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Abstract 

 

This work investigated the blood pressure (BP) lowering effect of the flavanol (−)-

epicatechin in a model of metabolic syndrome. Rats were fed a regular chow diet 

without (Control) or with 10% (w/v) fructose in the drinking water (high fructose, HF) 

for 8 w. A subgroup of the HF-fed rats was supplemented with (−)-epicatechin 20 

mg/kg body weight (HF-EC). Dietary (−)-epicatechin reverted the increase in BP 

caused by the fructose treatment. In aorta, superoxide anion production and the 

expression of the NADPH oxidase (NOX) subunits p47phox and p22phox were 

enhanced in the HF-fed rats. The increase was prevented by (−)-epicatechin. Similar 

profile was observed for NOX4 expression. The activity of aorta nitric oxide synthase 

(NOS) was increased in the HF group and was even higher in the HF-EC rats. These 

effects were paralleled by increased endothelial NOS phosphorylation at the 

activation site Ser1177. Among the more relevant MAPKs pathways in vascular 

tissue, JNK was shown to be activated in the aorta of the HF-fed rats and (−)-

epicatechin supplementation mitigated this activation.  

Thus, the results suggest that dietary (−)-epicatechin supplementation prevented 

hypertension in HF-fed rats decreasing superoxide anion production and elevating 

NOS activity favoring an increase in NO bioavailability. 

 

 

Keywords: flavonoids; fructose; hypertension; metabolic syndrome; oxidants; 

superoxide anion. 
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Abbreviations: BP, blood pressure; BSA, bovine serum albumin; EC, (−)-

epicatechin; ERK, mitogenic extracellular signal-regulated protein kinase; HDL, high 

density lipoprotein; HF, high fructose; LDL, low density lipoprotein; JNK, c-Jun-N-

terminal kinase; L-NAME, Nω-nitro-L-arginine methyl ester; MAPK, mitogen-activated 

protein kinase; MS, metabolic syndrome; NOS, nitric oxide synthase; NOX, NADPH 

oxidase; PBS, phosphate buffered saline.  
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1. Introduction 

 

Increased blood pressure (BP) is found with high frequency in metabolic syndrome 

(MS) patients [1] and it is associated to endothelial dysfunction [2]. Endothelial 

dysfunction, mechanistically defined as an impairment of endothelium-dependent 

vasorelaxation, is caused by a decrease in nitric oxide (NO) bioavailability in the 

vascular wall [3]. 

A decline in NO bioavailability may be caused by an ineffective NO synthesis and/or 

accelerated NO degradation. Under physiological conditions NO is mainly produced 

in the vasculature by the endothelial nitric oxide synthase (eNOS) isoform [4-5]. NO 

is degraded by superoxide anion in a near diffusion-limited rate reaction [6-8]. eNOS 

activity is regulated by substrate availability, phosphorylation, protein-protein 

interactions and subcellular localization [9]. The NOX family is a major source of 

superoxide anion in the vascular wall through the NOX1 and NOX2 isoforms [10-13]. 

Flavonoids are polyphenols present at large amounts in the human diet [14]. An 

increased intake of flavonoid-rich foods, particularly of the flavanol subfamily, has 

been associated with the prevention and/or amelioration of MS-associated risk 

factors (reviewed in [15,16]). Regarding antihypertensive effects, in 

overweight/obese subjects, a polyphenol-rich dark chocolate significantly reduced 

BP [17] and the intake of high-flavanol cocoa reduced BP in association with 

improved flow-mediated dilatation [18]. Consumption of flavanol-rich dark chocolate 

by hypertensive patients with impaired glucose tolerance, ameliorated insulin 

sensitivity and decreased BP [19]. It has been shown that the beneficial effects of 

cocoa on human vascular function may be mediated by the flavanol (−)-epicatechin 

[20]. (−)-Epicatechin is one of the most abundant flavonoids in human diets, being 

present in high concentrations in grapes, cocoa, tea, and many other fruits and 

vegetables. Mechanistic studies by using pure (−)-epicatechin were carried out in 

experimental models. Dietary (−)-epicatechin was effective in reducing BP in a rat 

model of decreased NO production-induced hypertension [21,22] and in 

spontaneously hypertensive rats [23]. The administration of (−)-epicatechin did not 

improve the increase in BP caused by the chronic inhibition of NO synthesis with L-

NAME in rats [24]. Nevertheless, the same (−)-epicatechin treatment was effective in 

reducing BP in deoxycorticosterone acetate-salt-induced hypertension rats [25].  

