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Abstract

For sexually transmitted infections like HIV to propagate through a population, there must be a 

path linking susceptible cases to currently infectious cases. The existence of such paths depends in 

part on the degree distribution. Here, we use simulation methods to examine how two features of 

the degree distribution affect network connectivity: Mean degree captures a volume dimension, 

while the skewness of the upper tail captures a shape dimension. We find a clear interaction 

between shape and volume: When mean degree is low, connectivity is greater for long-tailed 

distributions, but at higher mean degree, connectivity is greater in short-tailed distributions. The 

phase transition to a giant component and giant bicomponent emerges as a positive function of 

volume, but it rises more sharply and ultimately reaches more people in short-tail distributions 

than in long-tail distributions. These findings suggest that any interventions should be attuned to 

how practices affect both the volume and shape of the degree distribution, noting potential 

unanticipated effects. For example, policies that primarily affect high-volume nodes may not be 

effective if they simply redistribute volume among lower degree actors, which appears to 

exacerbate underlying network connectivity.
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1 Introduction

For sexually transmitted infections (STIs), such as HIV, to propagate through a population, 

there must be an unbroken chain of susceptible cases exposed to those who are currently 

infectious. The transmission potential in any setting thus depends on the contact timing 

(Moody, 2002; Morris et al., 2009) and structure (Dombrowski et al., 2013; Ferrari et al., 

2006) of the underlying sexual network. This structure is determined in part by each 
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person’s number of partners—the degree distribution (Hamilton et al., 2008; Newman et al., 

2001). Unfortunately, we rarely observe the network structure itself. Despite continued 

interest in the association between networks and STI transmission, our understanding of the 

links between network connectivity and the degree distribution has focused mainly on the 

effect of average degree. For example, prevention strategies that target infection transmission 

points—such as condom use, needle cleaning, and circumcision—or individual exposure 

risk—such as reducing numbers of partners—rarely ask how these changes affect the 

population network that ultimately sustains the epidemic. However, since network 

connectivity is an emergent feature unobservable to individuals, it is possible that changes 

that lower risk for one group might increase overall population risk. Without knowing how 

changes in the shape of the partnership distribution affect the resulting network connectivity, 

we risk missing the structural forest by focusing on the largest trees.

Here, we use simulation methods to identify how network connectivity varies by degree 

distribution shape and volume in static networks,1 using measures of these properties that 

can be obtained from sample survey data. Simple network connectivity is an imperfect 

indicator of epidemic potential; while it captures the upper bound for reachability, it ignores 

transmission limits imposed by partnership dynamics and likely overstates risk. As such, we 

also identify the extent of redundant connectivity, those substructures of the contact network 

that are most likely capable of sustaining transmission because they are more robust to 

transmission disruptions. Our results show that when the average number of sexual partners 

(among those who have partners) in a population is less than about 1.75, epidemic potential 

is higher in long-tailed distributions, but that for populations with larger average degree, 

short-tailed distributions create more robustly connected networks.2 In this region, the 

networks are characterized by multiply-connected cores that could be capable of sustaining 

transmission as well as very wide total connectivity covering the vast majority of the 

population. As a function of volume, these large multiple connected sets exhibit a sharp 

phase transition, moving from nearly disconnected to widely connected over a narrow 

volume range. These findings suggest that policy choices should focus on how induced 

behavior might affect both the volume and shape of the sexual degree distribution. In 

particular, if policies (such as enhanced law enforcement) remove high-degree actors but fail 

to lower overall volume, they might exacerbate risk.

2 Sexual behavior and network connectivity

A striking feature of sexual networks measured over long time periods (Lauman et al., 1994; 

Liljeros et al., 2001), is that a small number of people have a disproportionately large 

number of partners. The visibility of these people has made them a prominent target for both 

policy and theory (Barabasi & Albert, 1999; Dezso & Barabasi, 2002; Hethcote, 2000), 

based on the assumption that people with many partners play a key role either in global 

1We do not specify temporal dynamics on the networks because we do not want to conflate reachability due to timing with 
reachability due to structure. Unless the network is fully concurrent, timing effects lower connectivity (Moody, 2002). Assuming 
concurrency is evenly distributed across the edges in our networks, any given level of concurrency should produce patterns similar to 
what we observe here, but at lower absolute levels.
2The volume of ties we explore here are consistent with relations observed over a moderate time window, such as within the last year 
(Morris et al., 2010).
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connectivity or as transmission hubs. The argument for the importance of long-tailed 

distributions has been made most clearly in the “scale-free” network literature. In a scale-

free degree distribution, most of a network’s connectivity is created by a small number of 

high-degree nodes, which makes the network robust to random interventions but highly 

sensitive to disruption if one successfully targets the connecting hubs (Dezso & Barabasi, 

2002). The implication for STI networks is that any attempts at generalized interventions 

need either extremely general adoption or carefully targeted success to be effective. This is 

similar to the epidemiological focus on network “hubs” that channel the flow across 

different parts of the network, so attempts at disrupting flow will be most successful when 

focused on hubs (Dezso & Barabasi, 2002).

