
Chapter 2

Epidemic Dynamics Modeling

and Analysis

Disastrous epidemic such as SARS, H1N1, or smallpox released by some terrorists

can significantly affect people’s life. The outbreak of infections in Europe in 2011

is another example. The infection, from a strain of Escherichia coli, can lead to

kidney failure and death and is difficult to treat with antibiotics. A recent example

of epidemic outbreak was the 2014–2015 Ebola pandemic in West Africa, which

infected approximately 28,610 individuals and approximately 11,300 lives were lost

in Guinea, Liberia, and Sierra Leone. It is now widely recognized that a large-

scale epidemic diffusion can conceivably cause many deaths and more people of

permanent sequela, which presents a severe challenge to the local or regional health-

care systems. When an epidemic outbreaks, public officials face with many critical

and complex issues, the most important of which is to make certain how the epidemic

diffuses. This is the focus of this chapter.

2.1 Epidemic Dynamics in Anti-bioterrorism System

2.1.1 Introduction

Bioterrorism is the intentional use of harmful biological substances or germs to cause

widespread illness and fear. It is designed to cause immediate damage and release

dangerous substances into the air and surrounding environment. Because it would

not usually be signaled by an explosion or other obvious cause, a biological attack

may not be recognized immediately and may take local health care workers time to

discover that a disease is spreading in a particular area.

Over the past few years, the world has been growing increasingly concerned

about the threat that bioterrorists pose to societies, especially after the September

11 attacks and the fatal delivery of anthrax via the US Mail in 2001. Henderson

[1] pointed out that the two most feared biological agents in a terrorist attack were

smallpox and anthrax. Radosavljević and Jakovljević [2] proposed that biological
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attacks can cause an epidemic of infectious disease. Thus, epidemiological triangle

chain models can be used to present these types of epidemic. Bouzianas [3] presented

that the deliberate dissemination of Bacillus anthracis spores via the US mail system

in 2001 confirms their potential use as a biological weapon for mass human casualties.

This dramatically highlights the need for specific medical countermeasures to enable

the authorities to protect individuals from a future bioterrorism attack.

Actually, many recent research efforts have been devoted to understanding the

prevention and control of epidemics, such as those of Wein et al. [4], Wein et al. [5],

Craft et al. [6], Kaplan et al. [7, 8], Mu and Shen [9], Hiroyuki et al. [10], Tadahiro

et al. [11], Michael et al. [12]. Various mathematical models have been proposed to

analyze and study the general characteristics of each epidemic, such as SI, SIR, SIS,

SIRS, SEI, SEIR, and others. It is worth mentioning that the major purpose of these

articles is to compare the performance of the following two strategies, the traced

vaccination (TV) strategy and the mass vaccination (MV) strategy. Furthermore, the

epidemic diffusion models which they adopted are based on the traditional compart-

ment model, while the complex topological structure of the social contact network

is not considered.

As is well known, a class of network with a topology interpolating between that of

lattices and random graphs is proposed by Watts and Strogatz [13]. In these models, a

fraction of the links of the lattice is randomized by connecting nodes, with probability

p, with any other node. For a range of p the network exhibits ‘small world’ behavior,

where a local neighborhood (as in lattices) coexists with a short average path length

(as in random graphs). Analysis of real networks reveals the existence of small worlds

in many interaction networks, including networks of social contacts [14]. Recently,

attention has been focused on the impact of network topology on the dynamics of the

processes running on it with emphasis on the spreading of infectious diseases. For

many infectious diseases, a small-world network on an underlying regular lattice is

a suitable simplified model for the contact structure of the host population. It is well

known that the contact network plays an important role in both the short term and

the long term dynamics of epidemic spread [15]. Thus, one of the major motivations

for studying the complex network in this work is to better understand the structure of

social contact network, because there is a natural link between the epidemiological

modeling and the science of complex network.

Jari and Kimmo [16] propose an SIR model for modeling the spreading process

of randomly contagious diseases, such as influenza, based on a dynamic small-world

network. A study by Masuda and Konno [17] presents a multi-state epidemic pro-

cess based on a complex network. They analyze the steady states of various multi-

state disease propagation models with heterogeneous contact rates. In many models,

heterogeneity simply decreases epidemic thresholds. Xu et al. [18] present a mod-

ified SIS model based on complex networks, small-world and scale-free, to study

the spread of an epidemic by considering the effect of time delay. Based on two-

dimension small-world networks, a susceptible-infected (SI) model with epidemic

alert is proposed by Han [19]. This model indicates that the broadcasting of a timely

epidemic alert is helpful and necessary in the control of epidemic spreading, and is

in agreement with the general view of epidemic alert. Shi et al. [20] propose a new
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susceptible-infected-susceptible (SIS) model with infective medium. The dynamic

behaviors of the model on a homogeneous network and on a heterogeneous scale-

free network are considered respectively. Furthermore, it is shown that the immune

density of nodes depends not only on the infectivity between individual persons, but

also on the infectivity between persons and mosquitoes. Zhang and Fu [21] study the

spreading of epidemics on scale-free networks with infectivity which is nonlinear in

the connectivity of nodes. The result shows that nonlinear infectivity is more appro-

priate than a constant or a linear one. With unit recovery rate and nonlinear irrational

infectivity, the epidemic threshold is always positive.

As mentioned in Craft et al. [6], deterrence is not a reliable strategy to against the

terrorists, and it is difficult to get the biological agents out of the hands of terrorists

before they attack. Our security against a biological attack rests largely on conse-

quence management, i.e., how to ensure the availability and supply of emergency

resource so that the loss of life can be minimized and the efficiency of each rescue

can be maximized? Considering the relationship between an unexpected bioterror

attack and the associated emergency logistics decisions, Liu and Zhao [22] focus on

how to deliver emergency resources to the epidemic areas when a bioterror attack

is suffered, and propose a mixed-collaborative distribution model for the emergency

resources distribution based on the epidemic diffusion rule. A very recent research

effort by Wang et al. [23] constructs a multi-objective stochastic programming model

with time-varying demand for the emergency logistics network based on epidemic

diffusion rule. It is worth mentioning that majority of the existing studies relies on

different kinds of differential equations. For instance, first-order partial differential

equations are used to integrate the age structures; second-order partial differential

equations are suitable when a diffusion term exists; and integral differential equa-

tions or differential equations are often used when time delay or delay factors are

considered.

2.1.2 SIQRS Epidemic Diffusion Model

(1) Modeling assumptions and notations specification

To facilitate the model formulation in the following section, three assumptions

are specified as follows:

(1) Once a bioterror attack is suffered, the epidemic area can be isolated from other

areas to avoid the spread of the disease.

(2) Natural birth and death coefficient of the population in the epidemic area are

not considered.

(3) Epidemic diffusion will not be disrupted by itself, which means the infection

rate is a constant.

In this section, we consider the situation that epidemic diffusion without incuba-

tion period. Notations used in the following model are specified as follows (Table 2.1).
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Table 2.1 Parameters specification

Parameters Specification

N The whole nodes in the affected area

S(t) Susceptible nodes in the affected area which may become infected.

s(t) = S(t)/N represents its density

I (t) Infected nodes in the affected area which are infective with strong infectivity, but

have not yet been quarantined. i(t) = I (t)/N represents its density

Q(t) Quarantined nodes in the affected area which have been infected, and have been

quarantined. q(t) = Q(t)/N represents its density

R(t) Recovered nodes in the affected area which have recovered from the disease.

r(t) = R(t)/N represents its density

<k> Average degree distribution of the network

β Infection rate of the biological epidemic

γ Rate of the recovered nodes transform to the susceptible nodes

δ Rate of the infective nodes which will be found and quarantined

μ Rate of quarantined nodes transform to the recovered nodes

d1 Death rate of the infective nodes

d2 Death rate of the quarantined nodes

Furthermore, S(t) + I (t) + Q(t) + R(t) = N , s(t) + i(t) + q(t) + r(t) = 1.

