSN) [42] perform sparse temporal sam-

pling followed by temporal aggregation (averaging) of soft-

max scores across samples. Each modality is trained inde-

pendently, with late fusion of modalities by averaging their

predictions. Follow-up works focus on pooling for temporal

aggregation, still training modalities independently [13,45].

Modality fusion before temporal aggregation was proposed

1 Code at: http://github.com/ekazakos/temporal-binding-network

in [18], where the appearance of the current frame is fused

with 5 uniformly sampled motion frames, and vice versa,

using two temporal models (LSTM). While their motiva-

tion is similar to ours, their approach focuses on using pre-

defined asynchrony offsets between two modalities. In con-

trast, we relax this constraint and allow fusion from any ran-

dom offset within a temporal window, which is more suit-

able for scaling up to many modalities.

Fusion in Egocentric AR: Late fusion of appearance and

motion has been frequently used in egocentric AR [8, 24,

38, 40], as well as extended to additional streams aimed at

capturing egocentric cues [21, 37, 38]. In [21], the spatial

stream segments hands and detects objects. The streams

are trained jointly with a triplet loss on objects, actions and

activities, and fused through concatenation. [37] uses head

motion features, hand masks, and saliency maps, which are

stacked and fed to both a 2D and a 3D ConvNet, and com-

bined by late fusion. All previous approaches have relied

on small-scale egocentric datasets, and none utilised audio

for egocentric AR.

Audio-Visual Learning: Over the last three years, signifi-

cant attention has been paid in computer vision to an under-

utilised and readily available source of information existing

in video: the audio stream [2, 3, 5, 6, 11, 23, 27–29, 34].

These fall in one of four categories: i) audio-visual rep-

resentation learning [2, 5, 6, 23, 28, 29], ii) sound-source

localisation [3, 28, 34], iii) audio-visual source separa-

tion [11, 28] and (iv) visual-question answering [1]. These

approaches attempt fusion [2,28] or embedding into a com-

mon space [3, 6, 26]. Several works sample the two modal-

ities with temporal shifts, for learning better synchronous

representations [16,28]. Others sample within a 1s temporal

window, to learn a correspondence between the modalities,

e.g. [2, 3]. Of these works, [16, 28] note this audio-visual

representation learning could be used for AR, by pretrain-

ing on the self-supervised task and then fine-tuning for AR.

Fusion for AR using three modalities (appearance, mo-

tion and audio) has been explored in [43], employing late-

fusion of predictions, and [19, 20] using attention to in-

tegrate local features into a global representation. Tested

on UCF101, [43] shows audio to be the least informative

modality for third person action recognition (16% accuracy

for audio compared to 80% and 78% for spatial and mo-

tion). A similar conclusion was made for other third-person

datasets (AVA [12] and Kinetics [19, 20]).

In this work, we show audio to be a competitive modal-

ity for egocentric AR on EPIC-Kitchens, achieving compa-

rable performance to appearance. We also demonstrate that

audio-visual modality fusion in egocentric videos improves

the recognition performance of both the action and the ac-

companying object.
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Figure 2: Left: our proposed Temporal Binding Network (TBN). Modalities are sampled within a TBW, and modality-

specific weights (same colour) are shared amongst different inputs. Modalities are fused with mid-level fusion and trained

jointly. Predictions from multiple TBWs, possibly overlapping, are averaged. Right: TSN [42] with an additional audio

stream performing late fusion. Modalities are trained independently. Note that while in TSN a prediction is made for each

modality, TBN produces a single prediction per TBW after fusing all modality representations. Best viewed in colour.

3. The Temporal Binding Network

Our goal is to find the optimal way to fuse multi-

ple modality inputs while modelling temporal progression

through sampling. We first explain the general notion of

temporal binding of multiple modalities in Sec 3.1, then de-

tail our architecture in Sec 3.2.

3.1. Multimodal Temporal Binding

Consider a sequence of samples from one modality in

a video stream, mi = (mi1,mi2, · · · ,miT/ri) where T

is the video’s duration and ri is the modality’s framer-

ate (or frequency of sampling). Input samples are first

passed through unimodal feature extraction functions fi.

