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Abstract

Few infectious diseases are entirely human-specific: most human pathogens also circulate in
animals, or else originated in non-human hosts. Influenza, plague, and trypanosomiasis are classic
examples of zoonoses, or infections that transmit from animals to humans. The multi-host ecology
of zoonoses leads to complex dynamics, and analytical tools such as mathematical modeling are
vital to the development of effective control policies and research agendas. Much attention has
focused on modeling pathogens with simpler life cycles and immediate global urgency, such as
influenza and SARS, but vector-transmitted, chronic, and protozoan infections have been
neglected, as have crucial processes such as cross-species transmission. Progress in understanding
and combating zoonoses requires a new generation of models that addresses a broader set of
pathogen life histories and integrates across host species and scientific disciplines.

A recent survey of all recognized human pathogens revealed that over half are zoonotic (1,
2), and nearly all of the most important human pathogens are either zoonotic or originated as
zoonoses before adapting to humans (3). The three most devastating pandemics in human
history, the Black Death, Spanish influenza, and HIV/AIDS, were caused by zoonoses (4),
as were 60–76% of recent emerging infectious disease events (2, 5). Underlying these
patterns are specific public health challenges arising from the complex multi-host ecology of
zoonotic infections (6, 7), and accelerating environmental and anthropogenic changes that
are altering the rates and nature of contact between human and animal populations (8–10).
Following a series of recent outbreaks (e.g., avian and swine influenza, West Nile virus and
SARS), a rising sense of urgency has stimulated a broad increase in research on zoonoses,
ranging from dissection of the molecular determinants of host specificity (11) to viral
prospecting in African rain forests (12). Such endeavors have produced important insights
into underlying patterns and basic mechanisms of disease, but integrating this new
knowledge across scales and applying the results to public health policy are difficult given
the non-linear and cross-species interactions inherent to zoonotic infections (13). These
complexities can be addressed by harnessing the integrative power and mechanistic insights
attainable from analysis of population dynamic models of zoonotic transmission. Here, we
review the role of dynamical modeling in the study of zoonoses through an analysis of the
current status of the field. Our specific goal is to detect gaps in present knowledge and
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identify the priorities for future research that will unify, focus, and propel the inter-
disciplinary push to combat zoonoses.

A Taxonomy for Zoonotic Dynamics

Wolfe et al. (3) proposed a useful classification scheme for pathogens, delineating five
stages spanning the range from those exclusively infecting animals (stage I) to those
exclusively infecting humans (stage V). The zoonotic component of this scheme (stages II–
IV) can be divided into the constituent phases of transmission and associated
epidemiological mechanisms (Fig. 1A). Stage II pathogens are those, like West Nile virus or
Brucella abortus, that can transmit from animals to humans to cause ‘primary’ infections but
do not exhibit human-to-human (‘secondary’) transmission. Stage III pathogens, such as
monkeypox virus and Leishmania infantum, spill over into human populations from animal
reservoirs and can cause limited cycles of human-to-human transmission that stutter to
extinction. Stage IV pathogens persist in animal reservoirs but can cause self-sustaining
chains of transmission in human populations; examples include Yersinia pestis (plague) and
pandemic influenza. Our approach diverges from Wolfe et al. by basing the distinction
among stages II–IV on the basic reproductive number, R0, from the perspective of the
human ‘spillover’ hosts. This quantity, defined as the expected number of secondary cases
produced by a typical infectious individual in a wholly susceptible population, is a central
concept in epidemiological theory (14, 15). R0 enables us to distinguish stages II–IV on
dynamical grounds since it quantitatively demarcates pathogens capable of sustained
transmission among humans (those with R0>1) from those doomed to stutter to local
extinction (R0<1) or those with no onward transmission (R0=0). The dynamics of all
zoonoses involve multiple phases, including transmission in the animal reservoir, spillover
transmission into humans, and possibly stuttering or sustained transmission among humans.
Cross-species spillover transmission is the defining characteristic of a zoonosis, and
examination of the factors influencing the force of infection from animals to humans (Fig.
1B) reveals three distinct components: the prevalence of infection in the animal reservoir,
the rate at which humans come into contact with these animals, and the probability that
humans become infected when contact occurs. These components are each influenced by
diverse properties of natural, agricultural and human systems, with important differences
driven by the pathogen’s mode of transmission. Significant quantitative or qualitative
differences may also arise between zoonoses that use wildlife rather than domesticated
animals as reservoirs, owing to differences in frequency, duration and nature of cross-
species contacts and in opportunities for human intervention (Fig. 1).