(2) Model formulation

Since quarantine is a common response measure when an epidemic outbreaks,

here we divide people in the epidemic area into four groups: susceptible people (S),

infected people (I), quarantined people (Q) and recovered people (R). The survey by

Tham [24] shows that some of the recovered people who are discharged from the

emergency department will be re-infected again. Thus, epidemic diffusion model in

this section can be illustrated as Fig. 2.1.

For epidemic diffusion, models based on a small-world network match the actual

social network much better. A great deal of attention has been paid to studying these

models. Therefore, based on the mean-filed theory [25], the time-based parameter

s(t) meets the following equation from time t to t + �t :

s(t + �t) − s(t) = −β<k>s(t)i(t)�t + γ r(t)�t. (2.1)

Fig. 2.1 Framework of

SIQRS model

δI

d2Q d1I

β<k>SI

γR

S I Q R 
μQ
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Thus, we get:

ds(t)

dt
= −β<k>s(t)i(t) + γ r(t). (2.2)

Similarly, we have the other three ordinary differential equations as follows:

di(t)

dt
= β<k>s(t)i(t) − d1i(t) − δi(t). (2.3)

dq(t)

dt
= δi(t) − d2q(t) − μq(t). (2.4)

dr(t)

dt
= μq(t) − γ r(t). (2.5)

Thus, the following SIQRS epidemic diffusion model can be formulated:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ds(t)

dt
= −β<k>s(t)i(t) + γ r(t)

di(t)

dt
= β<k>s(t)i(t) − d1i(t) − δi(t)

dq(t)

dt
= δi(t) − d2q(t) − μq(t)

dr(t)

dt
= μq(t) − γ r(t)

. (2.6)

Here, β, <k>, γ , δ, μ, d1, d2 > 0. Initial conditions for this epidemic diffusion

model are demonstrated as follows:

i(0) = i0 ≪ 1, s(0) = s0 = 1 − i0, q(0) = r(0) = 0.

(3) Analysis of the epidemic diffusion model

As is well known, i(0) = i0 ≪ 1 and s(0) = s0 = 1 − i0, are initial percentage

of infected people and susceptible people in the population, respectively. Obviously,

when wide spread of the epidemic takes place, the following condition should be

satisfied:

di(t)

dt

∣

∣

∣

∣

t=0

> 0. (2.7)

Considering Eq. (2.3), we have:

s0 >
d1 + δ

β<k>
. (2.8)

Equation (2.8) means that epidemic diffusion will take place when s0 meets the

above condition. Generally, it is difficult to get the analytic solution for Eq. (2.6).

Thus, we consider the stable state of Eq. (2.6). As s(t)+ i(t)+ q(t)+ r(t) = 1, and

considering Eqs. (2.2), (2.3) and (2.4), then we have:
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⎧

⎨

⎩

ds(t)

dt
= −β<k>s(t)i(t) + γ [1 − s(t) − i(t) − q(t)]

di(t)

dt
= β<k>s(t)i(t) − (d1 + δ)i(t)

dq(t)

dt
= δi(t) − (d2 + μ)q(t)

. (2.9)

Let ds(t)

dt
= 0, di(t)

dt
= 0 and

dq(t)

dt
= 0, we can get an obvious equilibrium point

for the epidemic diffusion model I as follows:

P1 = (s, i, q) = (1, 0, 0). (2.10)

Equation (2.10) shows that both the number of infected people and the number of

quarantined people are equal to zero, which indicates that epidemic diffusion in the

disaster area does not happen. All people in the area are susceptible at last. Thus, we

refer to this as the disease-free equilibrium point.

Furthermore, according to Eq. (2.9), we can get another equilibrium point for the

epidemic diffusion system as follows:

P2 = (s, i, q)

=

(

d1 + δ

β<k>
,

γ [β<k> − (d1 + δ)](d2 + μ)

β<k>[(d1 + δ + γ )(d2 + μ) + γ δ]
,

γ δ[β<k> − (d1 + δ)]

β<k>[(d1 + δ + γ )(d2 + μ) + γ δ]

)

. (2.11)

Equation (2.11) shows that when the epidemic diffusion system is stable, a certain

amount of infected people and a certain amount of quarantined people exist in the

epidemic area. Thus, we refer to this as the endemic equilibrium point.

Lemma 2.1 Disease-free equilibrium point P1 in the epidemic diffusion network is

stable when β < d1+δ

<k>
.

Proof Considering P1 = (s, i, q) = (1, 0, 0), we can obtain the Jacobi matrix of

Eq. (2.9) as follows:

JP1
=

⎡

⎢

⎣

∂ P11

∂s
∂ P11

∂i
∂ P11

∂q
∂ P12

∂s
∂ P12

∂i
∂ P12

∂q
∂ P13

∂s
∂ P13

∂i
∂ P13

∂q

⎤

⎥

⎦
=

⎡

⎣

−γ −β<k> − γ −γ

0 β<k> − (d1 + δ) 0

0 δ −(d2 + μ)

⎤

⎦. (2.12)

Here P11, P12 and P13 represent the three differential equations in Eq. (2.9),

respectively. Thus, it is easy to get the secular equation for the Jacobi matrix as

follows:

(λ + γ )(λ − β<k> + d1 + δ)(λ + d2 + μ) = 0. (2.13)

Obviously, three characteristic roots for this secular equation are −γ , β<k> −

d1 −δ, and −d2 −μ. Based on Routh-Hurwiz stability criterion, when β < d1+δ

<k>
, real

parts of these three characteristic roots will be negative at the same time. Thus, the

disease-free equilibrium point P1 = (s, i, q) = (1, 0, 0) is stable when β < d1+δ

<k>
.
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Lemma 2.2 Endemic equilibrium point P2 in the epidemic diffusion network is sta-

ble when β > d1+δ

<k>
.

Proof Similarly as Lemma 2.1, coupling with Eq. (2.11), we can get the Jacobi

matrix of Eq. (2.9) again as follows:

JP2
=

⎡

⎢

⎣

−
γ [β<k>−(d1+δ)](d2+μ)

[(d1+δ+γ )(d2+μ)+γ δ]
− γ −(d1 + δ) − γ −γ

γ [β<k>−(d1+δ)](d2+μ)

[(d1+δ+γ )(d2+μ)+γ δ]
0 0

0 δ −(d2 + μ)

⎤

⎥

⎦
. (2.14)

Then, the secular equation for Eq. (2.14) is

a0λ
3 + a1λ

2 + a2λ + a3 = 0. (2.15)

Here, a0 = 1, a1 = (d2 +μ)+ (A + γ ), a2 = (d2 +μ)(A + γ )+ (d1 + δ + γ )A,

a3 = (d2 + μ)(d1 + δ + γ )A + γ δA, and A =
γ [β<k>−(d1+δ)](d2+μ)

[(d1+δ+γ )(d2+μ)+γ δ]
.

Obviously, when β > d1+δ

<k>
, we have A > 0. Then, we have a1 > 0, a2 > 0, a3 >

0. Therefore,

a1a2 − a0a3 = (d2 + μ)(A + γ )(d2 + μ + A + γ )

+ (d1 + δ + γ )A2 + γ A(d1 + γ ) > 0

According to Routh-Hurwiz stability criterion, Eq. (2.11) contains three charac-

teristic roots with negative real part. Thus, the endemic equilibrium point P2 is stable

when β > d1+δ

<k>
.