To account for varying representation sizes and frame-rates,

most multi-modal architectures apply pooling functions G

to each modality in the form of average pooling or other

temporal pooling functions (e.g. maximum or VLAD [15]),

before attempting multimodal fusion.

Given a pair of modalities m1 and m2, the final class

predictions for a video are hence obtained as follows:

y = h
(

G(f1(m1)), G(f2(m2))
)

(1)

where f1 and f2 are unimodal feature extraction functions,

G is a temporal aggregation function, h is the multimodal

fusion function and y is the output label for the video. In

such architectures (e.g. TSN [42]), modalities are tempo-

rally aggregated for a prediction before different modalities

are fused; this is typically referred to as ‘late fusion’.

Conversely, multimodal fusion can be performed at each

time step as in [10]. One way to do this would be to syn-

chronise modalities and perform a prediction at each time-

step. For modalities with matching frame rates, synchro-

nised multi-modal samples can be selected as (m1j ,m2j),
and fused according to the following equation:

y = h
(

G(fsync(m1j ,m2j))
)

(2)

where fsync is a multimodal feature extractor that produces

a representation for each time step j, and G then performs

temporal aggregation over all time steps. When frame rates

vary, and more importantly so do representation sizes, only

approximate synchronisation can be attempted,

y = h
(

G(fsync(m1j ,m2k))
)

: k = ⌈
jr2

r1
⌉ (3)

We refer to this approach as ‘synchronous fusion’ where

synchronisation is achieved or approximated.

In this work, however, we propose fusing modalities

within temporal windows. Here modalities are fused within

a range of temporal offsets, with all offsets constrained to

lie within a finite time window, which we henceforth refer
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to as a temporal binding window (TBW). Formally,

y = h
(

G(ftbw(m1j ,m2k))
)

: k ∈
[

⌈
jr2

r1
−b⌉, ⌈

jr2

r1
+b⌉

]

(4)

where ftbw is a multimodal feature extractor that combines

inputs within a binding window of width ±b. Interestingly,

as the number of modalities increases, say from two to three

modalities, the TBW representation allows fusion of modal-

ities each with different temporal offsets, yet within the

same binding window ±b:

y = h
(

G(ftbw(m1j ,m2k,m3l)
)

: k ∈
[

⌈
jr2

r1
− b⌉, ⌈

jr2

r1
+ b⌉

]

: l ∈
[

⌈
jr3

r1
− b⌉, ⌈

jr3

r1
+ b⌉

]

(5)

This formulation hence allows a large number of different

inputs combinations to be fused. This is different from pro-

posals that fuse inputs over predefined temporal differences

(e.g. [18]). Sampling within a temporal window allows fus-

ing modalities with various temporal shifts, up to the tem-

poral window width ±b. This: 1) enables straightforward

scaling to multiple modalities with different frame rates,

2) allows training with a variety of temporal shifts, accom-

modating, say, different speeds of action performance and

3) provides a natural form of data augmentation.

With the basic concept of a TBW in place, we now de-

scribe our proposed audio-visual fusion model, TBN.

3.2. TBN with Sparse Temporal Sampling

Our proposed TBN architecture is shown in Fig 2 (left).

First, the action video is divided into K segments of equal

width. Within each segment, we select a random sample of

the first modality ∀k ∈ K : m1k. This ensures the tempo-

ral progression of the action is captured by sparse temporal

sampling of this modality, as with previous works [42, 45],

while random sampling within the segment offers further

data for training. The sampled m1k is then used as the cen-

tre of a TBW of width ±b. The other modalities are selected

randomly from within each TBW (Eq. 5). In total, the input

to our architecture in both training and testing is K × M

samples from M modalities.

Within each of the K TBWs, we argue that the com-

plementary information in audio and vision can be better

exploited by combining the internal representations of each

modality before temporal aggregation, and hence we pro-

pose a mid-level fusion. A ConvNet (per modality) extracts

mid-level features, which are then fused through concate-

nating the modality features and feeding them to a fully-

connected layer, making multi-modal predictions per TBW.

We backpropagate all the way to the inputs of the ConvNets.