While this model provides a clear role for hubs in transmission, focusing solely on high-

degree nodes fails to address the more general question of when disease-sustaining network 

structures might emerge. Empirical support for long-tail sexual networks only emerges when 

behavior is viewed over long time frames, and most studies showing scale-free distributions 

are based the number of partners over the last year or lifetime (Liljeros et al., 2001). 

However, the infectious duration of many STIs can be far shorter (e.g., gonorrhea and 

chancroid) and even lifelong infections have infectivity that peaks in the early months (e.g., 

HIV and syphilis; Holmes et al., 1999). This suggests that the disease-relevant time frame is 

much shorter. Over such short temporal spans, most degree distributions are characterized by 

a surprisingly short tail (Armbruster et al., 2016; Brewer et al., 2000; Helleringer & Kohler, 

2007; Todd et al., 2009; Young et al., 2014) This raises the important question of how the 

underlying network structure varies jointly by the mean and the skewness of the degree 

distribution.

We explore the effect of two basic features of the degree distribution on network 

connectivity.3 First, the per capita volume of sexual activity, or average degree, captures the 

volume of contacts and we know that network connectivity generally increases with mean 

degree, though not linearly. Second, the shape of the degree distribution ranges from 

homogeneous distributions (everyone having the same number of partners) to highly unequal 

distributions (where a few people have many more partners than anyone else). We are thus 

interested in knowing: How do mean degree and degree skewness jointly determine network 

connectivity? The answer to this question can inform policy and help policymakers 

understand the multiple ways interventions that affect sexual activity distributions might 

affect risk. Moreover, since these two moments can be estimated with sample data, public 

health officials can monitor the potential STI risk in a setting using only local anonymous 

data.4

3Other features, particularly assortative mixing by degree or demographic and behavioral activity, also shape the underlying networks. 
We ignore these features here for simplicity, but see Morris et al. (2009) for examinations of the unique effects of behavioral mixing.
4There are closed-form solutions for estimating the simple (single-path) connectivity of a network for any degree distribution 
(Newman et al., 2001), though non for bi-connectivity. There have been no explorations of the general association between degree 
skewness and volume across a range of relevant parameter values. Thus, our work provides general insights into this association, 
which will help anticipate the effects of policies that impact average degree or the skewness of the degree distribution.
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3 Network connectivity and epidemic potential

The sexual contact network forms the foundation over which a disease is transmitted; the 

actual transmission network—the set of links that carry the disease through a population—is 

a disease-specific stochastic function over the observed contact network. This transmission 

network depends jointly on the network structure, tie duration/turnover, and the level and 

duration of infectivity (Hethcote, 2000). For analytic clarity, we focus on the connectivity 

properties that emerge solely as a function of degree features, ignoring temporal aspects of 

relational turnover, disease-specific transmission features (such as gender differentials in 

transmissibility), or other network structuring features (such as degree assortativity or 

clustering imposed by other demographic characteristics). We focus on moderate degree 

levels—with average degree ranging from just over 1 to just under 3—as this is the region 

most reflected in empirical data, that sets the bounds for transmission over moderate time 

frames, and represents the space with variability in connectivity.5 Following standard graph 

theory (Harary, 1969), we say that person i can reach person j if there is a chain of relations 

(a path) connecting them; a component of a network consists of all nodes that are connected 

by at least one path, and the largest component represents the maximum possible range for 

epidemic spread within any observed network. A network is said to have a giant component 

if the largest connected component is greater than 50% of the population. We use the 

maximum component size as one summary measure of epidemic potential, recognizing that 

this is generally a significant over-estimate of the actual population proportion at risk. Since 

transmission is stochastic, diffusion potential is higher when there are multiple routes around 

actors that might otherwise block transmission due to activity (such as condom use) or 

relationship timing (Moody, 2002). This feature of network structure is illustrated in Figure 

1.