Dynamical Models for Zoonoses

Mathematical models of the population dynamics of infectious diseases (14, 15) use a well-
established (and ever-growing) body of theory to construct simplified representations of
epidemiological systems. Crucially, dynamical models explicitly represent the key
population groups and central processes of epidemic spread. Infectious diseases differ from
chronic conditions such as cancer or heart disease, because the risk of infection depends not
only on personal risk factors but also upon the state of other individuals in the population.
This leads to non-linear interactions among sub-groups in a population that can result in
complex and sometimes counter-intuitive epidemic behavior. In the fundamental
susceptible-infected-recovered (SIR) model, groups of individuals within the host
population are classified as ‘susceptible’ to infection, ‘infected’ and able to transmit the
pathogen, or ‘recovered’ and immune to re-infection (Fig. 2A). Transmission of infection to
new cases is driven by contacts between susceptible and infectious individuals. Though
crude, this model reproduces the classical epidemic curve (Fig. 2B), and has been
remarkably successful in elucidating fundamental principles, including the ‘tipping point’

Lloyd-Smith et al. Page 2

Science. Author manuscript; available in PMC 2014 January 14.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



threshold for epidemics to take off if the basic reproduction number, or R0, is greater than 1,
and the potential to achieve ‘herd immunity’ through vaccination programs.

Because of the emphasis on mechanism, dynamical models can address questions outside
the scope of statistical and geospatial analyses (Fig. 2C). By adjusting parameter values or
reformulating mechanisms, modelers can perform ‘what if’ experiments to study problems
that are ethically or logistically unfeasible to study in the real world; for example, the
efficacy of different control measures or the population-level consequences of clinical or
laboratory findings can be explored. Such cross-scale synthesis also enables researchers to
extract key characteristics of epidemics, such as changes in the value of the ‘effective’
reproductive number (Re) as control measures are imposed or the supply of susceptible hosts
is depleted. Models can also evaluate the potential influence of unknown information,
helping to set priorities for data collection and define the uncertainty associated with model
outcomes. Finally, dynamical models can be used to predict future trends of disease spread,
although such projections must be accompanied by a comprehensive uncertainty analysis.

Population dynamic modeling has made major contributions to our understanding of
zoonotic infections. During the bovine spongiform encephalopathy (BSE) epidemic in
Britain, models were used to extract and synthesize basic knowledge from clinical and
epidemiological data, while also extrapolating trends from unfolding evidence about the
mysterious pathogen (16, 17). Models of rabies transmission have provided biological
insight, guided vaccination policy and predicted spatial spread (18–20). Following the
emergence of SARS coronavirus (SARS-CoV), models were applied to measure the virus’s
transmissibility and refine plans for epidemic containment via infection control and case
isolation (21, 22). Modeling studies predicted that quarantine would be a relatively
inefficient means of controlling SARS (23, 24), and this was confirmed in later analyses of
outbreak data (25).

Comparative analyses have characterized epidemiological phenomena, such as host
heterogeneity, across suites of zoonotic pathogens, and have coupled the findings to models
to study dynamical consequences (26, 27). For instance, analysis of detailed outbreak data
shows that highly infectious ‘superspreaders’ exist for all pathogens (though to varying
degrees), and modeling shows that their existence makes outbreaks rarer but more explosive
(26). Theoretical studies have illuminated central mechanisms relevant to zoonotic
dynamics: analysis of the population dynamics of multi-host pathogens revealed the
influence of host species diversity on reservoir dynamics and spillover risk (28), while a
hybrid transmission/evolution model showed the potential for stage III zoonoses to adapt to
humans before their stuttering chains of transmission die out (29). Zoonotic dynamics have
clear parallels with invasion biology (as spillover, stuttering chains and outbreaks
correspond roughly to the invasion phases of introduction, establishment, and population
expansion) raising the possibility of fruitful cross-fertilization between theoretical
frameworks for these fields (30).