Fig 3 details the proposed TBN block. The predictions, for

each of these unified multimodal representations, are then

aggregated for video-level predictions. In the proposed ar-

chitecture, we train all modalities simultaneously. The con-

Figure 3: A single TBN block showing architectural de-

tails and feature sizes. Outputs from multiple TBN blocks

are averaged as shown in Fig. 2. We model the problem

of learning both verbs and nouns as a multi-task learning

problem, by adding two output FC layers, one that predicts

verbs and the other nouns (as in [8]). Best viewed in colour.

volutional weights for each modality are shared over the K

segments. Additionally, mid-level fusion weights and class

prediction weights are also shared across the segments.

To avoid biasing the fusion towards longer or shorter ac-

tion lengths, we calculate the window width b relative to the

action video length. Our TBW is thus of variable width,

where the width is a function of the length of the action.

We note again that b can be set independently of the number

of segments K, allowing the temporal windows to overlap.

This is detailed in Sec. 4.1.

Relation to TSN. In Fig 2, we contrast the TBN archi-

tecture (left) to an extended version of the TSN architec-

ture (right). The extension is to include the audio modal-

ity, since the original TSN only utilises appearance and

motion streams. There are two key differences: first, in

TSN each modality is temporally aggregated independently

(across segments), and the modalities are only combined

by late fusion (e.g. the RGB scores of each segment are

temporally aggregated, and the flow scores of each seg-

ment are temporally aggregated, individually). Hence, it

is not possible to benefit from combining modalities within

a segment which is the case for TBN. Second, in TSN, each

modality is trained independently first after which predic-

tions are combined in inference. In the TBN model instead,

all modalities are trained simultaneously, and their combi-

nation is also learnt.

4. Experiments

Dataset: We evaluate the TBN architecture on the largest

dataset in egocentric vision: EPIC-Kitchens [8], which

contains 39, 596 action segments recorded by 32 partici-

pants performing non-scripted daily activities in their na-

tive kitchen environments. In EPIC-Kitchens, an action is

defined as a combination of a verb and a noun, e.g. ‘cut
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cheese’. There are in total 125 verb classes and 331 noun

classes, though these are heavily-imbalanced. The test set is

divided in two splits: Seen Kitchens (S1) where sequences

from the same environment are in both training, and Unseen

Kitchens (S2) where the complete sequences for 4 partici-

pants are held out for testing. Importantly, EPIC-Kitchens

sequences have been captured using a head-mounted Go-

Pro with the audio released as part of the dataset. No previ-

ous baseline on using audio for this dataset is available.

4.1. Implementation Details

RGB and Flow: We use the publicly available RGB and

computed optical flow with the dataset [8].

Audio Processing: We extract 1.28s of audio, convert it

to single-channel, and resample it to 24kHz. We then con-

vert it to a log-spectrogram representation using an STFT

of window length 10ms, hop length 5ms and 256 frequency

bands. This results in a 2D spectrogram matrix of size

256 × 256, after which we compute the logarithm. Since

many egocentric actions are very short (< 1.28s), we ex-

tract 1.28s of audio from the untrimmed video, allowing the

audio segment to extend beyond the action boundaries.

Training details: We implement our model in Py-

Torch [31]. We use Inception with Batch Normalisation

(BN-Inception) [14] as a base architecture, and fuse the

modalities after the average pooling layer. We chose BN-

Inception as it offers a good compromise between perfor-

mance and model-size, critical for our proposed TBN that

trains all modalities simultaneously, and hence is memory-

intensive. Compared to TSN, the three modalities have

10.78M, 10.4M and 10.4M parameters, with only one

modality in memory during training. In contrast, TBN has

32.64M paramaters.

We train using SGD with momentum [33], a batch size

of 128, a dropout of 0.5, a momentum of 0.9, and a learning

rate of 0.01. Networks are trained for 80 epochs, and the

learning rate is decayed by a factor of 10 at epoch 60. We

initialise the RGB and the Audio streams from ImageNet.

While for the Flow stream, we use stacks of 10 interleaved

horizontal and vertical optical flow frames, and use the pre-

trained Kinetics [7] model, provided by the authors of [42].