Remark 2.1 From Lemmas 2.1 and 2.2, we have the first conclusion: without con-

sideration of incubation period, threshold of the epidemic diffusion not only depends

on topological structure of the small-world network (<k>), but also relies on other

two key parameters, the quarantined rate (δ) and the death rate of infected people

(d1).

2.1.3 SEIQRS Epidemic Diffusion Model

(1) Model formulation

In this section, we consider the situation that epidemic diffusion with incubation

period, and thus, we divide people in the epidemic area into five groups: susceptible

people (S), exposed people (E), infected people (I), quarantined people (Q) and

recovered people (R). Similarly, epidemic diffusion model in this section can be

illustrated as Fig. 2.2.
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β<k>S(t-τ)I(t-τ) δI

d2Q d1I

β<k>SI

γR

S I Q R 
μQ

E

Fig. 2.2 Framework of SEIQRS model

Likewise, the SEIQRS epidemic diffusion model can be formulated as follow:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ds(t)

dt
= −β<k>s(t)i(t) + γ r(t)

de(t)

dt
= β<k>s(t)i(t) − β<k>s(t − τ)i(t − τ)

di(t)

dt
= β<k>s(t − τ)i(t − τ) − d1i(t) − δi(t)

dq(t)

dt
= δi(t) − d2q(t) − μq(t)

dr(t)

dt
= μq(t) − γ r(t)

. (2.16)

Here, E(t) stands for the number of exposed people. e(t) = E(t)/N . s(t)+e(t)+

i(t) + q(t) + r(t) = 1. Moreover, β, <k>, γ , δ, μ, d1, d2,τ > 0. Initial conditions

for the epidemic diffusion model are demonstrated as follows:

i(0) = i0 ≪ 1, e(0) = <k>i(0), s(0) = 1 − e0 − i0, q(0) = r(0) = 0.

(2) Analysis of the epidemic diffusion model

Likewise, it is also difficult to get the analytic solution for Eq. (2.16). Thus,

we consider the stable state of Eq. (2.16). When the epidemic diffusion system is

stable, that means the number of people in each group is unchanged. Then, we have

s(t) = s(t − τ), i(t) = i(t − τ) and

de(t)

dt
= β<k>s(t)i(t) − β<k>s(t − τ)i(t − τ) = 0. (2.17)

Equation (2.17) means that the number of exposed people is a constant when the

epidemic diffusion system is stable. As s(t) + e(t) + i(t) + q(t) + r(t) = 1, and

considering Eq. (2.16), we have:

⎧

⎨

⎩

ds(t)

dt
= −β<k>s(t)i(t) + γ [1 − s(t) − e(t) − i(t) − q(t)]

di(t)

dt
= β<k>s(t − τ)i(t − τ) − (d1 + δ)i(t)

dq(t)

dt
= δi(t) − (d2 + μ)q(t)

. (2.18)

Let ds(t)

dt
= 0, di(t)

dt
= 0 and

dq(t)

dt
= 0, we get the following two equilibrium

points for the SEIQRS epidemic diffusion model:
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P3 = (s, i, q) = (1 − e, 0, 0). (2.19)

P4 = (s, i, q) =

(

d1 + δ

β<k>
, B,

δ

d2 + μ
B

)

. (2.20)

Here, B =
γ [β<k>(1−e)−(d1+δ)](d2+μ)

β<k>[(d1+δ+γ )(d2+μ)+γ δ]
. Similarly, P3 is the disease-free equilibrium

point and P4 is the endemic equilibrium point.

Lemma 2.3 Disease-free equilibrium point P3 is stable when β < d1+δ

<k>(1−e)
.

Lemma 2.4 Endemic equilibrium point P4 is stable when β > d1+δ

<k>(1−e)
.

The proof process of Lemmas 2.3 and 2.4 are similar as introduced in Sect. 2.1.2.

Thus, it is trivial to prove Lemmas 2.3 and 2.4.

Remark 2.2 From Lemmas 2.3 and 2.4, we get the second conclusion: with the

consideration of incubation period, threshold of the epidemic diffusion not only

depends on key parameters <k>, δ and d1, but also relies on the number of exposed

people when the system is stable.

2.1.4 Computational Experiments and Result Analysis

To test how well the model may be applied in a real world, we exhibit a case study

to demonstrate the efficiency of the proposed two different models. To facilitate the

calculation process, we assume that a bioterror attack is suffered. The initial values

of the parameters in these two epidemic diffusion models are given as follows:

β = 10−6, <k> = 6, γ = 2 × 10−4, δ = 0.3, μ = 0.1, d1 = 5 × 10−3,

d2 = 1 × 10−3, τ = 5, N = 105 and i(0) = 2 × 10−4. We use the MATLAB

7.0 mathematical programming solver to simulate these two models. The tests are

performed on an Intel(R) Core(TM) 2 CPU 1.66 GHz with 1.5 GB RAM under

Microsoft Windows XP. Figure 2.3 is the numerical simulation of these two epidemic

models. The curves respectively represent the different groups of people over time.

From Fig. 2.3, we observe that threshold of the epidemic diffusion exists in both

Model I and Model II. Comparing these two Figures, we find the peak of I(t) in

Model II appears later than it in Model I. It is worth mentioning that the largest

number of infected people in Model II is also smaller than it in Model I. This result

is reasonable, because the incubation period is considered in Model II. Thus, the

number of infected people in Model II would be divided into two parts. On the other

hand, it confirms that incubation time plays an important role in epidemic diffusion

network.

During an actual emergency rescue process, the time-based parameter I (t), which

represents the number of infected people, is much more concerned. Thus, a short

sensitivity analysis of the three key parameters (β, <k> and δ) is conducted in the

following.
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(a) Model I (b) Model II

Fig. 2.3 Diffusion profile of the biological epidemic models

Holding all the other parameters fixed as in the numerical example given above,

except that β takes on four different values ranging from 10−6 to 4 × 10−6 with an

increment of 10−6. Figure 2.4 shows that the number of infected people is changed

over time. From this figure, we observe that no matter in Model I or Model II,

there almost get no distinguish among these curves in the first 40 days. However,

distinguish is obvious in the following days. The larger the initial size of β is, the faster

the increments speed is. Note that though initial size of β is varied, peaks of different

curves in Model I appear almost at the same time. However, situation in Model II is

different. The larger β is, the later the peak appears. This phenomenon enlightens us

again that the incubation time is an important factor in an anti-bioterrorism system.

Holding all the other parameters fixed as in the numerical example given above,

except that <k> takes on four different values ranging from 4 to 10 with an increment

of 2. Figure 2.5 shows that the number of infected people is changed as time goes by.

As before, no matter in Model I and Model II, there almost get no distinguish among

these curves in the first 40 days. After then, the number of infected people shows

a positive proportional to parameter <k>. From Fig. 2.5, we get a conclusion that

(a) Model I (b) Model II 

Fig. 2.4 Regularity of the infected nodes with different initial size of β
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(a) Model I (b) Model II 

Fig. 2.5 Regularity of the infected nodes with different initial size of <k>

self-quarantine is an effective strategy for controlling the epidemic diffusion. And

this is why Chinese government implements a series of strict quarantine measures

when SARS outbreaks. Note that peaks of different curves appear almost at the same

time in Model II. This is different from Fig. 2.4b.

Similarly, holding all the other parameters fixed as in the numerical example given

above, except that δ takes on four different values ranging from 0.2 to 0.5 with an

increment of 0.1. Figure 2.6 shows that the number of infected people is changed over

time. Exactly same as our expected, we get the similar conclusion as the former two

parameters. Moreover, we get the delay phenomenon again as Fig. 2.4b. Figure 2.6

means that to quarantine the infected people as early as possible is also very important

during an actual emergency rescue process.

