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SUMMARY

The Kermack & McKendrick theory of epidemics has been applied to data on
deaths from influenza and influenzal pneumonia in Greater London in the years
1950-78. As a whole the theory gives a good description of the data, and the
estimated values of the parameters can be plausibly related to the natural history
of the disease. However, the possibility exists that the agreement is merely
empirical, and field studies would be required to confirm its validity.

INTRODUCTION

The use of mathematical methods in the U.S.S.R by Baroyan, Rvachev and
others (1971, 1977) as an aid to the control of influenza epidemics has led to a
reconsideration of the classical formulation proposed by Kermack & McKendrick
(1927). This model of the epidemic process is in essence so simple that its
applicability to real epidemics seems unlikely. However, in the U.S.S.R. it has been
claimed to give a useful approximation not only to individual epidemics in single
cities but also to the spread of influenza through the Soviet Union. The present
study is an extension of a previous one (Spicer, 1979) which suggested that the
model was applicable to influenza epidemics in England and Wales. The specification
ofthe model used here differs from that used previously in assuming that the values
of the parameters are independent of time, and is based on continuous not finite
difference methods.
A recent symposium organized by the Sandoz Institute was devoted to the

applicability of mathematical models to influenza epidemics. The proceedings
volume from this symposium (Selby, 1982) contains an excellent critical review
of the history and theory of the subject by P. M. Fine.

MATERIALS AND METHODS

The basic equations for the progress of an epidemic in a fixed population put
forward by Kermack & McKendrick (1927) take the following form: Let N = total
population, S = susceptibles, I = infected and infectious cases, R = those removed
from the infected state, N = R+ S+ I. Then the equations are

dSIdt = -AISI (1)
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dI/dt = AIS-/3I, (2)

dR/dt = /31, (3)

where A is a parameter representing the rate per unit time at which susceptibles
are producing infectious cases. / is the rate at which infectious cases are being
removed by recovery or death.
A considerable simplification is introduced by the fact that the infectious period

of influenza is about 1 week, which makes it plausible to assume in equations (1 )-(3)
that both ,/ and A are independent of time and it is therefore possible to express
the solution of the equations in parametric form (see Bailey, 1975) as follows:

/3t=f0 dw (4)

where SO is the initial number of susceptibles and the ratio /3/A has the nature of
a threshold population, NT, below which a progressive epidemic will not occur since
dIl/dt < 0. The variable 0 is the proportion of the total population which has been
infected by time t.

In principle, if the total initially susceptible population is known (and hence
10 = N-SO, the initial inoculum of infected cases) and also the times t at which
a given fraction of infected cases have occurred, the parameters A and /3 can be
determined by numerical integration.

In England and Wales the only directly observed quantity is the number of
deaths from influenza and influenzal pneumonia that have occurred by time t, as
given in the Registrar General's weekly returns and the OPCS monitor reports.
Where, as in the U.S.S.R., the new clinical cases are reported daily, there are

fluctuations in the daily rate due to the reluctance of patients to report just before
the weekend and a corresponding willingness to report just after, and other
sociological factors. Use of the cumulative proportion of deaths avoids some of the
problems that these difficulties raise.

If it is assumed that the cases are removed by death or recovery at constant,
but differing, rates per unit time then we can add two further equations to the
set (1)-(3):

(alive) dA/dt = aI, (5)
(dead) dD/dt = lvI, (6)

where (a +,u) = 3 and (A + D) = R.
Since

dD ftdRD/iR (7)
dt/3dt /

and equation (4) becomes

/3t = d(/D/(D) (8)
J0 1-w-(SO/N)e (N/NT) w' (8)

where NT, the threshold population, has been written for //A.
The original b, which was the proportion of all cases of the disease to the total

population at risk, has now been replaced by the ratio of dead to a related
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parameter N' = uN//,. There are then four parameters to be estimated from the
observed deaths: /1, SO/N, N/NT and N'. This was done by using a standard
optimizing program to minimize the squared differences between observed and
expected values.

Fitting the cumulative deaths is somewhat suspect statistically owing to the
correlations between the errors in successive values. As an alternative the
cumulative curve of weekly deaths was smoothed using a cubic spline and the
parameters estimated by fitting the derivatives of the spline to the expression

dt= /(N-R-N exp (-N R)dt=f( NexkNT)
and then using equation (4). Both these methods gave closely concordant results.