In contrast to the complete lack of application of models during the last influenza pandemic
in 1968, dynamical models now play a key role in preparing for pandemic influenza strains
(e.g., 31). For example, school closure has been identified as an important control measure
during the early phase of pandemic spread (32), and was implemented in cities across the
USA that were affected by H1N1 influenza (“swine flu”) in spring 2009. Models of both
influenza and SARS have exposed the futility of imposing travel restrictions once a
pathogen is already spreading within a region (e.g. 24, 33), and such restrictions have been
largely avoided following the recognition that the 2009 H1N1 influenza strain was already
widespread when it was discovered. Meanwhile, established methods for the estimation of
R0 have helped to speed determination of this crucial parameter for the pandemic strain (34).
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Surveying the Field: Skews and Gaps

Where has modeling research concentrated across the gamut of zoonotic pathogens and
epidemiological challenges? Where are the major gaps in our knowledge, and how can
dynamical models be used to integrate empirical findings, guide health policy, and drive
innovative research?

We systematically surveyed 442 modeling studies addressing 85 species of zoonotic
pathogens, and found surprising gaps and tremendous skews in coverage (for details see
Supplementary Online Material). Viral diseases have dominated zoonotic modeling, led by
pandemic influenza, SARS and rabies which together account for almost half of all zoonotic
models (Table 1; Fig. S1). Bacterial and especially protozoan pathogens have received much
less attention relative to their importance. Vector-borne and food-borne zoonoses have been
neglected by dynamical modelers compared with infections transmitted by direct contact.
Consequently, many zoonotic diseases of great public health concern, such as leptospirosis
and yellow fever, have rarely been modeled (Table 1), and so we lack a formal framework to
understand the transmission dynamics of these diseases or to respond to sudden changes in
their epidemiology. The current literature often fails to account for the multi-host ecology of
zoonotic pathogens. The great majority of modeling studies consider just a single phase of
the zoonotic process, typically focusing on dynamics in the reservoir or outbreaks in the
human population (Fig. S2). Models incorporating spillover transmission—the defining
process of zoonotic dynamics—are dismayingly rare. For directly-transmitted zoonoses, we
found only six dynamical studies that include a mechanistic model of animal-to-human
spillover. For vector-borne and food-borne infections, this number is higher but still a clear
minority. Rather than integrating across host species and dynamical phases to address
questions aimed at the zoonotic nature of these pathogens, too often we find zoonoses being
treated ‘piece-wise’ as a concatenation of single-host processes (or worse, some phases are
ignored completely).

A similar gap is evident in the modeling of stuttering chains of transmission (Fig. S2),
wherein zoonotic pathogens transmit inefficiently among humans so any minor outbreaks
triggered by spillover events inevitably die out. Despite their limited epidemic potential,
such pathogens present epidemiologists with significant challenges that are often best
addressed using mathematical models. For instance, monkeypox virus has long been known
to spread inefficiently among humans, but its transmissibility appears to be rising as
population immunity drops because fewer people have been vaccinated against smallpox
(35, 36). Surveillance data for stage III zoonoses, such as monkeypox, Nipah virus or H5N1
avian influenza, can be analyzed to estimate human-to-human transmissibility and to define
signatures of possible viral adaptation to humans (37). Given that pathogens in this class are
the best-identified threats for future pandemics in the human population, study of their
dynamics should be prioritized for attention.