In this study we observed that (−)-epicatechin supplementation prevented the 

increase in BP associated with high fructose consumption. This effect can be in part 

ascribed to a restoration of NO bioavailability through the attenuation of superoxide 
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anion production (concomitant with decreased levels of NOX subunits expression) 

and augmentation of NOS activity. In addition, (−)-epicatechin attenuated c-Jun-N-

terminal kinase (JNK) activation produced by high fructose consumption. 

 

2. Materials and Methods 

 

2.1. Materials 

 

Primary antibodies for p47phox (sc-7660), p22phox (sc-11712), eNOS (sc-654), 

caveolin-1 (sc-70516), p-JNK (Thr183/Tyr185) (sc-6254), JNK (sc-572), p-ERK 

(Tyr204) (sc-7383), ERK 1 (sc-93), p38 (sc-7149) and β-actin (sc-47778) were from 

Santa Cruz Biotechnology (Santa Cruz, CA, USA). Primary antibodies for p-eNOS 

(Ser1177) (#9570) and p-p38 (Thr180/Tyr182) (#9211) were from Cell Signalling 

Technology (Boston, MA, USA). Cy3-conjugated rabbit anti-goat was from Jackson 

ImmunoResearch Laboratories (West Grove, PA, USA). (−)-Epicatechin, β-

nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt hydrate 

(NADPH); N,N’-dimethyl-9,9’–biacridinium dinitrate (lucigenin), and bovine serum 

albumin (BSA) were from Sigma Chemical Co. (St. Louis, MO, USA). Fructose was 

obtained from Droguería Saporiti (Buenos Aires, Argentina). Commercial rat chow 

was from Gepsa-Feeds (Buenos Aires, Argentina). [14C] L-arginine was from Perkin 

Elmer Life and Analytical Sciences (Boston, MA, USA). 

 

2.2. Animals and animal care 

 

All procedures were in agreement with standards for the care of laboratory animals 

as outlined in the NIH Guide for the Care and Use of Laboratory Animals.  All 

procedures were performed according to institutional guidelines for animal 

experimentation and were approved by the Technical and Science Secretary at the 

National University of Cuyo School of Medicine. Rats were housed under conditions 

of controlled temperature (21-25ºC) and humidity with a 12 h light/dark cycle. Thirty-

days-old male Sprague-Dawley rats, weighing 100-130 g, were randomly divided into 

3 groups (10 rats per group) that were fed a standard rat chow diet and water ad 

libitum (control group, Control), the chow diet and water supplemented with 10% 

(w/v) fructose (high fructose group, HF), or the chow diet supplemented with 20 mg 

(−)-epicatechin (EC)/kg body weight [26], and the fructose-supplemented water (HF-

EC).  Food and water intake were recorded twice per week. Systolic BP was 
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measured by tail plethysmography in conscious, prewarmed, slightly restrained rats 

and recorded on a Grass Model 7 polygraph (Grass Instruments Co., Quincy, MA, 

USA) at the beginning (0 w), middle (4 w), and end (8 w) of the study. After 8 w on 

treatment, and after an overnight fast, rats were weighted, anesthetized with 

ketamine (50 mg/kg body weight) and acepromazine (1 mg/kg body weight). Blood 

was collected from the abdominal aorta into heparinized tubes, and plasma was 

obtained after centrifugation at 1,000 x g for 15 min at 4ºC. Aortas were dissected 

and placed into Krebs solution (20 mM HEPES buffer, pH 7.4, containing 119 mM 

NaCl, 4.7 mM KCl, 1 mM MgSO4, 0.4 mM NaH2PO4, 0.15 mM Na2HPO4, 5 mM 

NaHCO3, 1.25 mM CaCl2, 5.5 mM glucose) and stored at -80ºC for subsequent 

biochemical procedures or processed for immunohistochemistry.  

 

2.3. Metabolic measurements 

 

Glucose, triglycerides, total and HDL-cholesterol levels were measured in plasma 

using commercially available kits (GTLab, Rosario, Argentina) following the 

manufacturer´s protocol. 

 

2.4. Aorta morphometry 

  

Part of the thoracic aorta was fixed in 10% (w/v) formaldehyde and embedded in 

paraffin. Tissues sections (5 m) were stained with hematoxylin-eosin. Micrographs 

were collected with a Cool Snap digital camera using an Olympus BX50 microscope. 