Note that our network is trained end-to-end for all

modalities and TBWs. We train with K = 3 segments over

the M = 3 modalities, with b = T , allowing the temporal

window to be as large as the action segment. We test us-

ing 25 evenly spaced samples for each modality, as with the

TSN basecode for direct comparison.

4.2. Results

This section is organised as follows. First, we show and

discuss the performance of single modalities, and compare

them with our proposed TBN, with a special focus on the

efficacy of the audio stream. Second, we compare different

Figure 4: Verb (left) and noun (right) classes’ performances

using single modalities for top-performing 32 verb and 41

noun classes, using single modality accuracy. For each, we

consider whether the accuracy is high for Flow, Audio or

RGB, or for two or all of these modalities. It can be clearly

seen that noun classes can be predicted with high accuracy

using RGB alone, whereas for many verbs, Flow and Audio

are also important modalities.

mid-level fusion techniques. And finally, we investigate the

effect of the TBW width on both training and testing.

Single-modality vs multimodal fusion performance: We

examine the overall performance of each modality individ-

ually in Table 1. Although it is clear that RGB and opti-

cal flow are stronger modalities than audio, an interesting

find is that audio performs comparably to RGB on some of

the metrics (e.g. top-1 verb accuracy), signifying the rel-

evance of audio on recognising egocentric actions. While

as expected optical flow outperforms RGB in S2, interest-

ingly for S1, the RGB and Flow modalities perform com-

paratively, and in some cases RGB performs better. This

matches the expectation that Flow is more invariant to the

environment.

To obtain a better analysis of how these modalities per-

form, we examine the accuracy of individual verb and noun

classes on S1, using single modalities. Fig 4 plots top-

performing verb and noun classes, into a Venn diagram. For

each class, we consider the accuracy of individual modali-

ties. If all modalities perform comparably (within 0.15), we

plot that class in the intersection of the three circles. On the

other hand, if one modality is clearly better than the oth-

ers (more than 0.15), we plot the class in the outer part of

the modality’s circle. For example, for the verb ‘close’, we

have per-class accuracy of 0.23, 0.47 and 0.42 for RGB,

Flow and Audio respectively. We thus note that this class

performs best for two modalities: Flow and Audio, and plot

it in the intersection of these two circles.

From this plot, many verb and noun classes perform

comparably for all modalities (e.g. ‘wash’, ‘peel’ and

‘fridge’, ‘sponge’). This suggests all three modalities con-

tain useful information for these tasks. A distinctive differ-

ence, however, is observed in the importance of individual

modalities for verbs and nouns. Verb classes are strongly

related to the temporal progression of actions, making Flow
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Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall

VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S
1

RGB 45.68 36.80 19.86 85.56 64.19 41.89 61.64 34.32 09.96 23.81 31.62 08.81

Flow 55.65 31.17 20.10 85.99 56.00 39.30 48.83 26.84 09.02 27.58 24.15 07.89

Audio 43.56 22.35 14.21 79.66 43.68 27.82 32.28 19.10 07.27 25.33 18.16 06.17

TBN (RGB+Flow) 60.87 42.93 30.31 89.68 68.63 51.81 61.93 39.68 18.11 39.99 38.37 16.90

TBN (All) 64.75 46.03 34.80 90.70 71.34 56.65 55.67 43.65 22.07 45.55 42.30 21.31

S
2

RGB 34.89 21.82 10.11 74.56 45.34 25.33 19.48 14.67 04.77 11.22 17.24 05.67

Flow 48.21 22.98 14.48 77.85 45.55 29.33 23.00 13.29 05.63 19.61 16.09 07.61

Audio 35.43 11.98 06.45 69.20 29.49 16.18 22.46 09.41 04.59 18.02 09.79 04.19

TBN (RGB+Flow) 49.61 25.68 16.80 78.36 50.94 32.61 30.54 20.56 09.89 21.90 20.62 11.21

TBN (All) 52.69 27.86 19.06 79.93 53.78 36.54 31.44 21.48 12.00 28.21 23.53 12.69

Table 1: Comparison of our fusion method to single modality performance. For both splits, the fusion outperforms single

modalities. For the seen split, the RGB and Flow modalities perform comparatively, whereas for the unseen split the Flow

modality outperforms RGB by a large margin. Audio is comparable to RGB on top-1 verb accuracy for both splits.