Networks characterized by long single-linked chains are less likely to carry infection, since 

transmission stops if even one person along the chain fails to pass the infection. Multiple 

connectivity increases robustness by providing ways around such breaks, providing 

alternative routes to augment transmissibility. For example, if an STI were to enter this 

network at node 1 and had a 0.25 chance of being transferred across the edges, then the 

likelihood of making it to node 4 (a three-step distance) would be approximately 0.016 

(0.253); the same infectivity that enters at node 7 would have about a 0.031 chance (2*0.253) 

of making it to node 4 (also a three-step path). The probability is doubled since there are two 

independent transmission routes.

We operationalize structural transmission robustness by identifying the portions of the 

network that are connected by multiple paths (Moody & White, 2003). Two network paths 

are node-independent if they only have their end nodes in common but otherwise do not 

overlap. Generally, a k-connected component can only be separated by removing at least k 

5Our simulations show how much connectivity will be observed at each point in the degree distribution space, ignoring temporal 
transmission aspects. Thus, if the data were collected for “relations in the last 6 months,” then the results show what the cumulative 
contact network would look like over that time span. If the questions were for the last week, then the resulting contact connectivity is 
similarly bounded. All else equal, as time spans increase (last year, last 5 years, lifetime), the relevance of the cumulative connectivity 
to disease transmission decreases, as relational timing and sequencing reduces the number of reachable paths in long-term contact 
network. See Moody (2002) for examples contrasting long-term cumulative contact networks with temporal reach or Hellerginer & 
Kohler’s (2007) work finding connectivity similar to the volume discussed here.
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nodes, and every pair in a k-component is linked by at least k node-independent paths 

(Harary, 1969). Since no single person can block transmission in a network with k-

connectivity greater than 1, epidemic potential becomes a collective property and we 

consider two-connected components (called bicomponents) a minimum graph-theoretic 

operationalization of a robust potential STD core (Rothenberg et al., 1998).6 In Figure 1 

(and below), red nodes are members of the biconnected core while blue nodes are members 

of the largest connected component.

4 Methods

We define a space of possible networks by the volume of sexual activity (mean number of 

partners) and the length of the high-degree tail, which varies between a very “short-tailed” 

network, where nobody has significantly large numbers of partners, to the characteristically 

long-tailed degree defined by the scale-free distribution.7 Operationally, we approach the 

question in two phases, we first examine the extreme ends of the space to identify the basic 

contours of the results and help build intuition. We generate short-tailed degree distributions 

by assigning a minimum degree of 1 and adding two random draws from a bernulli 

distribution with p ranging from 0.25 to 0.75. For the boundary case of short-tailed 

networks, degree ranges from 1 to a maximum of 3, while the scale-free networks have the 

same number of edges but no limit on highest degree. We generate low-volume scale-free 

networks by manipulating the exponent (see footnote 8) to arrive at matching average degree 

values, conditional on degree ≥1. In the second phase, we interpolate across the range of 

distributions possible between these two boundary cases by examining all possible degree 

distributions with a minimum of 1 and maximum of 6. Networks are generated by looping 

over each degree value and assigning a proportion from 0 to 1 in 0.025 increments. We then 

retaine only those distributions that summed to 1.0, generating about 98,000 valid degree 

distributions. We use the degree distributions generated above and the method in Newman et 

al. (2001) to simulate 10,000 node networks for each of the degree distributions.8

We measure relational volume with mean degree. To measure the shape of the degree 

distribution, we focus on the dispersion of people across the degree distribution and the 

symmetry of that distribution. We combine these into a variability measure, which we define 

as the standard deviation multiplied by skewness, with a constant added to skewness to keep 

everything positive. Skewness captures shape but is scale invariant, while the standard 

deviation gives a better sense of the amount of variation it averages across both sides of the 

mean, by combining the two moments we get a simple composite measure of the length of 

the high-degree tail. While one could define the variability in other ways, particularly 

6Higher order k-components are necessarily nested within lower order k-components, and should track the same general pattern by 
volume and distribution found here. Since higher order k-components are computationally expensive to identify (Moody & White, 
2003), bicomponents allow us to identify the connectivity profile by volume and shape of the degree distribution in a computationally 
efficient manner.
7We use the term scale-free in keeping with the literature, where the p(k) k−λ; that the probability of having degree k is distributed as 
that degree to a negative exponent. Technically, the scale-free nature of this distribution only holds in infinite graphs with higher 
volume than explored here, qualitatively the issue is having a long tail to the distribution means that the hubs responsible for 
connectivity are few and thus hard to identify through random intervention.
8We compared our results to smaller networks and find a very similar pattern. While there is some evidence that phase transitions to 
connectivity vary in small village-scale networks (Carnegie & Morris, 2012), our results seem very robust to overall size. Thanks to a 
reviewer for suggesting these comparisons; results are available from the first author on request.
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making use of inequality measures such as the Gini or Theil indices, this simple metric is 

easy to implement and thus we hope more useful for practitioners. High values capture wide 

dispersion on a long-tailed distribution. After generating each network, we calculate the size 

of the largest component and bicomponent.9 The maximum extent of an epidemic is 

bounded by the largest component, and of a robust epidemic potential by the largest 

bicomponent.

