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Abstract. We present a detailed analytical and numerical study for the spreading of infections with ac-
quired immunity in complex population networks. We show that the large connectivity fluctuations usually
found in these networks strengthen considerably the incidence of epidemic outbreaks. Scale-free networks,
which are characterized by diverging connectivity fluctuations in the limit of a very large number of nodes,
exhibit the lack of an epidemic threshold and always show a finite fraction of infected individuals. This
particular weakness, observed also in models without immunity, defines a new epidemiological framework
characterized by a highly heterogeneous response of the system to the introduction of infected individuals
with different connectivity. The understanding of epidemics in complex networks might deliver new insights
in the spread of information and diseases in biological and technological networks that often appear to be
characterized by complex heterogeneous architectures.

PACS. 89.75.-k Complex systems – 87.23.Ge Dynamics of social systems – 05.70.Ln Nonequilibrium and
irreversible thermodynamics

1 Introduction

The epidemiology of heterogeneous networks has largely
benefited from the need of understanding the spreading of
human sexual diseases in the complex web of sexual part-
nership [1–3]. Epidemic modeling considered that popu-
lation groups can be characterized in classes having dif-
ferent sexual activity or number of sexual contacts. This
fact leads to models dealing with heterogeneous popula-
tions which are known to enhance the spread of infec-
tions as well as make them harder to eradicate (for a
review see [4]). In this perspective, a limiting case is rep-
resented by the newly identified classes of complex net-
works (for a review see [5]). The highly heterogeneous
topology of these networks is mainly reflected in the small
average path lengths among any two nodes (small-world
property) [6,7], and in a power law distribution (scale-
free property), P (k) ∼ k−2−γ , for the probability that
any node has k connections to other nodes [8]. While
regular networks present finite connectivity fluctuations
(〈k〉 '

〈
k2
〉
), scale-free (SF) networks are a limiting case

of heterogeneity where connectivity fluctuations are di-
verging if 0 < γ ≤ 1. In other words, the network nodes
possess a statistically significant probability of having
a virtually unbounded number of connections compared
to the average value. SF networks find real examples in
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several technological systems such as the Internet [9,10]
and the world-wide-web (WWW) [11], as well as in nat-
ural systems such as food-webs, and metabolic or pro-
tein networks [5]. The need to understand the dynamics
of information transmission, the error tolerance [12–14],
and other properties of complex networks has therefore
called for the study of epidemic modeling in complex net-
works [15–19].

A surprising result, originated by the inspection of the
susceptible-infected-susceptible (SIS) model, has shown
that the spread of infections is tremendously strengthened
on SF networks [18,19]. Opposite to standard models, epi-
demic processes in these networks do not possess, in the
limit of an infinite network, any epidemic threshold be-
low which the infection cannot produce a major epidemic
outbreak or an endemic state. In principle, SF networks
are prone to the persistence of diseases whatever infective
strength they may have. This feature reverberates also in
the choice of immunization strategies [20–22] and changes
radically many standard conclusions on epidemic spread-
ing. This study appears particularly relevant in the case
of technological networks, for instance for the spreading
of digital viruses in the Internet [18], and it has soon been
generalized by showing that also the susceptible-infected-
removed (SIR) model shows the same absence of epidemic
threshold [23]. These results highlight the study of epi-
demic models in complex networks as potentially relevant
also in human and animal epidemiology [23], as confirmed
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recently by the experimental observation that the web ar-
chitecture of sexual contacts is best described by a scale-
free topology in which individuals have widely different
connectivities [24].

In this paper we provide a detailed analytical and nu-
merical study of the SIR model on two prototype com-
plex networks: the Watts-Strogatz (WS) model and the
Barabási-Albert (BA) model. The first model is a small-
world network with bounded connectivity fluctuations,
while the second one is the prototype example of SF net-
work. The analytical approach allows us to recover the
total size of the epidemics in an infinite population, in
agreement with earlier estimates [23]. We are able to find
the analytic expression for the critical threshold as a func-
tion of the moments of the connectivity distribution and
we confirm the absence of any finite threshold for con-
nectivity distributions P (k) ∼ k−2−γ with 0 < γ ≤ 1, in
the infinite size limit. We obtain the general analytic ex-
pression for the total density of infected individuals and
the epidemic threshold at arbitrary γ values. Finite size
network effects can be easily evaluated from the analytic
expressions. Time evolution and other effects of hetero-
geneity such as the relative infection incidence in different
connectivity classes can be predicted. In order to confirm
the analytical findings we perform large scale numerical
simulations on the WS and BA networks. Numerical re-
sults are in perfect agreement with the analytical predic-
tions and confirm that the interplay of complex networks
topology and epidemic modeling leads to a new and inter-
esting theoretical framework, whose predictions and im-
plications need to be exhaustively explored.