Aorta wall thickness and lumen area were calculated using Image J (National 

Institute of Health, Bethesda, Maryland, USA) according to Xiong et al [27].  

 

2.5. Determination of vascular NOS activity 

 

Vascular NOS activity was measured using [14C]L-arginine as substrate in aortic 

slices [28]. Specific NOS activity was assessed in the presence of 10-4 M L-NAME. 

NO production (measured as pmol of [14C]L-citrulline) in each tube was normalized 

to the weight of the tissue slices incubated with the substrate during equal periods of 

time and expressed as pmol/g.min. 

 

2.6. Determination of vascular NADPH-dependent superoxide anion production 
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NADPH-dependent superoxide anion production in aorta homogenates was 

measured using the lucigenin-enhanced chemiluminescence assay [29]. Sample 

aliquots containing 200 g of aorta protein, were placed on vials containing warm 

(37ºC) Krebs solution, and subsequently added with NADPH (40 M final) and 

lucigenin (25 M final) in a volume of 1 ml. Each sample was measured in the 

absence and presence of superoxide dismutase (SOD) (100 U/ml). Light emission 

was measured for 10 min using a LKB Wallac 1209 Rackbeta Liquid Scintillation 

Counter (Turku, Finland) in the chemiluminescence mode, and the area under the 

curve (AUC) was calculated. Results are expressed as the difference between AUC 

in the absence and in the presence of SOD, representing the total amount of 

superoxide anion production.  

 

2.7. Western blots  

 

Aorta homogenates were added with a 2X solution of SDS-sample buffer (62.5 mM 

Tris-HCl buffer, pH 6.8, containing 2% (w/v) SDS, 25% (v/v) glycerol, 5% (v/v) -

mercaptoethanol, and 0.01% (w/v) bromophenol blue), and then heated at 95°C for 2 

min. Aliquots containing 30-50 μg of protein were separated by reducing 10% (w/v) 

polyacrylamide gel electrophoresis, and electroblotted to polyvinylidene difluoride 

membranes. Colored molecular weight standards (GE Healthcare, Piscataway, NJ, 

USA) were run in simultaneous. Membranes were blocked for 2 h in 5% (w/v) nonfat 

milk and incubated overnight in the presence of the corresponding antibodies 

(1:1,000 dilution) in 5% (w/v) BSA in PBS containing 0.1% (v/v) Tween 20. After 

incubation for 90 min at room temperature in the presence of the corresponding 

HRP-conjugated secondary antibody (1:10,000 dilution), complexes were visualized 

by chemiluminescence detection. Films were scanned and densitometric analysis 

was performed using Image J (National Institute of Health, Bethesda, Maryland, 

USA). 

 

 

2.8. Immunohistochemistry  

 

Aortas were post-fixed in a solution of 4 % (w/v) paraformaldehyde in PBS for 20 min 

at room temperature, followed by washing in PBS, and cryoprotection in 30 % (w/v) 

sucrose in PBS for 24 h. Tissues were frozen at –80°C and sectioned (18 m) using 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
a Leica CM 1850 cryotome (Leica Microsystems Inc., Buffalo Grove, IL, USA). For 

immunohistochemistry, cryotome sections were rinsed twice with PBS, followed by a 

third rinse with PBS containing 0.3 % (v/v) Tween 20 (PBST), and then blocked for 2 

h at 37ºC with a solution containing 5% (w/v) BSA in PBST. Incubation with the 

primary antibody for p47phox (1:50) was done overnight at 4ºC in a humidified 

chamber. Sections were incubated with a Cy3-conjugated rabbit anti-goat antibody 

(1:1000) for 2 h, cell nuclei were stained with Hoechst 33342 [30]. Microscopic 

observations were done by epifluorescence using an Olympus BX50 microscope, 

and photography was carried out with a Cool Snap digital camera. Integrated optical 

density was measured as relative to area and was determined for each sample in 5 

randomly selected fields. Evaluation of the data was carried out using the Image-Pro 

Plus version 4.5 software (Media Cybernetics, Silver Spring, MD, USA).  

 

2.9. Statistical analysis 

 

Data were analyzed by one-way analysis of variance (ANOVA) using StatView 5.0 

(SAS Institute, Cary, NC, USA). Fisher's least significance difference test was used 

to examine differences between group means. A p <0.05 was considered statistically 

significant. Data are shown as mean ± SEM. 

 

3. Results 

 

3.1. (−)-Epicatechin improves BP and metabolic parameters in HF-fed rats 

 

No differences in total body weight and cardiac weight index were found between the 

three experimental groups (Table 1). The ratio total cholesterol /HDL-cholesterol was 

significantly higher in the HF-group respect to Control and HF-EC groups. 