5 Results

Figure 2, building on prior work (Morris et al., 2007), shows an example of this process on 

two short-tail degree distributions. In the top panel, average degree is about 1.7, with 40% of 

the nodes having a single partner, 50% having two partners, and 10% having three partners. 

This degree distribution generates a network without a giant component; the largest 

connected chains are only about 1% to 1.7% of the total population, and none of these 

connected sets contain a biconnected core. In such a setting, it would be extremely difficult 

to sustain disease transmission. In the bottom panel, tie volume increases to 1.9, by moving 

about half of those with one partner in the top panel to two partners. This change results in a 

dramatic shift in the overall network connectivity, as now more than half of the population is 

connected in the giant component (57%) and about 16% are members of the biconnected 

core.

Figure 3 expands this across two archetypal network shapes: one long-tailed (scale-free) 

distribution (red tones) and one short-tailed (max degree = 3) distribution (blue tones) 

(Morris et al., 2007). We find a sharp phase transition for the short-tailed networks at 1.73. 

The largest component comprises less than 3% of the population before the threshold, about 

38% at the threshold, and over 90% of the population when the mean degree reaches 2. The 

size of the largest bicomponent also increases rapidly as a function of volume, though less 

steeply: From 25% of the population, when the mean degree is 1.9, to about 56% when the 

mean rises to 2.0 and ultimately reaching about 90% of the population. The amount of 

connectivity that emerges as populations pass through the phase transition is striking and 

represents a qualitative shift in the structure. Just below the threshold, the network is 

composed mainly of small trees. As volume increases, these disconnected sets join together 

forming larger components, and re-join to form the biconnected core.

Eventually, these networks take on a core-periphery structure, with a robustly connected 

core and multiple chains emanating from the center. In contrast, the scale-free distribution 

reaches the threshold for component size at lower average degree (1.3) but grows more 

slowly as we add relational volume, and at the maximum volume settings reaches only about 

80% of the population. The disparity between the models is most striking for the size of the 

robust biconnected core, which never reaches more than 20% of the population in the scale-

free networks but continues to grow rapidly in the short-tailed networks. Qualitatively, this 

9While analytic solutions exist for the size of a component with arbitrary degree distributions (Molloy & Reed, 1998; Newman et al., 
2001), no solution exists for the size of the largest bicomponent, requiring us to generate the network and measure it directly. Since 
finding components in networks is computationally cheap, we calculate component size directly as well. We compared the analytic 
solutions for component size to the simulated results finding a nearly perfect fit, which suggests our networks are being simulated 
accurately.
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smoother transition among the scale-free networks results from adding disconnected dyads 

to the star hubs and slowly growing connectivity in the periphery of the network.

Figure 4 extends these results for the full enumeration of all possible degree distributions 

spanning the space between these two archetypical networks distributions. The x-axis in 

Figure 4 is the same as that in Figure 3 (average degree), the y-axis is our variability 

measure, capturing the continuum between short-tailed networks (low values) and long-

tailed networks (high values). The z-axis (color and contour) captures the size of the largest 

component (left panel) and bicomponent (right panel). The contours for component and 

bicomponent size in Figure 4 help identify equivalent epidemic risk across the space. The 

region characterized by “left-leaning” contour lines (around average degree < 1.75) is where 

long-tailed distributions will create larger connected components at any given volume level. 

Where the contours are roughly perpendicular to the x-axis, the epidemic risk is equivalent 

for long- and short-tailed distributions, whereas the portions of the space characterized by 

“right leaning” contours, risk at any given volume is higher for short-tailed distributions than 

for long tailed. The speed of this transition by volume is given by how quickly component 

size increases for any level of variability—when variability is low, changes in volume 

generate rapid changes in connectivity (contour lines close together), while when variability 

is high the transition to larger components is smooth (contour lines far apart).