During the completion of this paper we became aware
of a work by May and Lloyd [25] which reports a com-
prehensive study of the SIR model in scale free networks.
This work extends the preliminary account provided in
reference [23].

2 The SIR model

Our theoretical understanding of epidemic spreading is
based on compartmental models, in which the individ-
uals in the population are divided in a discrete set of
states [4,26]. In this framework, diseases which result
in the immunization or death of infected individuals
can be characterized by the classical susceptible-infected-
removed (SIR) model [4,26]. In this model individuals can
only exist in three different states: susceptible (healthy),
infected, or removed (immunized or dead). In a homoge-
neous system, the SIR model can be described in terms
of the densities of susceptible, infected, and removed in-
dividuals, S(t), ρ(t), and R(t), respectively, as a function
of time. These three magnitudes are linked through the
normalization condition

S(t) + ρ(t) +R(t) = 1, (1)

and they obey the following system of differential equa-
tions:

dS
dt

= −λkρS,
dρ
dt

= −µρ+ λkρS, (2)

dR
dt

= µρ.

These equations can be interpreted as follows: infected in-
dividuals decay into the removed class at a rate µ, while
susceptible individuals become infected at a rate propor-
tional to both the densities of infected and susceptible
individuals. Here, λ is the microscopic spreading (infec-
tion) rate, and k is the number of contacts per unit time
that is supposed to be constant for the whole population.
In writing this last term of the equations we are assum-
ing the homogeneous mixing hypothesis [4], which asserts
that the force of the infection (the per capita rate of ac-
quisition of the disease by the susceptible individuals) is
proportional to the density of infectious individuals. The
homogeneous mixing hypothesis is indeed equivalent to a
mean-field treatment of the model, in which one assumes
that the rate of contacts between infectious and suscepti-
bles is constant, and independent of any possible source of
heterogeneity present in the system. Another implicit as-
sumption of this model is that the time scale of the disease
is much smaller than the lifespan of individuals; therefore
we do not include in the equations terms accounting for
the birth or natural death of individuals.

The most significant prediction of this model is the
presence of a nonzero epidemic threshold λc [26]. If the
value of λ is above λc, λ > λc, the disease spreads and
infects a finite fraction of the population. On the other
hand, when λ is below the threshold, λ < λc, the total
number of infected individuals (the epidemic prevalence),
R∞ = limt→∞R(t), is infinitesimally small in the limit
of very large populations (the thermodynamic limit). In
order to see this point, let us consider the set of equa-
tions (2), in which, without lack of generality, we set µ = 1.
Integrating the equation for S(t) with the initial condi-
tions R(0) = 0 and S(0) ' 1 (i.e., assuming ρ(0) ' 0,
a very small initial concentration of infected individuals),
we obtain

S(t) = e−λkR(t). (3)

Combining this result with the normalization condi-
tion (1), we observe that the total number of infected indi-
viduals R∞ fulfills the following self-consistent equation:

R∞ = 1− e−λkR∞ . (4)

While R∞ = 0 is always a solution of this equation, in
order to have a nonzero solution the following condition
must be fulfilled:

d
dR∞

(
1− e−λkR∞

)∣∣∣
R∞=0

> 1. (5)
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This condition is equivalent to the constraint λ > λc,
where the epidemic threshold λc takes the value λc =
k −1 in this particular case. Performing a Taylor expan-
sion at λ = λc it is then possible to obtain the epi-
demic prevalence behavior R∞ ∼ (λ − λc) (valid above
the epidemic threshold). In the language of the physics
of nonequilibrium phase transitions [27], the epidemic
threshold is completely equivalent to a critical point. In
analogy with critical phenomena, we can consider R∞ as
the order parameter of a phase transition and λ as the tun-
ing parameter. In particular, it is easy to recognize that
the SIR model is a generalization of the dynamical per-
colation model, that has been extensively studied in the
context of absorbing-state phase transitions [27].