It was found that the fitting process needed to be started from the peak of the
epidemic curve, as the denominator in the integral tends very rapidly to zero in
the tails. There is an arbitrary element in choosing a point for the start and end
of the epidemic, but variations of two weeks or so in the choice do not disturb the
estimates by more than 5-100o if the curve is fitted from an origin at the peak.
The beginning and end of the epidemic were fixed after examining the weekly
deaths from the beginning of November to the end of April.
The parameter (SO/N) cannot be estimated with any precision ifSo is nearly equal

to N, since the denominator in equation (9) tends to zero and the numerical
integration becomes impracticable. This occurs when there is a small initial number
of cases, as is quite plausible in the present case. The parameter can be set at any
value from 0 99 to 0-9999 without materially altering the estimates of the others.
A check on the methods of fitting was made using the generalized logistic curve

(Nelder, 1961) with known parameters. This function gives a range of skewed
sigmoid curves resembling the epidemic data, but has an explicit solution, so that
results obtained by numerical integration can be checked against known values.
Fitting this function via the integral introduced no serious bias into the estimates
of the parameters.

RESULTS

The agreerment between the observed and calculated results for the three main
antigenic variants (see Table 1) can be judged from Figs. 1, 2 and 3. These show
the relationship between the times at which the cumulative proportions of deaths
were predicted and those at which they occurred, the origin being at the calculated
peak and time scaled in units of 1/f,, i.e. the mean infectious period of the disease.
This method of plotting is useful in displaying the discrepancies in the tails more
clearly than the untransformed cumulative proportions.
The values ofthe fitted parameters for the main epidemic years are given in Table

1, together with an indication of the major antigenic types of virus prevailing. The
initial epidemic of Asian influenza in 1957/8 cannot be reliably fitted as it was
bimodal with one peak in early autumn followed by another at the usual point
in winter. In the other years omitted, the numbers of cases were too small for
reliable estimates of the parameters to be made.

There are no systematic differences between the years or strains of virus in their
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type of disagreement with theory, but there are clearly systematic deviations from
the fitted curve in some of the epidemics. The very poor fit to the 1952 curve was

due to a major outbreak of respiratory disease caused by smog in the early part
of the year. The fitting program allowed for this by shifting the origin.
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Figs 1-3. These figures show the relationship between the observed and calculated times
at which successive cumulative proportions of cases occurred. The origin is at the peak
of the epidemic and time is scaled in units of the calculated average infectious period
(1 t/,). The lines represent perfect agreement and all pass through zero and have a slope
of 45'.

Table 1. Parameters of Kermack/McKendrick-type models fitted to weekly deaths
from influenza and influenzal pneumonia in Greater London

Number of
peak week

5
5
6
6
9
7
2
8
2
1
2
6
7
7

I
1
4
t

c

6
A

c
A

II
9
A

t

6
A

Major influenza
N' N/NT / strain prevalent
L840 3-52 2-52l
L471 2-74 2-17 A'
493 2-11 2-52
370 1-95 1-98J
805 2-45 0*73
267 2-02 0-62 A
209 1-46 045 A2 Asian
210 1-63 0-69 J

683 2-35 070 A2 (+ A-Hong K
117 3-51 1-33
201 2-20 1-15
357 2-16 1-36 A-Hong Kong
918 2-89 1-13
205 2-13 1-32J

Cong?)

(The value of SO/N is about 0-999 in all epidemics.)
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DISCUSSION

The above results seem to show that, empirically, the epidemic curve of influenza
deaths in Greater London is often quite well described by the Kermack &
McKendrick equations in their simplest form. It is difficult to say how far the
parameters of the curve can be interpreted in terms of the underlying model. There
seems to be a decline in the number of susceptibles as measured by N' following
the establishment of the A' and A-Hong Kong strains, possibly due to the arrival
ofA-Victoria in 1976 as a major variant. A similar picture is shown by the threshold
ratio N/NT. But in both cases other parameters are concerned which there is no
way of estimating since N' = N,U/fl and N/NT = NA/fl and A and a are unknown.
The ratio N'/(N/NT) = 1t/A does decline as a strain becomes established but this
could be due to variations in either It or A or both, though it seems more likely
that the death rate from influenza declines rather than that its transmissivity or
infectiousness increases, as the virus and host adapt to one another.
The relation between the value of , and the prevailing epidemic type of the

virus could arise from variations in the infectious period of the strain, if the present
model is valid. On the other hand it could be interpreted as an adjustable scale
parameter in fitting the epidemic curve empirically, which determines the spread
of the curve.
There is very little information in the literature on the excretion period of the

influenza virus. The U.S.S.R. studies were based on data ascribed to Zhdanov,
Soldviev & Epshtein (1958), but we have not been able to verify this reference.
These data give an average infectious period of 1t25-1-5 days but do not
approximate well to an exponential curve. Elvebaek et al. (1976) in their simulation
studies on influenza epidemics remark on the absence of information and assume
a latent period of three days followed by three days of exponential decline.