(a) Model I (b) Model II 

Fig. 2.6 Regularity of the infected nodes with different initial size of δ
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2.2 Epidemic Dynamics Modeling for Influenza

2.2.1 Introduction

The first mathematical model that could be used to describe an influenza epidemic

was developed early in the 20th century by Kermack and McKendrick [26]. This

model is known as the Susceptible-Infectious-Recovered (SIR) model. To simulate an

influenza epidemic, the model is analyzed on a computer and one infected individual

(I) is introduced into a closed population where everyone is susceptible (S). Each

infected individual (I) transmits influenza, with probability β, to each susceptible

individual (S) they encounter. The number of susceptible individuals decreases as

the incidence (i.e., the number of individuals infected per unit time) increases. At a

certain point the epidemic curve peaks, and subsequently declines, because infected

individuals recover and cease to transmit the virus. Only a single influenza epidemic

can occur in a closed population because there is no inflow of susceptible individuals.

The severity of the epidemic and the initial rate of increase depend upon the value

of the Basic Reproduction Number (R0). R0 is defined as the average number of new

infections that one case generates, in an entirely susceptible population, during the

time they are infectious. If R0 > 1 an epidemic will occur and if R0 < 1 the outbreak will

die out. The value of R0 for any specific epidemic can be estimated by fitting the SIR

model to incidence data collected during the initial exponential growth phase. The

value of R0 may also be calculated retroactively from the final size of the epidemic.

If the SIR model is used, R0 for influenza is equal to the infectivity/transmissibility

of the strain (β) multiplied by the duration of the infectious period. Therefore once

the value of R0 has been obtained, the value of β can be determined.

The SIR model has been used as a basis for all subsequent influenza models.

The simplest extension to the SIR model includes demographics; specifically, inflow

and outflow of individuals into the population. Analysis of this demographic model

shows that influenza epidemics can be expected to cycle, with damped oscillations,

and reach a stable endemic level [27]. By modifying the basic SIR model in a variety

of ways (e.g., by including seasonality [28, 29]) influenza epidemics can be shown to

have sustained cycles. The SIR model has also been extended so that it can be used

to represent and/or predict the spatial dynamics of an influenza epidemic. The first

spatial-temporal model of influenza was developed in the late 1960s by Rvachev [30].

He connected a series of SIR models in order to construct a network model of linked

epidemics. He then modeled the geographic spread of influenza in the former Soviet

Union by using travel data to estimate the degree of linkage between epidemics in

major cities. In the 1980s, he and his colleagues Baroyan and Longini extended his

network model and evaluated the effect of air travel on influenza pandemics [31, 32].

Since then other modeling studies have quantified the importance of air travel on

geographic spread [33, 34]. For example, a recent study has modeled the potential

for influenza epidemics to move through nine European cities: Amsterdam, Berlin,

Budapest, Copenhagen, London, Madrid, Milan, Paris, and Stockholm. The authors

estimate that, due to a high degree of connectedness through air travel, it would take
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less than a month for an epidemic beginning in any one of these cities to spread to

the other eight [33]. Network models have also been use to understand the temporal

and spatial synchrony of influenza epidemics within the United States (US) [35].

In this section, SEIRS model based on small-world network is formulated for

depicting the spread of infectious diseases. The existence and global stability of the

disease-free equilibrium and the endemic equilibrium for the epidemic system is

proved by differential equations knowledge and Routh-Hurwiz theory. A numerical

example, which includes key parameters analysis and critical topic discussion (e.g.

medicine resources demand forecasting) is presented to test how well the proposed

model may be applied in practice.

2.2.2 SEIRS Model with Small World Network

(1) Basic introduction

For the compartment model of epidemic diffusion is a mature theory, herein

we omit the verbose introduction of the framework process. In this section, we

consider the situation that infected person will not be quarantined, and divide people

in epidemic area into four groups: susceptible people (S), exposed people (E), infected

people (I) and recovered people (R). A survey by Tham [24] shows that part of

recovered people who are discharged from the healthcare department will be re-

infected again. Thus, considering the small world network of the social contact,

the structure of Susceptible–Exposure–Infective–Recovered–Susceptible (SEIRS)

model is shown as Fig. 2.7.

Notations used in following sections are specified as follows:

N Population size in epidemic area.

S(t) Number of susceptible people, s(t) = S(t)/N .

E(t) Number of exposed people,e(t) = E(t)/N .

I (t) Number of infected people, i(t) = I (t)/N .

R(t) Number of recovered people, r(t) = R(t)/N .

<k> Average degree distribution of small world network.

β Propagation coefficient of the epidemic.

γ Re-infected rate of recovered people.

S E I R 

Fig. 2.7 Framework of SEIRS model
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μ Recovered rate.

τ Incubation period of the epidemic.

d Death rate of infected people.

Intuitively, we have the first two equations:

S(t) + E(t) + I (t) + R(t) = N (2.21)

s(t) + e(i) + i(t) + r(t) = 1 (2.22)

Based on mean-filed theory, the time-based parameter s(t) meets the following

equation from time t to t + �t :

s(t + �t) − s(t) = −β<k>s(t)i(t)�t + γ r(t)�t. (2.23)

Thus, we get:

s(t + �t) − s(t)

�t
= −β<k>s(t)i(t) + γ r(t). (2.24)

It can be rewritten as:

ds(t)

dt
= −β<k>s(t)i(t) + γ r(t). (2.25)

Similarly, we have the other three ordinary differential equations as follows:

de(t)

dt
= β<k>s(t)i(t) − β<k>s(t − τ)i(t − τ) (2.26)

di(t)

dt
= β<k>s(t − τ)i(t − τ) − di(t) − μi(t) (2.27)

dr(t)

dt
= μi(t) − γ r(t) (2.28)

Thus, the SEIRS epidemic diffusion model which considers small world network

effect can be formulated as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ds(t)

dt
= −β<k>s(t)i(t) + γ r(t)

de(t)

dt
= β<k>s(t)i(t) − β<k>s(t − τ)i(t − τ)

di(t)

dt
= β<k>s(t − τ)i(t − τ) − di(t) − μi(t)

dr(t)

dt
= μi(t) − γ r(t)

. (2.29)

Here, β, <k>, γ , μ, d, τ > 0. Initial conditions for this epidemic diffusion model

are demonstrated as follows:
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

i(0) = i0 ≪ 1

e(0) = <k>i(0)

s(0) = 1 − e0 − i0

r(0) = 0

(2.30)

(2) Analysis of the SEIRS model

As to SEIRS model, while such an epidemic diffusion system is stable, number

of people in different groups will be unchanged. Hence, we have s(t) = s(t − τ),

i(t) = i(t − τ), and we get:

de(t)

dt
= β<k>s(t)i(t) − β<k>s(t − τ)i(t − τ) = 0. (2.31)

di(t)

dt
= β<k>s(t)i(t) − di(t) − μi(t) (2.32)

Equation (2.31) means that number of exposed people is a constant when epidemic

diffusion system is stable. As we all know, if an epidemic is wide spread, it should

satisfy the following condition:

di(t)

dt

∣

∣

∣

∣

t=0

> 0. (2.33)

Together this equation with Eq. (2.32), we can get:

s0 >
d + μ

β<k>
. (2.33)

Equation (2.33) shows that the spread of epidemic outbreaks only when s0 meets

the above condition. As s(t) + e(t) + i(t) + r(t) = 1, and combine with Eq. (2.29),

we get:

{

ds(t)

dt
= −β<k>s(t)i(t) + γ (1 − s(t) − e(t) − i(t))

di(t)

dt
= β<k>s(t)i(t) − di(t) − μi(t)

. (2.34)

Let ds(t)

dt
= 0 and di(t)

dt
= 0, we can get an obvious equilibrium point for such an

epidemic diffusion model as follows:

P1 = (s, i) = (1, 0). (2.35)

As Eq. (2.35) shows, number of infected people is zero, which indicates that

spread of epidemic in such an area does not happened. All people are susceptible

individuals. Herein, we refer to such a point as the disease-free equilibrium point.