3 The SIR model in complex networks

In order to address the effects of contact heterogeneity in
epidemic spreading, let us consider the SIR model defined
on a network with general connectivity distribution P (k)
and a finite average connectivity 〈k〉 =

∑
k kP (k). Each

node of the network represents an individual in its cor-
responding state (susceptible, infected, or removed), and
each link is a connection along which the infection can
spread. The disease transmission on the network is de-
scribed in an effective way: At each time step, each suscep-
tible node is infected with probability λ, if it is connected
to one or more infected nodes. At the same time, each
infected individual becomes removed with probability µ,
that, without lack of generality, we set equal to unity.

In order to take into account the heterogeneity induced
by the presence of nodes with different connectivity, we
consider the time evolution of the magnitudes ρk(t), Sk(t),
and Rk(t), which are the density of infected, susceptible,
and removed nodes of connectivity k at time t, respec-
tively. These variables are connected by means of the nor-
malization condition

ρk(t) + Sk(t) +Rk(t) = 1. (6)

Global quantities such as the epidemic prevalence are
therefore expressed by an average over the various con-
nectivity classes; i.e., R(t) =

∑
k P (k)Rk(t). At the mean-

field level, these densities satisfy the following set of cou-
pled differential equations:

dρk(t)
dt

= −ρk(t) + λkSk(t)Θ(t), (7)

dSk(t)
dt

= −λkSk(t)Θ(t), (8)

dRk(t)
dt

= ρk(t). (9)

The factor Θ(t) represents the probability that any given
link points to an infected site. This quantity can be com-
puted in a self-consistent way [18]: The probability that a
link points to a node with s links is proportional to sP (s).
Thus, the probability that a randomly chosen link points

to an infected node is given by

Θ(t) =
∑
k kP (k)ρk(t)∑

s sP (s)
=
∑
k kP (k)ρk(t)
〈k〉 · (10)

In this approximation we are neglecting the connectivity
correlations in the network, i.e., the probability that a
link points to an infected node is considered independent
of the connectivity of the node from which the link is ema-
nating. A more refined approximation would consider the
network correlations as given by the conditional proba-
bility P (k | k′) that a node with given connectivity k′ is
connected to a node with connectivity k [28]. Neverthe-
less, as we will see in the next sections, this rather crude
approximation is quite able to give account of many of the
properties shown by computer simulations of the model.

The equations (7–9), combined with the initial con-
ditions Rk(0) = 0, ρk(0) = ρ0

k, and Sk(0) = 1 − ρ0
k com-

pletely define the SIR model on any complex network with
connectivity distribution P (k). We will consider in par-
ticular the case of a homogeneous initial distribution of
infected nodes, ρ0

k = ρ0. In this case, in the limit ρ0 → 0,
we can substitute ρk(0) ' 0 and Sk(0) ' 1. Under this
approximation, equation (8) can be directly integrated,
yielding

Sk(t) = e−λkφ(t) (11)

where we have defined the auxiliary function

φ(t) =
∫ t

0

Θ(t′)dt′ =
1
〈k〉

∑
k

kP (k)Rk(t), (12)

and in the last equality we have made use of the defini-
tion (10).

In order to get a closed relation for the total density of
infected individuals, it results more convenient to focus on
the time evolution of the averaged magnitude φ. To this
purpose, let us compute its time derivative:

dφ(t)
dt

=
1
〈k〉

∑
k

kP (k)ρk(t) (13)

=
1
〈k〉

∑
k

kP (k)(1−Rk(t)− Sk(t)) (14)

= 1− φ(t) − 1
〈k〉

∑
k

kP (k)Sk(t). (15)

Introducing the obtained time dependence of Sk(t) we are
led to the differential equation for φ(t)

dφ(t)
dt

= 1− φ(t)− 1
〈k〉

∑
k

kP (k)e−λkφ(t). (16)

Once solved equation (16), we can obtain the total epi-
demic prevalence R∞ as a function of φ∞ = limt→∞ φ(t).
Since Rk(∞) = 1− Sk(∞), we have

R∞ =
∑
k

P (k)
(
1− e−λkφ∞

)
. (17)
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Equations (16, 17) constitute thus an alternative represen-
tation of the model, with respect to equations (7–9). It is
worth remarking that identical equations can be obtained
in the framework developed for the HIV transmission in
heterogeneous populations by May and Anderson [3].