Consumption of fructose in the drinking water resulted in increased systolic BP in the 

HF group recorded after 4 and 8 w in treatment. This increase was not observed in 

the HF-EC group. The ratio between wall thickness and lumen diameter in aorta, 

determined to evaluate changes in aorta architecture, resulted similar among the 

groups indicating the absence of remodeling processes. 

 

3.2. (−)-Epicatechin lowers superoxide anion production in HF-fed rats. 
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Superoxide anion production was evaluated measuring NADPH-driven SOD-

inhibitable lucigenin chemiluminescence. Chemiluminescence was significantly 

higher in the HF group compared to the Control group (Control = 1.0 ± 0.1 AUC/mg 

prot, HF = 1.8 ± 0.1 AUC/mg prot, p<0.05) and this higher level was not observed in 

the HF-EC group (Fig. 1A). 

The expression of NOX subunits p47phox, p22phox and NOX4 (Fig. 2) was higher in 

the aortas from HF group respect to Control and HF-EC groups. The 

expression/distribution of p47phox was evaluated by immunohistochemistry across the 

aortic wall (Fig. 1 B-C). The fluorescent signal was observed in the intima and 

adventitia layers of the aorta and was markedly higher in HF rats compared to 

controls, whereas this signal was decreased by (−)-epicatechin treatment.  

 

3.3 (−)-Epicatechin increases arterial NOS activity in HF-fed rats 

 

Figure 3 shows NO related parameters in aorta from the three experimental groups. 

NOS activity was slightly but significantly higher in the HF group compared to 

controls; in the HF-EC group NOS activity was significantly higher than in both, 

Control and HF groups (Fig. 3A). To assess the possible mechanisms involved in 

aorta NO production changes, we studied eNOS protein expression and 

posttranslational modifications. Although similar eNOS protein abundance was 

observed in the three experimental groups (Fig. 3B), HF and HF-EC groups exhibited 

significantly enhanced eNOS phosphorylation ratio at the activation site Ser1177 in 

comparison with the Control group (Fig. 3C). With the purpose

of evaluating the most relevant protein-protein interaction involved in eNOS activity 

regulation (caveolin-1/eNOS), caveolin-1 expression was measured by Western blot 

in aorta homogenates (Fig. 3D). Results showed an augmentation in caveolin-1 

expression in the HF respect to the Control group that was not observed in the HF-

EC group.  

 

3.4. (−)-Epicatechin decreases the activation of the c-Jun-N-terminal kinase pathway 

in HF-fed rats 

  

MAPK activation was evaluated in aorta homogenates through the determination of 

the ratio phosphorylated/total levels by Western blot (Fig. 4). Fructose administration 

caused an increase in c-Jun-N-terminal kinase (JNK) phosphorylation (Thr 183/Tyr 

185), not affecting ERK (Tyr 204), and p38 (Thr 180/Tyr 182) phosphorylation (Fig. 
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4). (−)-Epicatechin dietary supplementation prevented the fructose-induced increase 

in JNK phosphorylation. 

 

4. Discussion 
 
 
This work shows that the dietary administration of (−)-epicatechin prevents the 

increase in BP induced by long-term high fructose consumption in rats. (−)-

Epicatechin regulates NO bioavailability in part through the modulation of superoxide 

anion production (and NOX subunits expression), and NOS activity. 

Under the used experimental conditions, and in agreement with previous reports 

[31], BP augmentation in HF group was not associated with cardiac hypertrophy or 

aorta remodeling. According to the NO bioavailability hypothesis, the quantitative 

relationship between superoxide anion and NO is crucial in defining NO steady state 

levels, and as a consequence, its bioavailability. A higher production of superoxide 

anion is associated to hypertension [32] and compromises NO bioavailability.  

Explaining the antihypertensive effects of (−)-epicatechin through direct antioxidant 

mechanisms, such as free radical scavenging, is unlikely [33-35], due to the low 

concentration of (−)-epicatechin and its metabolites present in plasma and potentially 

reaching endothelial cells [22,36,37]. Therefore, the regulation of translational and 

posttranslational processes by (−)-epicatechin, in this case related with NOS and 

NOX expression/activity, could provide a better explanation [38-41]. 