Several patterns stand out among the existing models (Fig. S3). They have been primarily
applied to studying the efficacy of control measures, with the secondary aims of estimating
epidemiological parameters of interest and explaining observed patterns in field data.
Prediction of future trends is a major focus for models of pandemic influenza and BSE, but
this aim is rarely applied to other pathogens. Equally notable are the questions missing from
these studies. The dynamics of pathogen populations within individual hosts individuals
have rarely been included in models of zoonotic transmission dynamics, with the notable
exception of food-borne pathogens where the association between pathogen titers in
livestock (before and during processing into meat) and infection risk to humans has been
studied. Evolutionary issues are similarly neglected, despite the pressing concerns
surrounding adaptation to humans and pandemic emergence for several pathogens. It is
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particularly striking that of the 62 models of SARS dynamics we found, none deals with
pathogen evolution, despite the accumulating evidence that the virus was adapting rapidly as
it circulated among humans (38). This gap remains because of the paucity of data linking
pathogen genotypes to phenotypes at the population scale (in particular transmissibility).
This is an important and tractable topic for empirical and theoretical research, especially
given the increasing availability of genetic sequence data (39). Interactions among pathogen
species have also been largely neglected, even though empirical data show that co-infections
are relatively common and that different pathogens can facilitate or hamper each other’s
spread through direct or immune-mediated interactions (40). Finally, there has been little
research that integrates transmission dynamics of zoonoses with economic considerations,
despite the clear relevance of this synthesis to control policy (e.g. 32).

Data and the Link to Reality

A crucial component of a robust and applicable science of zoonotic dynamics is the use of
data to estimate parameters and validate model output, and the thoughtful treatment of data-
limited situations based on rigorous sensitivity analysis. While most studies use some data to
parameterize or validate models (Fig. S3B), their use is highly variable. At the simplest,
many authors borrow data-derived parameter values from earlier studies, or fit model
projections to epidemic curves. More advanced studies use dynamical reasoning to arrive at
new methods of gleaning insights from available data (e.g., 41). For studies aimed at
projecting epidemic trends, the gold standard is to validate model output by comparing it
with independently gathered data that has not been used for the construction of the model.
Notable examples include the ‘post-diction’ of global spread of the 1968 influenza pandemic
based on air traffic data (42) and the validation of BSE models developed for England using
independent data from Northern Ireland (43). Models can also interact powerfully with
population-level experiments to confirm mechanisms underlying observed patterns (44).
Broad patterns of data usage are of course determined by the availability of relevant data
sets. The free availability of epidemic curves led to two-thirds of SARS modeling studies
incorporating population-level data, and early analyses of SARS disease progression enabled
widespread use of data-driven parameters (45). For influenza, the well-known clinical
course of infection has enabled widespread use of data in parameterizing models, but model-
fitting to epidemic curves has been less common. Studies focusing on zoonoses in their
animal reservoirs (e.g. rabies and bovine tuberculosis) have relied largely on individual-level
parameters, owing to the relative rarity of collated population data for animal diseases. In
contrast, however, all the BSE models were fit to population data, reflecting the intensive
and cumulative study of the British epidemic and later application of these methods to BSE
data from other countries.

Data-free modeling tends to be more common for pathogens that have fewer models overall;
this likely reflects either the complete unavailability of data or the lack of opportunity to
borrow data-informed parameter values from other studies. However, a broad and vibrant
literature has applied statistical methods to analyze the epidemiological and spatial patterns
of zoonotic infections (e.g., 46, 47), and opportunities to link these findings with dynamical
models too often go unrealized.

Looking beyond the use of data, the best modeling studies are those that engage
substantively, and realistically, with current thinking in biology or public health. However,
detail and model complexity are not equivalent to realism, and a simple model can yield
more insight than a massive simulation that is not fully understood. Detailed simulation
models are necessary to address some important questions, but model complexity should be
increased cautiously and with an awareness of the associated costs of reduced transparency,
a multiplicity of often unknown parameters, and the resulting need for intensive
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investigation of how model assumptions may influence conclusions (e.g., 31). A hierarchical
approach, comparing the behavior of models with different degrees of detail, can aid the
design and interpretation of complex models.