For a general P (k) distribution, equation (16) can-
not be solved in a closed form. However, we can still get
useful information on the infinite time limit; i.e. at the
end of the epidemics. Since we have that ρk(∞) = 0 and
consequently limt→∞ dφ(t)/dt = 0, we obtain from equa-
tion (16) the following self-consistent equation for φ∞

φ∞ = 1− 1
〈k〉

∑
k

kP (k)e−λkφ∞ . (18)

The value φ∞ = 0 is always a solution. In order to have a
non-zero solution, the condition

d
dφ∞

(
1− 1
〈k〉

∑
k

kP (k)e−λkφ∞
)∣∣∣∣∣

φ∞=0

> 1 (19)

must be fulfilled. This relation implies

1
〈k〉

∑
k

kP (k)(λk) = λ

〈
k2
〉

〈k〉 > 1. (20)

This condition defines the epidemic threshold

λc =
〈k〉
〈k2〉 (21)

below which the epidemic prevalence is null, and above
which it attains a finite value. That is, the threshold is in-
versely proportional to the connectivity fluctuations

〈
k2
〉
.

For regular networks, in which
〈
k2
〉
< ∞, the threshold

has a finite value and we are in the presence of a stan-
dard phase transition. On the other hand, networks with
strongly fluctuating connectivity distribution, show a van-
ishing epidemic threshold for increasing network sizes; i.e.〈
k2
〉
→ ∞ for N → ∞. It is worth remarking that real

networks have always a finite size N and thus an effective
threshold, depending on the magnitude of 〈k〉 and

〈
k2
〉
,

that can be easily calculated as a function of N [25]. This
apparent threshold, however is not an intrinsic quantity
and it is extremely small for systems with large enough
N . A more detailed discussion of finite-size effects can be
found in reference [29].

4 Exponentially distributed networks:
The Watts-Strogatz model

The class of exponential networks refers to random graph
models which produce a connectivity distribution P (k)
peaked at an average value 〈k〉 and decaying exponentially
fast for k� 〈k〉 and k � 〈k〉. Typical examples of such a
network are the Erdös and Rényi model [30] and the small-
world model of Watts and Strogatz (WS) [31]. The latter
has recently been the object of several studies as a good

candidate for the modeling of many realistic situations in
the context of social and natural networks. In particular,
the WS model shows the “small-world” property common
in random graphs [6]; i.e., the diameter of the graph –
the shortest chain of links connecting any two vertices
– increases very slowly, in general logarithmically, with
the network size [32]. On the other hand, the WS model
has also a local structure (clustering property) that is not
found in random graphs with finite connectivity [31,32].
The WS graph is defined as follows [31,32]: The starting
point is a ring with N nodes, in which each node is sym-
metrically connected with its 2m nearest neighbors. Then,
for every node each link connected to a clockwise neigh-
bor is rewired to a randomly chosen node with probability
p, and preserved with probability 1 − p. This procedure
generates a random graph with a connectivity distributed
exponentially for large k [31,32], and an average connec-
tivity 〈k〉 = 2m. The graph has small-world properties
and a non-trivial “clustering coefficient”; i.e., neighboring
nodes share many common neighbors [31,32]. The richness
of this model has stimulated an intense activity aimed at
understanding the network’s properties upon changing p
and the network size N [6,15,31–34]. At the same time,
the behavior of physical models on WS graphs has been
investigated, including epidemiological percolation mod-
els [13,15,16] and models with epidemic cycles [17].

In the following we focus on the WS model with p = 1;
it is worth noticing that even in this extreme case the net-
work retains some memory of the generating procedure.
The network, in fact, is not locally equivalent to a ran-
dom graph in that each node has at least m neighbors. In
the limit p → 1, the connectivity distribution of the WS
network, as defined previously, takes the form [35]

P (k) =
mk−m

(k −m)!
e−m for k ≥ m. (22)

For general regular networks, for which 〈kn〉 < ∞ for
all values of n, equations (16, 17) can be approximately
solved in the limit φ(t) → 0, by expanding the exponen-
tials under the summation signs. Thus, for the case of the
total epidemic prevalence R∞ in equation (17),