On the other side, according to Eq. (2.31), number of exposed people is a constant.

Thus, combine with Eq. (2.34), we can get another equilibrium result as follows:
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P2 = (s, i) =

(

d + μ

β<k>
,
γ [β<k>(1 − e) − (d + μ)]

β<k>(γ + d + μ)

)

(2.36)

Such a result shows that when epidemic diffusion system is stable, a certain

amount of infected people exist in disaster area. Herein, we refer it as the endemic

equilibrium point.

Lemma 2.5 Disease-free equilibrium point P1 is stable only when β <
d+μ

<k>
.

Proof As P1 = (s, i) = (1, 0), we can obtain the Jacobi matrix of Eq. (2.34) as

follows:

JP1
=

[

∂	1

∂s
∂	1

∂i
∂	2

∂s
∂	2

∂i

]

=

[

−γ −β<k> − γ

0 β<k> − d − μ

]

. (2.37)

Here, 	1 and 	2 are the two differential equations in Eq. (2.34). The secular

equation for the Jacobi matrix is:

(λ + γ )(λ − β<k> + d + μ) = 0. (2.38)

It is easy to get the two characteristic roots for this secular equation, which are −γ

and β<k>−d −μ. Based on Routh-Hurwiz stability criterion, when β <
d+μ

<k>
, real

parts of the two characteristic roots are negative. Thus, the disease-free equilibrium

point P1 = (s, i) = (1, 0) is stable only when β <
d+μ

<k>
.

Lemma 2.6 Endemic equilibrium point P2 is stable only when β >
d+μ

<k>(1−e)
.

Proof Similarly as Lemma 2.1, coupling with Eq. (2.31), the Jacobi matrix of

Eq. (2.29) can be rewritten as follow:

JP2
=

[

γ [−β<k>(1−e)−γ ]

(γ+d+μ)
−d − μ − γ

γ [β<k>(1−e)−(d+μ)]

(γ+d+μ)
0

]

. (2.39)

The secular equation for Eq. (2.39) can be expressed as follows:

aλ2 + bλ + c = 0. (2.40)

Herein, a = 1, b =
γ [β<k>(1−e)+γ ]

(γ+d+μ)
and c = γ [β<k>(1 − e) − (d + μ)]. Based

on the quadratic equation theory, such a secular equation contains two characteristic

roots λ1 and λ2, and satisfies:

λ1 + λ2 = −
b

a
= −

γ [β<k>(1 − e) + γ ]

(γ + d + μ)
< 0. (2.41)
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λ1 · λ2 =
c

a
= γ [β<k>(1 − e) − (d + μ)]. (2.42)

According to Routh-Hurwiz stability criterion, if we want to get two negative

characteristic roots λ1 and λ2 again, the Eq. (2.42) should be constant greater than

zero, which means, β >
d+μ

<k>(1−e)
should be satisfied. Thus, only when β >

d+μ

<k>(1−e)
,

the endemic equilibrium point P2 is stable.

Remark 2.3 From these two lemmas, we can get the first conclusion that threshold

of the epidemic diffusion depends on some key parameters, such as average degree

distribution of the small world network <k>, recovered rate μ, death rate of infected

people d, also number of exposed people when the system is stable.

2.2.3 Emergency Demand Base on Epidemic Diffusion Model

In this section, we are going to discuss how to forecast the time-varying demand in

disaster area. Let D(t) represents demand for medicine resources in disaster area at

time t. Obviously, the more people infected, the more resources demanded. Thus, it

can be rewritten as:

D(t) ∝ f [I (t)]. (2.43)

We assume that each infected person should be cured for a certain time (the

cure cycle), e.g. 10 days, and during these days he/she needs for medicine presents

a law of decreasing. Hence, the total demand of medicine resources for each

infected/quarantined person is:

ψ =

c
∫

0

ϕ(t)dt, (2.44)

where ϕ(t) is a decreasing function in the First Quartile. c is the cure cycle. To the

SEIRS model, the average demand for medicine resources in time t can be formulated

as follows:

DI (t) =
I (t) · ψ

c
=

N

c

c
∫

0

ϕ(t)dt

t
∫

0

β<k>s(t − τ)i(t − τ) − di(t) − μi(t)dt.

(2.45)

Hence we get that:
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d DI (t)

dt
= �[β<k>s(t − τ)i(t − τ) − di(t) − μi(t)], (2.46)

where � is a constant.

2.2.4 Numerical Test

In this section, we take a numerical simulation to test how well the proposed model

may be applied in practice. The initial values of relative parameters in the proposed

epidemic diffusion models are given as follows: β = 2 × 10−5, <k> = 6, γ =

2 × 10−4, δ = 0.3, μ = 0.2, d = d1 = 5 × 10−3, d2 = 1 × 10−3, τ = 5 (day),

N = 104 and i(0) = 1 × 10−3. We use MATLAB 7.0 mathematical solver together

with Runge-Kutta method to simulate the propose model. The tests are performed on

an Intel(R) Core(TM) i3 CPU 2.4 GHz with 2 GB RAM under Microsoft Windows

XP. Figure 2.8 is the numerical simulation of the smallpox epidemic models. The

curves respectively represent the different groups of people over time.

From this Figure we can find that there is a threshold value of epidemic diffusion.

The rush of the infected curve in such a Model is around on the 32–33 day. Based

on the above theory analysis, we find that some factors, such as β and <k>, are

key parameters in epidemic diffusion system. Herein, we present a short sensitivity

analysis for them. Holding all the other parameters fixed as in the numerical example

given above, except that β takes on four different values ranging from β = 2×10−5 to

Fig. 2.8 Numerical simulation for SEIRS model
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8×10−5 with an increment of 2×10−5, Fig. 2.9 shows that number of infected people

changed over time. From this figure, we observe that there almost get no distinguish

among these curves in the first 15–20 days. However, distinguish is obvious in the

following days. The larger initial size of β is, the faster increments speed is. From

this figure we know that propagation coefficient controlling is a very important and

effective method to prevent the smallpox epidemic diffusion.

Holding all the other parameters fixed as in the numerical example given above,

except that <k> takes on four different values ranging from 4 to 10 with an increment

of 2. Figure 2.10 shows that number of infected people is changed as time goes

by. As before, number of infected people shows a positive proportional to such a

parameter <k>. From this figure, we know that self-quarantine and decreasing the

contact with people around is an effective strategy for controlling epidemic diffusion.

Hence, during the SARS period, governments implement a series of strict quarantine

measures.

To facilitate the process in the following section, here we given that � = 1

directly. Such an operation will not affect the final compare result. According to

Eq. (2.27), holding all the parameters fixed as in the above numerical example, we

can get the demand for medicine resources by the proposed model, which are shown

in Fig. 2.11.

Form this figure, we can decompose the entire smallpox emergency rescue process

into three mutually correlated stages, and we present three corresponding controlling

strategies for them.

Fig. 2.9 Number of I(t) with different β
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Fig. 2.10 Number of I(t) with different <k>

Fig. 2.11 Demand for medicine resources
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(1) At the first stage (e.g. 0–15 days), epidemic has just outbreak, and it has not yet

caused a widespread diffusion. Such a period is the best emergency rescue time.