Response Dynamics and the Determinants of Effort

Given the prevailing focus of zoonotic models on designing and assessing control measures,
and the unique potential of models to estimate important characteristics of epidemics, it is
instructive to consider the timeliness with which modelers respond to emerging threats. For
zoonotic pathogens that either were newly discovered or have made significant range shifts
in recent decades, we constructed temporal profiles of the scientific literature to characterize
the dynamics of the modeling community’s response (Figs. 4 and S4). The poster child for
rapid response is SARS, for which several modeling analyses were completed within months
of the pathogen’s and epidemic’s discovery and were influential in designing outbreak
control measures. For Borrelia burgdorferi, the causative agent of Lyme disease, a 10-year
delay from discovery to the first model has been followed by intermittent modeling efforts,
perhaps reflecting the difficulty of constructing mechanistic models for a vector-borne
pathogen with a multi-host sylvatic cycle that is still being characterized, coupled with a
vector having a complex life-history incorporating multi-year time delays. West Nile virus
exemplifies a different pattern, in which low-level scientific interest suddenly surges
following incursions into new geographic territory (wealthy nations in particular), and
sporadic modeling efforts follow a few years later.

A sense of urgency and global risk motivates the community to produce and publish
dynamical models quickly. Regrettably, for those zoonoses largely restricted to developing
countries, such as trypanosomiasis (sleeping sickness), leishmaniasis, and leptospirosis,
neglect still applies (Figs. 3B and Table S1) despite their substantial public health impacts.
A further, essential factor is the existence of good clinical and epidemiological data to
construct and validate models. Here we stress that data must be made publicly available,
preferably in real time as occurred for SARS, to maximize both the research opportunity and
the resulting public good of scientifically-derived policy. The early availability of genetic
sequence data for the current H1N1 influenza pandemic has been exemplary in this regard,
but unfortunately the corresponding epidemiological data have been less systematically
accessible.

Finally, a key determinant of modeling effort is pathogen life history—in particular the
extent to which a pathogen matches the assumptions of the basic SIR family of epidemic
models. For infections that are acute, symptomatic and directly-transmitted, models can be
constructed (and often parameterized) using ‘off-the-shelf’ techniques, greatly speeding the
analysis of newly identified disease threats and enabling extension of the models to address
more sophisticated questions. Hence, an important priority for on-going research is to
expand the class of pathogens for which there are readily available modeling templates, and
worked examples of their connection to datasets, beyond those that conform easily to the
standard SIR model.

The Way Forward: Crossing Species, Crossing Disciplines

Significant shortfalls in dynamical studies of particular diseases, as well as entire classes of
zoonotic pathogens (notably protozoan and vector-borne infections), can be clearly
discerned in the literature (Fig. 3). In contrast, some zoonoses, such as influenza, SARS and
BSE, have acted as crucibles for development of new methods for understanding
epidemiological complexities, particularly where well-resolved data are available.
Unfortunately, even these models have been restricted in scope and there is a need for new
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models that integrate across phases of zoonotic dynamics and incorporate evolutionary,
economic and within-host considerations.

An especially worrying gap is modeling of spillover transmission from animals to humans.
The force of infection across species boundaries can be broken into its constituent factors
(Fig. 1B), including universal components such as the role of human susceptibility, risk
behaviors, and infection prevalence in the reservoir, as well as particular details related to
transmission routes and pathogen-specific biology. Spillover risk also can be influenced by
dynamical phenomena: one innovative study posits that epizootic peaks of hantavirus in
rodent reservoirs, with accompanying spikes in numbers of newly-infected rodents excreting
large quantities of virus, lead to high concentrations of virus in the environment and hence
an increased risk of human infection (48). Further research will reveal whether such
hypotheses may hold true generally across zoonotic systems.