R∞ '
∑
k

P (k)λkφ∞ = 〈k〉λφ∞. (23)

That is, R∞ is linearly proportional to φ∞.
On the other hand, by expanding the exponential in

equation (16) and keeping the most relevant terms, we
obtain:

dφ
dt
' 1− φ−

∑
k kP (k)(1− λkφ+ λ2k2φ2/2)

〈k〉 (24)

= φ

(
−1 + λ

〈
k2
〉

〈k〉 − λ
2φ

〈
k3
〉

2 〈k〉

)
· (25)

The resulting previous equation can be integrated, to yield

φ(t) =
2(λ− λc) 〈k〉

〈k3〉λ2 +Ae−(λ−λc)t/λc
, (26)
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Fig. 1. Total density of infected individuals R∞ as a function
of λ−λc for the SIR model in WS networks of size N = 106. The
value of λc = 0.184(5) is in good agreement with the analytical
prediction. The full line is a fit to the form R∞ ∼ (λ − λc)β
with β = 0.9(1).

where λc is defined as in equation (21) and A is an inte-
gration constant. That is, for λ < λc, φ∞ → 0, while from
λ > λc, we recover the well-known mean-field behavior
φ∞ ∼ (λ − λc), which translated to the total epidemic
prevalence R∞ yields

R∞ ∼ (λ− λc). (27)

In the particular case of the WS networks, we expect
to observe the behavior dictated by equation (27), with
an epidemic threshold that, using the connectivity distri-
bution equation (22), is given by

λc =
〈k〉
〈k2〉 =

2
1 + 4m

· (28)

In order to compare with the analytical predictions we
have carried out large scale simulations of the SIR model
in the WS network with p = 1. In our simulations we
consider the WS network with parameter m = 3, which
corresponds to an average connectivity 〈k〉 = 6. Simula-
tions were implemented on graphs with number of nodes
ranging from N = 103 to N = 3 × 106, averaging over
at least 104 different epidemic outbreaks, performed on
at least 10 different realization of the random network. In
Figure 1, we show the total density of removed nodes at
the end of the epidemic outbreak as a function of the pa-
rameter λ. The graph exhibits an epidemic threshold at
λc = 0.184(5) that is approached with a roughly linear
behavior by R∞. A linear fit to the form R∞ ∼ (λ− λc)β
provides an exponent β = 0.9(1), in reasonable agreement
with the analytical findings. This confirms that the SIR
model in exponentially bounded complex networks has a
behavior similar to that obtained with the mean-field hy-
pothesis. Actually, since the connectivity fluctuations are
very small in the WS graph (

〈
k2
〉
∼ 〈k〉), as a first approx-

imation we can consider the WS model as a homogeneous

0 100 200 300
0.00

0.05
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t

�
(t
)

k = 14

k = 10

k = 6

k = 3

Fig. 2. Total density of infected nodes as a function of time for
the SIR model in WS networks, starting from initial conditions
peaked in nodes of connectivity k (initial infected individuals
randomly distributed only among the nodes of connectivity k).
The spreading rate is fixed to λ = 0.20. The network size is
N = 106.

one in which each node has the same number of links,
k ' 〈k〉. In order to provide further evidence to this effec-
tive homogeneity, we show in Figure 2 the time evolution
of the density of infected nodes for epidemic outbreaks
starting only on nodes with a given connectivity k. The
total epidemic prevalence is almost constant for all con-
nectivity k, with a slight shift of the peak time of the
outbreak. The figure clearly shows that the system reacts
almost identically to this heterogeneous initial conditions,
confirming that the mean-field assumption is correctly de-
picting the system’s behavior. We shall see in the next
section that this is not the case for SF networks.

5 Power-law distributed networks:
The Barabási-Albert model

The Barabási-Albert (BA) graph was introduced as a mo-
del of growing network (such as the Internet or the world-
wide-web) in which the successively added nodes establish
links with higher probability pointing to already highly
connected nodes [8]. This is a rather intuitive phenomenon
on the Internet and other social networks, in which new
individuals tend to develop more easily connections with
individuals which are already well-known and widely con-
nected. The BA graph is constructed using the following
algorithm [8]: We start from a small number m0 of nodes;
every time step a new vertex is added, with m links that
are connected to an old node i with probability

Π(ki) =
ki∑
j kj

, (29)

where ki is the connectivity of the ith node. After iterat-
ing this scheme a sufficient number of times, we obtain a
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network composed by N nodes with connectivity distri-
bution P (k) ∼ k−3 and average connectivity 〈k〉 = 2m
(in this work we will consider the parameters m0 = 5 and
m = 3). Despite the well-defined average connectivity, the
scale invariant properties turn out to play a major role
on the physical properties of these networks (for instance,
the resilience to attack [13,14]).