The demand for medicine resources during this period keeps in low level. Hence,

medicine resources inventory in local health departments should be distributed

to the infected people’s hands as quickly as possible.

(2) If we miss the opportunities in the first stage, epidemic would cause a widespread

diffusion, which makes us face to the second stage. In such a stage (e.g.

15–70 days), demand for medicine resources is dynamic and time-varying. Thus,

resources distribution program in such a stage should also be varied over time.

(3) At the third stage (e.g. 70-more days), epidemic diffusion goes to be stable, and

demand for medicine resources shows decreasing. Hence, we can replenish the

inventory of medicine resources for these local health departments, and allocate

some other medicine resources to the remaining infected areas, simultaneously.

2.3 Epidemic Dynamics Considering Population Migration

2.3.1 Introduction

As mentioned in Rachaniotis et al. [36], a serious epidemic is a problem that tests

the ability of a nation to effectively protect its population, to reduce human loss and

to rapidly recover. Sometime such a problem may acquire worldwide dimensions.

For example, during the period from November 2002 to August 2003, 8422 people

in 29 countries were infected with SARS, 916 of them were dead at last for the

effective medical resources appeared late. Other diseases, such as HIV, H1N1 can

also cause significant numbers of direct infectious disease deaths. Epidemic diffusion

is a typical complex dynamic system problem in Gao et al. [37], for we don’t know

what kind of epidemic outbreaks, when it outbreaks, and how it diffuses. Generally,

after an epidemic outbreak, public officials are faced with many critical and complex

issues, the most important of which is to make certain how the epidemic diffuses so

that the rescue operation efficiency maximized.

Traditionally, analytical works on epidemic diffusion are concentrated on the

compartmental epidemic models of ordinary differential equations [38–42]. In these

models, the total population is divided into several independence classes and each

class of individuals is closed into a compartment. The sizes of the compartments

are large enough and the mixing of members is homogeneous. In other words, the

models based on the differential equations are always under the assumption of both

homogeneous infectivity and homogeneous connectivity of each individual. How-

ever, the traditional models do not consider the population migration among different

compartments.

The other stream of related research to our work is on the epidemic diffusion

with population migration. For instance, Hethcote [43] proposed that deterministic

communicable disease models were initial value problems for a system of ordinary
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differential equations, and thus he considered the asymptotic stability for the equi-

librium points for models involving temporary immunity, disease-related fatalities,

carriers, migration, dissimilar interacting groups, and transmission by vectors. In

his work, both susceptible individuals and infected individuals in each population

could migrate (only equal rates were considered), which led to different equilib-

riums. Another model that considers two interacting populations undergoing SIS

dynamics was presented in Kribs-Zaleta and Velasco-Hernandex [44]. The authors

considered that the two groups may have different values for model parameters espe-

cially those dealing with vaccination. Liebovitch and Schwartz [45] proposed that

classical disease models always use a mass action term as the interaction between

infected and susceptible people in separate patches and they derived the equations

when this interaction is a migration of people between patches. Sani and Kroese [46]

formulated various mathematical control problems for HIV spread in mobile het-

erosexual populations. They applied the cross-entropy method to solve these highly

multi-modal and non-linear optimization problems, and demonstrated the effective-

ness of the method via a range of experiments and illustrated how the form of the

optimal control function depends on the mathematical model used for the HIV spread.

Yang et al. [47] considered SIR and SIS epidemic models with bilinear incidence

and migration between two patches, where infected individuals cannot migrate from

one patch to another due to medical screening. They found the thresholds classify-

ing the global dynamics of the models in terms of the model parameters, and they

obtained the global asymptotical stability of the disease free and the disease endemic

equilibrium. Wolkewitz and Schumacher [48] pointed out that the main limitation of

the compartmental models is that several parameters are based on uncertain expert

guesses (default values) and are not estimated from the study data. Lee et al. [49]

extended the SEIR model to incorporate population migration between cities and

investigated the effectiveness of travel restrictions as a control against the spread of

influenza.

As a continued work, this section presents an SIS epidemic model with population

migration between two cities. We consider unequal migration rates for these two

populations and only susceptible individuals can migrate, which is different from the

whole existing works.

2.3.2 Epidemic Model with Population Migration

As the compartment model of epidemic diffusion is a mature theory, herein we omit

the verbose introduction of the framework process. In this section, we divide people in

epidemic areas into two groups: susceptible individuals (S) and infected individuals

(I). The transfer diagram of individuals in the epidemic areas can be illustrated as

Fig. 2.12.

To smooth the formulation progress of the SIS epidemic diffusion model in the

following subsections, some assumptions and parameters are specified as follows:
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S1 I1 

bN1 

dS1 dI1 

γI1 

S2 I2 

bN2 

dS2 dI2 

γI2 

βS1I1 βS2I2 

Fig. 2.12 The transfer diagram of SIS model with population migration

(1) The susceptible individuals and the infected individuals in city i at time t are

denoted as Si (t) and Ii (t), respectively. Thus, the total individuals in city i is

Ni (t) = Si (t) + Ii (t), i = 1, 2.

(2) b and d are the natural birth rate and the natural death rate, respectively. γ is

the recovery rate. β is the propagation coefficient. To facilitate the process in

the following sections, we assume that b = d. Moreover, disease-related death

rate is not considered in this work.

(3) Only the susceptible individuals can migrate in this paper. ai represents the

migrating-out rate of susceptible individuals in city i (ai > 0 for i = 1, 2 and

a1 �= a2).

(4) Using the notation N to represent the total number of the population in these

two cities N = N1 + N2. Note that N is a constant.

Hence, the ordinary differential equations for the SIS epidemic diffusion model

can be formulated as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d S1

dt
= bN1 − a1S1 + a2S2 − d S1 − βS1 I1 + γ I1

d I1

dt
= βS1 I1 − γ I1 − d I1

d S2

dt
= bN2 + a1S1 − a2S2 − d S2 − βS2 I2 + γ I2

d I2

dt
= βS2 I2 − γ I2 − d I2

. (2.47)

ODE (2.47) describes the following dynamics of epidemic diffusion among the

population groups. (1) The change rate of the susceptible population in both city

1 and city 2 are determined by the entry population, the exiting population, and

the losing population who actually gets exposed to the disease and thus is counted

towards the class of infected population. The last one is in proportion to the prop-

agation coefficient β, and both of the current mass of the susceptible individuals

and the current mass of the infected individuals. (2) The change rate of the infected

population is determined by the difference between the entering population, those

of the susceptible population who get sick, the exiting population, and the losing

population. All parameters β, b, γ, a1, a2 are positive and initial conditions for

the model are demonstrated as follows:
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I1(0) = i0
1 ≪ N , I2(0) = i0

2 ≪ N , S1(0) = s0
1 , S2(0) = N − s0

1 − i0
1 − i0

2 .

(2.48)

2.3.3 Model Analysis

(1) Condition of the epidemic diffusion

As shown in above, I1(0) = i0
1 ≪ N , I2(0) = i0

2 ≪ N , S1(0) = s0
1 and

S2(0) = N − s0
1 − i0

1 − i0
2 are initial conditions for the proposed model, which

symbolize the initial number of susceptible and infected individuals. Then, it is

easy to obtain the initial condition for epidemic diffusion, which should satisfy the

following premise:

d I1

dt
|t=0 > 0 or

d I2

dt
|t=0 > 0. (2.49)

Taking it into Eq. (2.47), we can obtain the initial condition of the susceptible

individuals in city 1 and city 2:

s0
1 >

b + γ

β
or s0

2 < N − i0
1 − i0

2 −
b + γ

β
. (2.50)

Equation (2.50) shows that the spread of epidemic only when s0
1 and s0

2 meet the

above initial conditions.