Figure 5: Confusion matrix for the largest-15 verb classes,

with audio (left), as well as the difference to the confusion

matrix without audio (right).

more important for verbs than nouns. Conversely, noun

classes can be predicted with high accuracy using RGB

alone. Audio, on the other hand, is important for both nouns

and verbs, particularly for some verbs such as ‘turn-on’, and

‘spray’. For nouns, Audio tends to perform better for ob-

jects with distinctive sounds (e.g. ‘switch’, ‘extractor fan’)

and materials that sound when manipulated (e.g. ‘foil’).

In Table. 1, we compare single modality performance to

the performance over the three modalities. Single modali-

ties are trained as in TSN, as TBN is designed to bind multi-

ple modalities. We find that the fusion method outperforms

single modalities, and that audio is a significantly informa-

tive modality across the board. Per-class accuracies, for in-

dividual modalities as well as for TBN trained on all three

modalities, can be seen in Figure 6. The advantage of the

fusion method is more pronounced for verbs (where we ex-

pect motion and audio to be more informative) than nouns,

and more for particular noun classes than others, such as

‘pot’, ‘kettle’, ‘microwave’, and particular verb classes eg.

‘spray’ (fusion 0.54, RGB 0.09, Flow 0, Audio 0.3). This

suggests that the mixture of complementary and redundant

information captured in a video is highly dependant on the

action itself, yielding the fusion method to be more useful

for some classes than for others. We also note that the fu-

All RGB+Flow

TBN VERB NOUN ACTION VERB NOUN ACTION

S
1 irrelevant 61.37 46.46 32.63 57.28 42.55 27.73

rest 65.28 45.97 35.14 61.44 42.99 30.72

S
2 irrelevant 47.32 23.36 15.30 44.41 20.45 12.39

rest 57.21 31.66 22.22 54.00 30.09 20.52

Table 2: Comparing top-1 accuracy of All modalities (left)

to RGB+Flow (right). Actions are split in segments with

‘irrelevant’ background sounds, and the ‘rest’ of the test set.

sion method helps to significantly boost the performance of

the tail classes (Fig. 6, right and table in supplementary),

where individual modality performance tends to suffer.

Efficacy of audio: We train TBN only with the visual

modalities (RGB+Flow) and the results can be seen in Ta-

ble 1. An increase of 5% (S1) and 4% (S2) in top-5 ac-

tion recognition accuracy with the addition of audio demon-

strates the importance of audio for egocentric action recog-

nition. Fig 5 shows the confusion matrix with the utilisa-

tion of audio for the largest-15 verb classes (in S1). Study-

ing the difference (Fig 5 right) clearly demonstrates an in-

crease (blue) in confidence along the diagonal, and a de-

crease (red) in confusion elsewhere.

Audio with irrelevant sounds: In the recorded videos for

EPIC-Kitchens, background sounds irrelevant to the ob-

served actions have been captured by the wearable sensor.

These include music or TV playing in the background, on-

going washing machine, coffee machine or frying sounds

while actions take place. To quantify the effect of these

sounds, we annotated the audio in the test set, and report

that 14% of all action segments in S1, and 46% of all ac-

tion segments in S2 contain other audio sources. We refer

to these as actions containing ‘irrelevant’ sounds, and inde-

pendently report the results in Table 2. The table shows that

the model’s accuracy increases consistently when audio is

incorporated, even for the ‘irrelevant’ segments. Both mod-

els (All and RGB+Flow) show a drop in performance for
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Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall

VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S
1

Concatenation 64.75 46.03 34.80 90.70 71.34 56.65 55.67 43.65 22.07 45.55 42.30 21.31

Context gating [22] 63.77 44.33 33.47 90.04 69.09 54.10 57.31 42.20 21.72 45.63 41.53 20.20

Gating fusion [4] 61.52 43.54 31.61 89.54 68.42 52.57 52.07 39.62 18.39 42.55 39.77 18.66

S
2

Concatenation 52.69 27.86 19.06 79.93 53.78 36.54 31.44 21.48 12.00 28.21 23.53 12.69

Context gating [22] 52.65 27.35 19.16 79.25 52.00 36.40 30.82 23.16 11.72 23.39 25.03 12.58

Gating fusion [4] 50.16 27.25 18.41 78.80 50.84 34.04 28.42 22.42 12.34 23.92 24.15 13.14

Table 3: Comparison of mid-level fusion techniques for the TBN architecture.