In the continuous k approximation, that substitutes
the discrete variable k for a continuous variable in the
range [m,∞[, the connectivity distribution of the BA
model takes the form

P (k) =
2m2

k3
for k ≥ m. (30)

For this distribution, the first moment is finite, 〈k〉 = 2m,
but the second moment diverges with the network size,〈
k2
〉
∼ m2 logN [36]. In view of the general result equa-

tion (21), we observe that a finite network composed by
N nodes, should exhibit an effective epidemic threshold

λc(N) ∼ 1
logN

, (31)

which appears as a consequence of finite size effects, as
costumarily encountered in nonequilibrium statistical sys-
tems [27]. For very large networks, however, λc(N) will
tend to zero and we will observe a null threshold in the
thermodynamic limit [25,29].

The equation for R∞, with the connectivity distribu-
tion (30) is

R∞ = 1− 2m2

∫ ∞
m

k−3e−λkφ∞dk. (32)

This integral can be performed and expressed in terms
of the incomplete Gamma function [37]. Expanding the
obtained result for small φ∞ yields

R∞ ' 2λmφ∞. (33)

On its turn, the equation for φ(t), with the connectiv-
ity distribution (30), is

dφ(t)
dt

= 1− φ(t)−m
∫ ∞
m

k−2e−λkφdk. (34)

Expressing the previous integral in terms of incomplete
Gamma functions and expanding for small φ(t) we are led
to the equation

1
λm

dφ(t)
dt
' φ

[
1− γE −

1
λm
− ln(λmφ)

]
. (35)

This equation can be integrated, to yield

φ(t) ' 1
λm

exp
(

1− γE −
1
λm

+Ae−λmt
)
, (36)

where A is an integration constant. The stationary regime
for long times is

φ∞ '
e1−γE

λm
e−1/λm, (37)
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Fig. 3. Total density of infected individuals R∞ as a function
of 1/λ for the SIR model in BA networks of size N = 106.
The linear behavior on the semi-logarithmic scale proves the
stretched exponential behavior predicted by equation (38). The
inset show the time profile of the average density of infected
individuals at the spreading rate λ = 0.09.

and by inserting this result into the expression for the
total epidemic prevalence we find

R∞ ∼ e−1/λm. (38)

That is, in an infinite network the function R∞ is non-
zero for any non-zero value of λ, which is in agreement
with the predicted threshold λc = 0. This result recovers
the findings of Lloyd and May [23] as well as the behavior
obtained by considering a diverging connectivity variance
in the results reported by May and Anderson for HIV
spreading in heterogeneous populations [3]. By following
this framework is also possible to relate the absence of
the epidemic threshold to the divergence of the basic re-
productive number, customarily defined in traditional epi-
demiological modeling [23,25].

The numerical simulations performed on the BA net-
work confirm the picture extracted from the analytic
treatment. We consider the SIR model on BA networks
of size ranging from N = 103 to N = 106, with m = 3
and thus 〈k〉 = 6. As predicted by the analytic calcula-
tions, Figure 3 shows that R∞ decays with λ as R∞ ∼
exp(−C/λ), where C is a constant. In order to rule out
the presence of finite size effects hiding an abrupt transi-
tion (the so-called smoothing out of critical points [27]),
we have inspected the behavior of the stationary persis-
tence for network sizes varying over three orders of mag-
nitude. The total absence of scaling of R∞ and the perfect
agreement for any size with the analytically predicted ex-
ponential behavior allows us to definitely confirm the ab-
sence of any finite epidemic threshold. A closer look at
R∞ is given in Figure 4. While Figure 3 reports the av-
erage over 104–105 epidemic outbreaks, Figure 4 reports
an illustration of the behavior of the cumulative probabil-
ity P (R∞ > R) of having an outbreak which affects more
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Fig. 4. Cumulated outbreak epidemic distribution for the SIR
model in BA networks. The spreading rate is fixed to λ = 0.09.
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Fig. 5. Density Sk(∞) of susceptible nodes as a function of
k for the SIR model in BA networks. Epidemics start from
random initial conditions (initial infected individuals randomly
distributed among all nodes). The spreading rate is fixed to
λ = 0.09. The network size is N = 106. The linear-log plot
recovers the exponential form predicted in equation (11).