(2) Existence of the system equilibrium solution

Generally, it is difficult to obtain the analytic solution of the Eq. (2.47). To analyze

the epidemic diffusion, we consider the stable state of Eq. (2.47). Considering that

b = d and expunging S2, Eq. (2.47) can be rewritten as:

⎧

⎨

⎩

d S1

dt
= −a1S1 + a2(N − S1 − I1 − I2) − βS1 I1 + (b + γ )I1

d I1

dt
= βS1 I1 − (b + γ )I1

d I2

dt
= β(N − S1 − I1 − I2)I2 − (b + γ )I2

. (2.51)

Let d I1

dt
= 0, we can get I1 = 0 or S1 =

b+γ

β
. Similarly, let d I2

dt
= 0, we can obtain

I2 = 0 or S1 + I1 + I2 = N −
b+γ

β
. With the partial derivative d S1

dt
= 0, d I1

dt
= 0 and

d I2

dt
= 0, we can obtain one equilibrium point of the SIS epidemic diffusion system

intuitively when I1 = 0 and I2 = 0:

P1 = (S1, I1, I2) =

(

a2

a1 + a2

N , 0, 0

)

). (2.52)
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From Eq. (2.52) we can see that both number of infected individuals in city 1 and

city 2 are zero, which indicate that epidemic diffusion in these two cities does not

happened, and all the individuals in these two cities are susceptible individuals at

last. Herein, we call it disease-free equilibrium point.

When I1 = 0 and S1 + I1 + I2 = N −
b+γ

β
, we can obtain the second equilibrium

point of the SIS epidemic diffusion system:

P2 = (S1, I1, I2) =

(

a2

a1

·
b + γ

β
, 0, N −

a1 + a2

a1

·
b + γ

β

)

. (2.53)

From Eq. (2.53), when the SIS epidemic diffusion system is stable, the number

of infected individuals in city 1 is zero, and some infected individuals in city 2 still

exist. In this condition, we call it the endemic equilibrium point.

Likewise, when S1 =
b+γ

β
and I2 = 0, we can obtain the third equilibrium point

of the SIS epidemic diffusion system:

P3 = (S1, I1, I2) =

(

b + γ

β
, N −

a1 + a2

a2

·
b + γ

β
, 0

)

. (2.54)

In line with the above work, when the SIS epidemic diffusion system is stable,

the number of infected individuals in city 2 is zero, and some infected individuals in

city 1 still exist. So it is called endemic equilibrium point as well.

It is worth mentioning that when S1 =
b+γ

β
and S1 + I1 + I2 = N −

b+γ

β
, there

is d S1

dt
= (a2 − a1) ·

b+γ

β
�= 0 for that a1 �= a2. That means, under the conditions of

S1 =
b+γ

β
and S1 + I1 + I2 = N −

b+γ

β
, there is no solution for the simultaneous

Equations d S1

dt
= 0, d I1

dt
= 0 and d I2

dt
= 0.

(3) Stability of the system equilibrium solution

Lemma 2.7 Disease-free equilibrium point P1 in the SIS epidemic diffusion system

is stable only when β < min{
(a1+a2)(b+γ )

a1 N
,

(a1+a2)(b+γ )

a2 N
}.

Proof Let P = d S1

dt
, Q = d I1

dt
and R = d I2

dt
, the Jacobi matrix of Eq. (2.51) can be

obtained as follows:

J =

⎛

⎜

⎝

∂ P
∂S1

∂ P
∂ I1

∂ P
∂ I2

∂ Q

∂S1

∂ Q

∂ I1

∂ Q

∂ I2
∂ R
∂S1

∂ R
∂ I1

∂ R
∂ I2

⎞

⎟

⎠

=

⎛

⎝

−a1 − a2 − β I1 b + γ − a2 − βS1 −a2

β I1 βS1 − (b + γ ) 0

−β I2 −β I2 β(N − S1 − I1 − 2I2) − (b + γ )

⎞

⎠.

(2.55)
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For P1 = (S1, I1, I2) =
(

a2

a1+a2
N , 0, 0

)

, the Jacobi matrix J can be rewritten

as follows:

JP1
=

⎛

⎜

⎝

−a1 − a2 b + γ − a2 − a2 N
a1+a2

β −a2

0 a2 N
a1+a2

β − (b + γ ) 0

0 0 a1 N
a1+a2

β − (b + γ )

⎞

⎟

⎠
.

According to the Jacobi matrix JP1
, it is easy to obtain the secular equation of

Eq. (2.51):

(λ + a1 + a2)(λ + b + γ −
a2 N

a1 + a2

β)(λ + b + γ −
a1 N

a1 + a2

β) = 0. (2.56)

The three latent roots of this secular equation are −a1 − a2, a2 N
a1+a2

β − b − γ

and a1 N
a1+a2

β − b − γ . Based on Routh-Hurwiz stability criterion, only when β <
(a1+a2)(b+γ )

a1 N
and β <

(a1+a2)(b+γ )

a2 N
, three latent roots of the secular equation would have

negative real part, simultaneously, and then P1 = (S1, I1, I2) =
(

a2

a1+a2
N , 0, 0

)

is the stable solution of the differential equations.

Lemma 2.8 Endemic equilibrium point P2 in the SIS epidemic diffusion system is

stable only when a2 < a1 and β >
(a1+a2)(b+γ )

a1 N
.

Proof As far as we concerned, if the endemic equilibrium point P2 = (S1, I1, I2) =
(

a2

a1
·

b+γ

β
, 0, N − a1+a2

a1
·

b+γ

β

)

exists, it should satisfy condition I2 > 0 firstly.

Namely, the propagation coefficient β should satisfy β >
(a1+a2)(b+γ )

a1 N
. Then, similar

as Lemma 2.7, we can obtain the Jacobi matrix for P2 as follows:

JP2
=

⎛

⎜

⎝

−a1 − a2 b + γ − a2 − a2

a1
(b + γ ) −a2

0 a2

a1
(b + γ ) − (b + γ ) 0

a1+a2

a1
(b + γ ) − βN a1+a2

a1
(b + γ ) − βN a1+a2

a1
(b + γ ) − βN

⎞

⎟

⎠
.

According to the Jacobi matrix JP2
, we can obtain the secular equation of Eq. (2.51)

again:

[λ + b + γ −
a2

a1

(b + γ )](λ2 + A1λ + A0) = 0. (2.57)

where A0 = a1[βN − a1+a2

a1
(b + γ )] and A1 = a1 + a2 + βN − a1+a2

a1
(b + γ ).

Obviously, one of the latent roots of Eq. (2.57) is λ∗
1 = a2−a1

a1
(b + γ ). Only when

a2 < a1, the latent root λ∗
1 is negative. On the other hand, when β >

(a1+a2)(b+γ )

a1 N
,

there is A0 > 0 and A1 > 0. Based on Routh-Hurwiz stability criterion, the other
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two latent roots of Eq. (2.57) will be with negative real part. Therefore, P2 is the

stable solution of the simultaneous differential equations only when a2 < a1 and

β >
(a1+a2)(b+γ )

a1 N
.

Lemma 2.9 Endemic equilibrium point P3 in the SIS epidemic diffusion system is

stable only when a1 < a2 and β >
(a1+a2)(b+γ )

a2 N
.

Proof Similarly as Lemma 2.8, if the endemic equilibrium point P3 = (S1, I1, I2) =
(

b+γ

β
, N − a1+a2

a2
·

b+γ

β
, 0

)

is exist, it should satisfy condition I1 > 0. That is, the

propagation coefficient β should satisfy β >
(a1+a2)(b+γ )

a2 N
. Then, we can obtain the

Jacobi matrix for P3 as follows:

JP3
=

⎛

⎜

⎝

−a1 − a2 − βN + a1+a2

a2
(b + γ ) −a2 −a2

βN − a1+a2

a2
(b + γ ) 0 0

0 0 a1−a2

a2
(b + γ )

⎞

⎟

⎠
.