Figure 6: Per-class accuracies for the S1 test set for verbs (top) and nouns (bottom) for fusion and single modalities. We

select verb classes with more than 10 samples, and noun classes with more than 30 samples. The classes are presented in the

order of number of samples per class, from left to right. For most classes the fusion method provides significant performance

gains over single modality classification (largest improvements shown in bold). Best viewed in colour.

‘irrelevant’ S2 (comparing to ‘rest’), validating that irrele-

vant sounds are not the source of confusion, but that this

set of action segments is more challenging even in the vi-

sual modalities. This demonstrates the robustness of our

network to noisy and unconstrained audio sources.

Comparison of fusion strategies: As Fig 2 indicates, TBN

performs mid-level fusion on the modalities within the bind-

ing window. Here we describe three alternative mid-level

fusion strategies, and then compare their performances.

(i) Concatenation, where the feature maps of each modal-

ity are concatenated, and a fully-connected layer is used to

model the cross-modal relations.

f concat
tbw = φ(W [m1j ,m2k,m3l] + b) (6)

where φ is a non-linear activation function. When used

within TBWs, shared weights ftbw are to be learnt between

modalities within a range of temporal shifts.

(ii) Context gating was used in [22], aiming to recalibrate

the strength of the activations of different units with a self-

gating mechanism:

f context
tbw = σ(Wh+ bz) ◦ h (7)

where ◦ is element-wise multiplication. We apply context

gating on top of our multi-modal fusion with concatenation,

so h in (7) is equivalent to (6).

Figure 7: Effect of TBW width for verbs (left) and nouns

(right) in the S1 test set.

(iii) Gating fusion was introduced in [4], where a gate neu-

ron takes as input the features from all modalities to learn

the importance of one modality w.r.t. all modalities.

hi = φ(Wimij + bi) ∀i (8)

zi = σ(Wzi[m1j ,m2k,m3l] + bzi) ∀i (9)

f
gating
tbw = z1 ◦ h1 + z2 ◦ h2 + z3 ◦ h3, (10)

In Table 3, we compare the various fusion strategies. We

find that the simplest method, concatenation (Eq. 6) gener-

ally outperforms more complex fusion approaches. We be-

lieve this shows modality binding within a temporal binding

window to be robust to the mid-level fusion method.
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Top-1 Accuracy Top-5 Accuracy Avg Class Precision Avg Class Recall

VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION VERB NOUN ACTION

S
1

Attention Clusters [19] 40.39 19.37 11.09 78.13 41.73 24.36 21.17 09.65 02.50 14.89 11.50 03.41

[8] (from leaderboard) 48.23 36.71 20.54 84.09 62.32 39.79 47.26 35.42 11.57 22.33 30.53 09.78

Ours (TSN [42] w. Audio) 55.49 36.27 23.95 87.04 64.17 44.26 53.85 30.94 13.55 30.60 29.82 11.11

Ours (TBN, Single Model) 64.75 46.03 34.80 90.70 71.34 56.65 55.67 43.65 22.07 45.55 42.30 21.31

Ours (TBN, Ensemble) 66.10 47.89 36.66 91.28 72.80 58.62 60.74 44.90 24.02 46.82 43.89 22.92

S
2

Attention Clusters [19] 32.37 11.95 05.60 69.89 31.82 15.74 17.21 03.86 01.84 11.59 07.94 02.64

[8] (from leaderboard) 39.40 22.70 10.89 74.29 45.72 25.26 22.54 15.33 06.21 13.06 17.52 06.49

Ours (TSN [42] w. Audio) 46.61 22.50 13.05 78.19 48.59 29.13 28.92 15.48 06.47 21.58 16.61 07.55

Ours (TBN, Single Model) 52.69 27.86 19.06 79.93 53.78 36.54 31.44 21.48 12.00 28.21 23.53 12.69

Ours (TBN, Ensemble) 54.46 30.39 20.97 81.23 55.69 39.40 32.57 21.68 10.96 27.60 25.58 13.31

Table 4: Results on the EPIC-Kitchens for seen (S1) and unseen (S2) test splits. At the time of submission, our method

outperformed all previous methods on all metrics, and in particular by 11%, 5% and 4% on top-1 verb, noun and action clas-

sification on S1. Our method achieved second ranking in the 2019 challenge. Screenshots of the leaderboard at submission

and challenge conclusion are in the supplementary material.