than R individuals in a single realization at λ = 0.09.
The figure shows a finite probability of having outbreaks
involving a number of individuals of the order of the net-
work size N . The large plateau corresponds to a gap be-
tween large events and small outbreaks that give rise to a
zero density of infected individuals in the N → ∞ limit.
Accordingly to the predictions, the plateau extends pro-
portionally to N for increasing network sizes.

The large heterogeneity of these networks can be pic-
torially characterized by inspecting the epidemic evolu-
tion in each class of connectivity k. We know from equa-
tion (11), that the susceptibles densities Sk(t) decay much
faster in the highly connected classes. In particular, we
have that Sk(∞) ∼ exp(−λkφ∞). In Figure 5, we report
Sk(∞) as a function of k on a semi-logarithmic scale.
The plot shows the expected linear relation in k. Since
Rk(∞) = 1 − Sk(∞), the curves clearly show that the
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Fig. 6. Total density of infected nodes as a function of time for
the SIR model in BA networks, starting from initial conditions
concentrated in nodes of connectivity k (initial infected indi-
viduals randomly distributed among the nodes of connectivity
k). The spreading rate is fixed to λ = 0.09. The network size
is N = 106.

higher is the nodes’ connectivity, the higher is the relative
prevalence of the epidemic outbreak. Classes of nodes with
few connections have a small density of removed individ-
uals (total number of infected individuals), while highly
connected classes (k � 100) are almost totally affected by
the infection. A further striking evidence of the peculiar
behavior of the SF networks is obtained by inspecting epi-
demic outbreaks starting on nodes with different connec-
tivity k. While an analytical solution for this case is very
troublesome, the numerical investigation presents clear-
cut results. In Figure 6 we present the infection incidence
profile for epidemic outbreaks started on sites with differ-
ent connectivities k. The population results much weaker
(higher number of infected individuals) to epidemics start-
ing on highly connected individuals. This weakness points
out that the best protection of these networks can be
achieved by targeted immunization programs [4,22].

6 Generalized scale-free networks

Recently there has been a burst of activity in the model-
ing of SF complex networks. The recipe of Barabási and
Albert [8] has been followed by several variations and gen-
eralizations [38–41] and the revamping of previous math-
ematical works [42,43]. All these studies propose methods
to generate SF networks with variable exponent γ. The
analytical treatment presented in the previous section for
the SIR model can be easily generalized to SF networks
with connectivity distribution with γ > 0. Let us consider
a generalized SF network with a normalized connectivity
distribution given by

P (k) = (1 + γ)m1+γk−2−γ , (39)
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where we are approximating the connectivity k as a con-
tinuous variable and assuming m the minimum connec-
tivity of any node. According to the general result equa-
tion (21), the epidemic threshold for infinite networks is
given in this case, as a function of γ, as

λc =
γ − 1
γm

if γ > 1, (40)

λc = 0 if γ ≤ 1. (41)

When the network size is finite, finite size effects come at
play and we recover a non-zero effective threshold λc(N)
for γ ≤ 1. It can be easily checked, however, that the
effective threshold tends to zero as a power law of N [29].

To obtain the explicit expression for φ∞ and R∞ we
must solve the equations (16, 17) for the general connectiv-
ity distribution (39). While the differential equation (16)
cannot be solved in a closed form for general γ, we can
obtain an approximation to the steady state value at long
times, φ∞, solving the algebraic equation

φ∞ = 1− 1
〈k〉

∑
k

kP (k)e−λkφ∞ . (42)

Integrating equation (17) in the continuous k approxima-
tion, the total epidemic prevalence R∞ takes the form

R∞ = 1− (1 + γ)(λmφ∞)1+γΓ (−1− γ, λmφ∞), (43)

where Γ (a, z) is the incomplete Gamma function [37]. In
the limit φ∞ → 0, we can perform a Taylor expansion of
the right hand side of equation (43), which at lowest order
yields:

R∞ ∼
γ + 1
γ

λmφ∞. (44)

In order to find the infinite time limit value φ∞, we
must solve the equation (42). Substituting the form of the
generalized connectivity distribution (39), we obtain

φ∞ = 1− γ(λmφ∞)γΓ (−γ, λmφ∞). (45)

The leading behavior of the right hand side of this equa-
tion depends on the particular value of γ considered. Thus
we can consider the following cases:

(a) 0 < γ < 1: In this case, we have

φ∞ ∼ (λm)γ/(1−γ). (46)

Combining this result with equation (44), we obtain

R∞ ∼ λ1/(1−γ). (47)

In this range of values of γ we recover the absence of the
epidemic threshold, and the associated critical behavior,
as we have already shown in Section 5.

(b) 1 < γ < 2: The nontrivial solution for φ∞ is now

φ∞ ∼
(
λ− γ − 1

γm

)1/(γ−1)

, (48)

which yields

R∞ ∼ (λ− λc)1/(γ−1), (49)

with an epidemic threshold λc given by equation (40).
(c) γ > 2: The most relevant terms in the expansion

of φ∞ are now

φ∞ ∼ λ−
γ − 1
γm

, (50)

that for the epidemic prevalence yields the behavior

R∞ ∼ (λ− λc). (51)

The threshold λc is again given by the general expres-
sion (40). In other words, we recover the usual epidemic
framework in networks with connectivity distribution that
decays faster than k to the fourth power. Obviously, an ex-
ponentially bounded network is included in this last case.
It is worth remarking that similar results have been ob-
tained for static percolation in the analysis of the resilience
to damage of scale-free networks [13,14].

7 Conclusions

The presented results for the SIR model in complex net-
works confirm the epidemiological picture proposed in pre-
vious works. The topology of the network has a great in-
fluence in the overall behavior of epidemic spreading. The
connectivity fluctuations of the network play a major role
by strongly enhancing the infection’s incidence. This issue
assumes a particular relevance in the case of SF networks
that exhibit connectivity fluctuations diverging with the
increasing size N of the web. SF networks are therefore
very weak in face of infections presenting an effective epi-
demic threshold that is vanishing in the limit N →∞. In
the case of the SIR model in an infinite population this
corresponds to the absence of any epidemic threshold be-
low which major epidemic outbreaks are impossible. These
results strengthen the epidemiological framework for com-
plex networks reported for the SIS model [18,19] and pro-
posed as well for the SIR model [23]. In both models the
heterogeneous connectivity allows certain regions of the
network to be always in the active phase, thus shifting to
zero the epidemic threshold and inducing the same func-
tional form of the order parameter. The emerging picture
is likely going to stimulate the re-analysis of several con-
cepts of standard epidemiology such as the “core group”
or the characteristic number of contacts that appears to
be ill-defined in SF networks.

The high heterogeneity of SF networks finds signatures
also in the peculiar susceptibility to infections starting on
the most connected individuals and the different relative
incidence within populations of varying connectivity k. It
is reasonable to expect that these features can point at
better protection methods for these networks which ap-
pear to have practical realization in many technological
and biological systems. In this perspective, the introduc-
tions of many elements of realism and a better knowledge
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of the networks temporal pattern are fundamental ingre-
dients towards a better understanding of the spreading
of information and epidemics in a wide range of complex
interacting systems.
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and R. Zecchina for helpful comments and discussions. We are
grateful to A.L. Lloyd and R.M. May for enlightening sugges-
tions and for pointing out to us some fundamental references.

References

1. H.W. Hethcote, J.A. Yorke, Lect. Notes Biomath. 56, 1
(1984).

2. R.M. May, R.M. Anderson, Nature 326, 137 (1987).
3. R.M. May, R.M. Anderson, Phil. Trans. R. Soc. Lond. B

321, 565 (1988).
4. R.M. Anderson, R.M. May, Infectious diseases in humans

(Oxford University Press, Oxford, 1992).
5. S.H. Strogatz, Nature 410, 268 (2001).
6. D.J. Watts, Small worlds: The dynamics of networks be-

tween order and randomness (Princeton University Press,
New Jersey, 1999).

7. L.A.N. Amaral, A. Scala, M. Barthélémy, H.E. Stanley,
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