Laboratory studies of the excretion of the virus in human volunteers reported
by Reeve et al. (1980) indicate a mean value of 3-4+0±8 days for the shedding of
a recombinant HINI strain, and the authors also state that a high proportion of
volunteers shed virus for up to seven days. In experiments with H3N2 strains the
average duration of shedding was reported by Moritz et al. (1980) as 2-3 + 1-4 days.
There are no obvious differences between antigenic types in these studies but they
do indicate that the infectious period could be determined more accurately if
necessary.

If the model does have some relationship to reality it must be very insensitive
to heterogeneity in the age structure of the population and in the transmissivity
parameter A, which must vary widely between different sections of the community.
The model also gives no direct explanation of the seasonal incidence of the disease.
A possible explanation of the winter incidence is that the value of A depends

on seasonal climatic factors and during the autumn is increased, thus decreasing
NT and raising the threshold ratio to an epidemic level. During the warmer months
the value of A is so low that no epidemic can be maintained, though the virus
continues to be prevalent on a small scale.

It is a necessary consequence of this hypothesis that the effect of season is a
trigger action in autumn, after which the epidemic pursues a course determined
mainly by the size of the susceptible population and the infectious period of the
disease.
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Table 2. Parameters of Kermack/McKendrick models fitted to total influenza deaths
in great cities of England and Wales. Data from Logan & MacKay (1951)

Year N' N/NT

1918 49830 3-08 2-00
1921/2 12110 2-71 3 10
1923/4 8910 2-40 2-65
1926/7 8730 2-96 3-25
1928/9 15930 3-31 2-58
1932/3 11440 2-91 1-64
1936/7 7852 4-48 2-73
1943/4 5854 3-15 1 84

If there is a steady flow of susceptibles into the population, as is the case with
measles, the disease will have a natural period T given by

T= 2,rl
J[(kA) 4A]2

(for details see Bailey, 1975), where k is the rate of inflow of susceptibles. Taking
a representative value of / of about 1-5, a value of 0X01 for (kA) gives a period T
of about 60 weeks. An approximately yearly period like this could reinforce the
seasonal factor to perpetuate the winter incidence of the epidemic. It is interesting
that at least two major epidemics, 1918 and 1957, have occurred quite out of
season, possibly because the number ofsusceptibles was large enough to compensate
the high value of the threshold population.

In an attempt to throw more light on the effect of population heterogeneity the
model was fitted to the total influenza deaths in the great cities of England and
Wales in the major epidemic years from 1918 to 1943 using data published by
Logan & MacKay (1951). It was felt that heterogeneity in these data was so great
that the model would be very implausible. The data, in fact, fitted about as well
as that for Greater London. The fitted parameters are given in Table 2, where it
will be seen that / and N/NT were quite similar to those of A' virus in 1950-6.
It is interesting that the parameters for the second 1918 epidemic differed
strikingly from the other epidemics only in the very large value of N'. As the data
related only to deaths this would have been due to the known high mortality for
the virus in question, as well as to the presence of a large population of susceptibles,
but the overall fit of the model is not good for this epidemic.
The similarity of these results to those for Greater London shows that a very

considerable increase in heterogeneity does not seriously alter the descriptive
capacity of the model. It would be natural therefore to assume that the model
merely provides an empirical family of curves with appropriate properties for
fitting epidemic data. On the other hand the fitted parameters have quite
reasonable values in terms of the theory, while those of a purely empirical function
such as the generalized logistic cannot be interpreted at all. Unless some objective
evidence becomes available, for example direct estimates of the susceptible
population or the infectious period, the choice between these two views is a matter
of taste. But, in the meantime, the model does seem to present a plausible account
of the epidemic behaviour of influenza.

III
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