The effect of TBW width: Here, we investigate the effect

of the TBW width in training and testing. We varied TBW

width in training with b ∈ {T
6
, T
3
, T}, by training three

TBN models for each respective window width. We noted

little difference in performance. As changing b in training is

expensive and performance is subject to the particular opti-

misation run, we opt for a more conclusive test by focusing

on varying b in testing for a single model.

In testing, we vary b ∈ { T
60
, T
30
, T
25
, T
15
, T
10
, T
5
, T
3
}. This

corresponds, in average, to varying the width of TBW on

the S1 test set between 60ms and 1200ms. We addition-

ally run with synchrony b ∼ 0. In each case we sample a

single TBW, to solely assess the effect of the window size.

We repeat this experiment for 100 runs and report mean and

standard deviation in Fig. 7, where we compare results for

verb and noun classes separately. The figure shows that best

performance is achieved for b ∈
[

T
30
, T
20

]

, that is on av-

erage b ∈ [120ms± 190ms, 180ms± 285ms]. TBWs of

smaller width show a clear drop in performance, with syn-

chrony comparable to b = T
60

. Note that the ‘Sync’ baseline

provides only approximate synchronisation of modalities,

as modalities have different sampling rates (RGB 60fps,

flow 30fps, audio 24000kHz). The model shows a degree

of robustness for larger TBWs.

Note that in Fig. 7, we compare widths on a single tem-

poral window in testing. When we temporally aggregate

multiple TBWs, the effect of the TBW width is smoothed,

and the model becomes robust to TBW widths.

Comparison with the state-of-the-art: We compare our

work to the baseline results reported in [8] in Table 4 on all

metrics. First we show that a late fusion with an additional

audio stream, outperforms the baseline on top-1 verb accu-

racy by 7% on S1 and also 7% on S2. Second, we show that

our TBN single model, improves these results even further

(9%, 10% and 11% on top-1 verb, noun and action accuracy

on S1, and 6%, 5% and 6% on S2 respectively). Finally we

report results of an Ensemble of five TBNs, where each one

is trained with a different TBW width. The ensemble shows

additional improvement of up to 3% on top-1 metrics.

We compare TBN with Attention Clusters [19], a previ-

ous effort to utilise RGB, Flow, and Audio for action recog-

nition, using pre-extracted features. We use the authors

available implementation, and fine-tuned features (TSN,

BN-Inception), from the global avg pooling layer (1024D),

to provide a fair comparison to TBN, and follow the im-

plementation choices from [19]. The method from [19] per-

forms significantly worse than the baseline, as pre-extracted

video features are used to learn attention weights.

At the time of submission, our TBN Ensemble results

demonstrated an overall improvement over all state-of-the-

art, published or anonymous, by 11% on top-1 verb for both

S1 and S2. Our method was also ranked 2nd in the 2019

EPIC-Kitchens Action Recognition challenge. Details of

the public leaderboard are provided in supplementary.

5. Conclusion

We have shown that the TBN architecture is able to

flexibly combine the RGB, Flow and Audio modalities

to achieve an across the board performance improvement,

compared to individual modalities. In particular, we have

demonstrated how audio is complementary to appearance

and motion for a number of classes; and the pre-eminence

of appearance for noun (rather than verb) classes. The per-

formance of TBN significantly exceeds TSN trained on the

same data; and provides state-of-the-art results on the pub-

lic EPIC-Kitchens leaderboard.

Further avenues for exploration include a model that

learns to adjust TBWs over time, as well as implementing

class-specific temporal binding windows.
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