Again, according to the Jacobi matrix JP3
, we can obtain the secular equation of

Eq. (2.51):

[λ −
a1 − a2

a2

(b + γ )](λ2 + B1λ + B0) = 0. (2.58)

where B0 = a2[βN − a1+a2

a2
(b + γ )] and B1 = a1 + a2 + βN − a1+a2

a2
(b + γ ).

Obviously, one of the latent roots of Eq. (2.58) is λ∗
1 = a1−a2

a2
(b + γ ). Only when

a1 < a2, the latent root λ∗
1 is negative. On the other hand, when β >

(a1+a2)(b+γ )

a2 N
,

there is B0 > 0 and B1 > 0. Based on Routh-Hurwiz stability criterion, the other

two latent roots of Eq. (2.58) will be with negative real part. Therefore, P3 is the

stable solution of the simultaneous differential equations only when a1 < a2 and

β >
(a1+a2)(b+γ )

a2 N
.

Remark 2.4 From Lemmas 2.7, 2.8 and 2.9, we can draw a conclusion that the

diffusion threshold of the SIS epidemic diffusion model relies on the migrating-out

coefficients of susceptible individuals of the two cities ai (i = 1, 2), also depends

on the three key parameters: the total individuals of the two cities N, the birth rate b

and the recovery rate γ .

2.3.4 Numerical Test

In this section, we take a numerical simulation to test how well the proposed model

may be applied in practice. The initial values of parameters in the proposed epidemic

diffusion model are listed as follows: β = 8 × 10−6, b = 2 × 10−4, γ = 0.4,
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Fig. 2.13 Evolution trajectories of the SIS epidemic model

a1 = 0.02, a2 = 0.01, N = 105, S1(0) = 0.7 × 105, I1(0) = 600 and I2(0) = 400.

We use MATLAB 7.0 mathematical solver together with Runge-Kutta method to

simulate the epidemic model. The test is performed on an Intel(R) Core(TM) i3 CPU

2.4 GHz with 2 GB RAM under Microsoft Windows XP. Figure 2.13 is the evolution

trajectories of the epidemic model. The curves respectively represent the different

groups of people over time in these two cities.

From Fig. 2.13, one can see that the evolution trajectories of the SIS epidemic

model with population migration between two cities are complicated. The number of

susceptible individuals in city 1 decreases gradually with time increasing, while the

number of susceptible individuals in city 2 increases at first and then decreases. On

the other hand, the number of infected individuals in city 1 increases at first and then

decreases; while the number of infected individuals in city 2 increases gradually with

time increasing. However, all the susceptible individuals and infected individuals in

city 1 and city 2 tend to the fixed values when time is long enough (t > 300).

Meanwhile, the limit value of the SIS epidemic diffusion model with population

migration between two cities is Q1 = (S1, S2, I1, I2) = (2.5013 × 104, 5.0025 ×

104, 0, 2.4961 × 104).

In line with the initial values we defined above, we have a2 < a1 and β >
(a1+a2)(b+γ )

a1 N
. According to Lemma 2.8, one can get that the number of susceptible

and infected individuals will be converged at Q2 = (S∗
1 , S∗

2 , I ∗
1 , I ∗

2 ) = (2.50125 ×

104, 5.00245×104, 0, 2.4963×104). One can see that Q1 is very close to Q2, which

is not a surprise, as it is consistent with the analytical conclusion in the last section.

Once an epidemic outbreak, we are more concerned with the change regularity of

the infected individuals in practice. Therefore, in the following subsections, we will

discuss the relationship between the key parameters and the number of the infected

individuals.
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(a) City1 (b) City 2

0 100 200 300 400 500 600
0

1

2

3

4

5

6
x 10

4

day

N
u
m

b
e
r 

o
f 

th
e
 i
n
fe

c
te

d
 

  
  

in
d
iv

id
u
a
l 
in

 c
it
y
 1

β=0.000001

β=0.000002

β=0.000003

β=0.000004

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8
x 10

4

day

N
u
m

b
e
r 

o
f 

th
e
 i
n
fe

c
te

d
 

  
in

d
iv

id
u
a
ls

  
in

 c
it
y
 2

β=0.000001

β=0.000002

β=0.000003

β=0.000004

Fig. 2.14 Number of the infected individuals versus different β

Figure 2.14 demonstrates the change of the number of the infected individuals in

both cities with different propagation coefficient. It is easy to know that the evolution

trajectories of infected individuals in city 1 are different from that in city 2 for any

certain propagation coefficient β. From Fig. 2.14a, we can see that in the first some

days, the larger β is, the faster spread of the epidemic in city 1 is. However, from

Fig. 2.14b, we can’t get the similar conclusion. Number of infected individuals in city

2 is not in direct proportion to the propagation coefficient β. It is worth mentioning

that when the number of infected individuals in city 1 reach zero, the number of

infected individuals in the other city is still positive when the epidemic diffusion

system is stable. This is consistent with the Lemma 2.8. Similarly, if the initial

conditions changed, we can also test and verify the other lemmas.

Figure 2.15 demonstrates the change of the number of the infected individuals in

both cities with different recovery rate γ . As shown in Fig. 2.15a, when γ = 0.2, the

maximum number of infected individual in city 1 is about 3.3×104. When γ = 0.3,

the number is about 1.5 × 104. When γ = 0.4, the maximum number of infected

individual in city 1 is less than 0.5 × 104. It informs us that the larger the recovery

rate constant is, the smaller of the maximum number of infected individuals in city 1

is. Similar phenomenon can also be observed from Fig. 2.15b in city 2. Such figure
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Fig. 2.15 Number of the infected individuals versus different γ



42 2 Epidemic Dynamics Modeling and Analysis

(a) City1 (b) City 2

Fig. 2.16 Number of the infected individuals versus different a1 and a2

informs us it is important to improve the recovery rate as much as possible when in

controlling an epidemic spread.

Figure 2.16 shows the change of the number of infected individuals in both

cities with different migrating-out coefficients a1 and a2. According to Fig. 2.16,

one can observe that no matter in city 1 or in city 2, the evolution trajectories

of the infected individuals may generate a serious change when the migrating-

out coefficient of susceptible individuals changed. For example, in city 1, when

a2 < a1(a1 = 0.02, a2 = 0.01 and a1 = 0.02, a2 = 0.015), the number of infected

individual tends to be zero. However, when a1 < a2 (a1 = 0.02, a2 = 0.025 and

a1 = 0.02, a2 = 0.03), the number of infected individuals tends to be a positive con-

stant above 1 × 104. In other words, with the increment of migrating-out coefficient

in city 2, the limit number of infected individuals in city 1 may become positive from

zero. The larger the migrating-out coefficient in city 2 is, the larger the limit number

of infected individuals in city 1 is. Opposite to city 1, when a2 < a1, the number of

infected individuals in city 2 tends to be a positive constant above 1 × 104. When

a1 < a2, the number of infected individuals is very small and tends to be zero at

last. It informs us that with the increment of migrating-out coefficient in city 2, the

limit number of infected individuals in city 2 may become zero from a positive value.

The larger the migrating-out coefficient in city 2 is, the smaller the limit number of

infected individuals in city 2 is. To summarize, decreasing the migration population

in only one city is not as effective as improving the recovery rate for controlling

the epidemic diffusion. However, we can find a trade-off between the migrating-out

coefficients in these two cities, and hence can control the infected individuals in both

cities at last.
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