NOX1 and NOX2 activities are regulated by the abundance of both stabilizer (e.g. 

p22phox) and activator subunits (e.g. p47phox) [42]. Under our experimental conditions, 

the increase in aortic superoxide anion production observed in the HF group was 

associated with higher expression of both p22phox and p47phox. In line with this, the 

decrease in superoxide anion production in aorta detected in the HF-EC respect to 

the HF group should be ascribed to a lower assembly/activity of NOX1 and/or NOX2 

as a consequence of the downregulation of p22phox and/or p47phox. In agreement, 

similar changes in NOX subunits expression were associated with dietary (−)-

epicatechin supplementation in other hypertension models [22,25,43]. 

Concerning NO production, the increase in aortic NOS activity in fructose treated 

rats could be ascribed to a compensatory mechanism in response to the elevation of 

BP [44]. Interestingly, this compensation was not paralleled with an increased eNOS 

expression (expected for a long-term adaptative response), but with increased eNOS 

phosporylation. Molecular mechanisms of eNOS activity regulation includes 

phosphorylation at activation sites (Ser1177, Ser633, and Ser614) and inhibitory 
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sites (Thr 495) [45]. In vitro studies showed that 1 M (−)-epicatechin treatment of 

human coronary artery endothelial cells in culture increased phosporylation at 

Ser1177 and Ser633 and decreased phosphorylation at Thr495 [46]. We currently 

observed a higher phospho-eNOS (Ser1177)/eNOS ratio in the aorta of the group 

receiving simultaneously fructose and (−)-epicatechin (HF-EC) respect to the Control 

group, in agreement with previous studies [24,25]. However, as in the group treated 

with fructose alone (HF group) there was also an increased in Ser1177-

phosphorylation, it is not possible to unequivocally attribute the higher NOS activity 

found in the HF-EC group to an increased phosphorylation. 

In addition, eNOS activity in endothelial cells is tightly regulated at a posttranslational 

level by a protein-protein interaction with caveolin-1 [47]. In this regard, the 

increased expression of caveolin-1 observed in the HF group would be associated 

with a negative modulation of eNOS in endothelial cells. Accordingly, similar 

caveolin-1 levels in the Control and HF-EC groups suggest a lack of negative 

modulation.  

A role for caveolin-1 in NOX assembly has also been proposed in vascular smooth 

muscle cells as well as in endothelial cells [48]. Thus, increased abundance of 

caveolin-1 is associated to lower eNOS activity and higher assembly of NOX1 and 

NOX2.  

Mechanisms of NOX4 modulation in endothelial and smooth muscle cells are 

controvertial [32]. NOX4 expression has been found increased in vessels of diabetic 

mice [49] and some authors consider that NOX4 contributes to vascular injury [50]. 

In line with this, the increased NOX4 expression observed in this work appears 

associated to not desirable effects. The proposed primarily product of NOX4 

enzymatic activity, hydrogen peroxide, participates in signal transduction regulation, 

in particular of the MAPK pathways.  

Among the more relevant MAPKs pathways in vascular tissue, JNK was shown to be 

activated in the aorta of the rats fed with high fructose diet. Accordingly, JNK 

activation by fructose consumption was previously showed in liver [26,51], skeletal 

muscle [52], and adipose tissue [26,52]. In this study, EC supplementation mitigated 

HF-mediated JNK activation in aorta, as in liver and adipose tissue of rats under the 

same experimental model [26].  

At vascular level, superoxide anion [53], hydrogen peroxide [54] and even 

peroxynitrite [55] have been considered as responsible for JNK activation. Moreover, 

NOX inhibitors antagonized the stimulatory effect of angiotensin II on JNK [53,56], 

supporting a role for NOX produced oxygen active species in this process. 
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In this regard, NOX and JNK activation upon high fructose consumption suggest a 

perturbation of cellular redox status which in the long term could lead to oxidative 

damage and irreversible changes in vascular health.  

The amount of (−)-epicatechin provided to the rats (equivalent to 200 mg/d for a 70 

kg human being) is 8-16 times higher than that estimated for the diet of most non-

vegetarian populations [57,58]. These levels of consumption could be realistically 

reached by: i) increasing fruits and vegetables consumption (most world populations 

consume less than half that the recommended 5 portions/d); ii) increasing 

specifically the consumption of (−)-epicatechin- and/or flavanol-rich fruits and 

vegetables; and/or iii) supplementing the diet or by pharmacological administration of 

pure (−)-epicatechin or flavanols. 