Surprisingly, most of the best models of spillover have been developed for the more
complex vector-borne and food-borne zoonoses; this arises because the process of
transmission can often be observed directly in such systems. Studies of vector-borne
infections have used quantitative frameworks to integrate data on host competency, vector
feeding preferences, and environmental conditions to be able to estimate spillover risk from
different ecological pathways, though without explicitly incorporating dynamics (49). The
food safety literature has treated the risk of pathogens crossing from animal hosts to human
exposures in vivid mechanistic detail (50), setting a high standard to be matched by disease
ecologists. For directly-transmitted zoonoses, it is straightforward to construct a basic model
with cross-species transmission (20), but it is very challenging to delve into underlying
mechanisms and estimate key parameters, particularly the cross-species contact rate and the
resulting probability of infection, which typically arise from multiple and largely
unobserved ecological, behavioral and physiological factors. Nevertheless, the plummeting
cost of genetic sequencing brings exciting opportunities for mapping cross-species
transmission (51).

A second major gap lies in analysis of stuttering chains of inefficient human-to-human
transmission following spillover. Data from these settings are dominated by stochastic
effects and heterogeneities among hosts and environments, and analysis is complicated by
the fundamental problem of distinguishing between primary and secondary cases. The
central challenges in the study of stage III zoonoses include quantifying the rate of human-
to-human transmission against a background of spillover, and monitoring for changes in
pathogen transmissibility that may represent steps toward emergence of new stage IV
pathogens (29).

The study of zoonotic dynamics offers a unique window into fundamental questions of
pathogen ecology and evolution, and provides vital insights into public health issues. We
need models to reveal the points of vulnerability where intervention against zoonoses will be
most effective, and to highlight the gaps in data collection. We need to know when
particular zoonotic phases, i.e., reservoir transmission, spillover from animals to humans,
stuttering transmission or incipient outbreaks among humans, can be targeted to optimize
epidemiological outcomes while reducing cost. How should health policy be adapted to
account for environmental change or regional differences in ecology and sociology? How
might zoonotic pathogens evolve in response to anthropogenic forces or control strategies?
Dynamical models, rooted in data, provide an essential framework for addressing these
critical questions.

Lloyd-Smith et al. Page 7

Science. Author manuscript; available in PMC 2014 January 14.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
(A) Schematic diagram of zoonotic transmission dynamics. Zoonoses can involve as many
as four dynamical phases, including enzootic or epizootic circulation in the animal reservoir,
spillover transmission from animals to humans, and sometimes self-limiting stuttering
chains of human-to-human transmission or sustained transmission leading to outbreaks.
Adapting Wolfe et al. (6), we classify zoonotic pathogens into three stages (II, III, and IV)
according to their transmissibility among humans. (B) The spillover force of infection is
determined by the product of three major components. The force of infection is defined as
the per capita rate of infection of susceptible humans. Beneath each major component is a
list of contributing factors drawn from many disciplines; these factors may pertain to all
zoonoses or to particular transmission modes, as indicated.
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Fig. 2.
Dynamical models for epidemics. (A) Schematic diagram of the basic SIR model, showing
progression of hosts from susceptible to infected to recovered states. The dotted arrows
represent transmission of infection to new cases resulting from contacts between susceptible
and infected individuals. (B) The simple epidemic curve (red) predicted by the SIR model
for a closed population (i.e., without renewal by immigration or birth of new hosts) and R0 >
1. The curves for the declining proportion of hosts that are susceptible to infection is black
and for the rising proportion that are recovered and immune is blue. (C) Dynamical models
provide unique insights and allow researchers to ask questions that cannot be addressed by
other methods. For example, these models enable estimation of epidemiological parameters
linked to key mechanisms, integration of data spanning multiple spatial scales, comparison
of alternative control strategies, prediction of future trends, and explanation of observed
patterns based on mechanistic hypotheses.
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Fig. 3.
Temporal profiles of total research effort (red) and modeling effort (blue) for recently
emerged zoonoses. Figure panels have different y-axis scaling, but in each instance, the
scaling for number of modeling studies (right axis) is 1/10th that for the total number of
research papers (left axis).
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