In summary, dietary (−)-epicatechin supplementation prevents hypertension 

developed in high fructose-fed rats concomitantly with modifications in superoxide 

anion and NO metabolism that results in an increase in NO bioavailability. 

Considering the abundance of (−)-epicatechin in some edible plants and products 

derived from them, it is feasible to develop diets enriched in those foods to avoid or 

prevent the increase in BP that occurs with age and is associated to metabolic 

syndrome. Moreover, the application of pure (−)-epicatechin as a pharmacological 

agent to treat hypertension and other vascular diseases could be considered.  
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Legends to Figures 

 

Fig. 1.  

Effect of dietary (−)-epicatechin on aorta NADPH-dependent superoxide anion 

production and p47phox subunit expression in HF-fed rats. (A) Superoxide anion 

production measured by lucigenin chemiluminescence in aortic homogenates from 

Control, HF and HF-EC groups after 8 w of treatment. Results are expressed as the 

difference between area under the curve (AUC) in the presence and the absence of 

SOD. (B-C) Quantification and representative images of p47phox 

immunohistochemistry from Control, HF and HF-EC groups. Left column shows 

p47phox protein (red). Central column shows elastin autofluorescence (green). Right 

column shows the p47phox protein (red) merged with elastin autofluorescence 

(green). In all the images blue fluorescence indicates nuclear staining with Hoechst. 

Values are shown as means ± ESM (n = 4 per group). * p < 0.05 with respect to 

Control and HF-EC groups. 

 

Fig. 2. 

Effect of dietary (-)-epicatechin on aortic expression of NOX subunits in HF-fed 

rats. Western blot of (A) p47phox, (B) p22phox, and (C) NOX4 in aortic homogenates 

from Control, HF and HF-EC groups after 8 w of treatment. -tubulin levels were 

measured as loading control. Values are shown as means ± ESM (n = 6 per group). * 

p < 0.05 with respect to Control and HF-EC groups. 

 

Fig. 3. 

Effect of dietary (-)-epicatechin on NO production related parameters in aorta 

from HF-fed rats. (A) NOS activity; Western blot of (B) eNOS, (C) p-eNOS 

(Ser1177) and (D) caveolin-1 in aortic homogenates from Control, HF and HF-EC 

groups after 8 w of treatment. Phosphorylated/total ratio was calculated for p-eNOS 

and eNOS and caveolin-1 were normalized to -tubulin content. Values are shown as 

means ± ESM (n = 5 per group). * p < 0,05 with respect to Control and HF-EC 

groups. & p < 0.05 with respect to Control and HF groups. # p < 0.05 with respect to 

Control. 

 

Fig. 4.   

Effect of dietary (-)-epicatechin on aorta MAPKs signaling pathways in HF-fed 

rats. Western blot of (A) p-ERK (Tyr204), (B) p-JNK (Thr183/Tyr185) and (C) p-p38 

(Thr180/Tyr182) in aortic homogenates from Control, HF and HF-EC groups after 8 

w of treatment. Results are expressed as the ratio of phosphorylated/total protein 

level. Values are shown as means ± ESM (n = 5 per group). * p < 0.05 with respect 

to Control and HF-EC groups. 
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Table 1  

Body weight, heart weight, cardiac weight index, plasma total cholesterol/HDL 

cholesterol ratio, and aorta wall thickness/lumen diameter ratio after 8 w on 

treatments and systolic blood pressure at 0, 4 and 8 w on treatments.  

 

Parameters                      Control                   HF                        HF-EC 

 
BW (g)                              336 ± 13                310 ± 13               322 ± 14 

HW (g)                             1.14 ± 0.06            1.02 ± 0.05            1.13 ± 0.05 

HW/BW                            3.4 ± 0.1                3.29 ± 0.09            3.51 ± 0.05 

Plasma TC/HDL-C           2.4 ± 0.1                3.5 ± 0.4*              1.72 ± 0.08 

WT/LD (m/mm)              65 ± 1                    59 ± 3                    66 ± 2 

SBP (mmHg) 

       0 w        109 ± 2                  112 ± 2                   112 ± 2 

           4 w        121 ± 2                  132 ± 2*                 124 ± 1 

            8 w        130 ± 4                  142 ± 3*                 130 ± 2 

BW: body weight; HW: heart weight; TC/HDL-C: ratio total cholesterol/HDL 

cholesterol; WT/LD: ratio wall thickness/lumen diameter; SBP: blood pressure; 

Values are shown as means ± ESM (n = 10 per group). 

* p < 0.05 with respect to Control and HF-EC groups.  
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