Epidemic potential is highest in the reconnected core, represented in the right panel of 

Figure 4. The shape of the surface defined by the z-axis rises much more sharply in the 

lower right-hand portion of the space, and we only see giant bicomponents in this low-

variability region. This result means that in the rest of the space, the large single connected 

components have either no bicomponent (purple and dark blue) or comparatively small 

bicomponents (light-blue to cyan), suggesting a setting with fragile epidemic potential.10 

That is, networks with large components but small bicomponents are characterized primarily 

by long single-connectivity paths, which are comparatively easy to disrupt, as any point can 

block transmission at the nodes (e.g., by using condoms) or across edges (e.g., via 

inconsistent temporal order). In contrast, we find more robust networks, capable of carrying 

disease even in the face of transmission disruption, when the degree distribution has low 

variably.

To gain a qualitative sense of how the shapes of these distributions relate to the structure of 

the resulting networks, we plot sample degree histograms from across the space (exact point 

of the sample distribution marked by the “○” within each subpanel) along with an exemplar 

sociogram colored by component (blue) and bicomponent (red) membership in Figure 5. As 

these are largely core-like structures (since there is no mixing feature other than degree), we 

display only the “south-west” corner of the sociogram.

The dominating robust connectivity is clear in the lower right of Figure 5, where it is evident 

that nearly everyone is re-connected by multiple paths, compared to the long “tendrils” of 

single connected paths in the long-tail distribution portion of the space. In these reconnected 

10These sparsely connected areas are the sections of the distribution space where relational timing, and concurrency in particular, will 
be most important (Moody & Benton, 2016).
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settings, it is difficult to prevent STI flow unless blocking activity (condom use or 

vaccination, for example) is extremely widespread.

6 Conclusions

In this paper, we explored network connectivity in the low-volume sexual activity space that 

can be used as a qualitative model for moderate-term sexual networks (Carnegie & Morris, 

2012; Helleringer & Kohler, 2007; Young et al., 2014). We used simulations to examine 

nearly 98,000 different degree distributions within this space and then identified the size of 

the largest component and bicomponent as indicators of potential epidemic extent and robust 

connectivity, respectively. We find that the large components necessary for widespread 

diffusion can emerge at low average degree, but that the proportion of the population 

reached is highly sensitive to both the volume and the shape of the degree distribution. 

Long-tailed distributions can create extensive connectivity at lower average volume, but 

these tend to be fragile single-connected networks and ultimately reach fewer people than in 

short-tailed distributions with similar volume. We also find that the volume transition 

threshold for networks with large and robust epidemic potential is sharper for short-tailed 

distributions than for long-tailed degree distributions.

The main implication of these results is to make clear the highly non-linear and contingent 

nature of connectivity substrates in sexual networks. Any policy that targets degree will 

likely shift both volume and shape, and we should be cognizant of what that implies for 

epidemic potential. We find that epidemic potential is contingent on both the volume and 

shape of the degree distribution. Degree volume captures how much sex is happening in the 

population overall while the degree variability describes the concentration of who is having 

sex. Substantively, one can assume that the volume dimension in a setting is thus an 

imperfect indicator of population demand; while the distribution shape, particularly the 

length of the upper tail, is largely about the concentration of supply. Social interventions 

(either as policy aimed at health interventions or stigma-enhancing police enforcement) that 

focus disproportionately on high-degree nodes will largely have the effect of shifting who 

has sex without changing volume. With respect to our results, this is equivalent to moving 

the population “down” the y-axis of Figure 4 at a fixed point along the x-axis (volume), 

which will lead to greater connectivity in the right-hand portion of the space, and thus likely 

increase epidemic potential. In contrast, interventions targeted to lower demand for 

commercial sex uniformly shifts the population to types of networks with lower connectivity 

(down and to the left in Figure 4). Similarly, policies aimed at effectively removing 

transmission-relevant edges—such as widespread condom use or lowering numbers of 

concurrent partnerships—will have the substantive effect similar to lowering average degree; 

pushing the population toward safer regions of the space (left on the x-axis in Figure 4). 

While volume-lowering interventions seem to always help (reducing network connectivity), 

the returns are highly non-linear depending on the shape of the distribution, and as such, the 

realized effectiveness will vary widely across populations. Since public policies tend to be 

blunt instruments, it is important to ask how different incentives shape the structure of the 

degree distribution. By assessing where populations sit in this degree space, health policy 

investigators might also have a better sense of what sort of network structure is active, 

helping them evaluate achieved trace samples.11
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These results are based on simulations and focus on a single dimension of the underlying 

networks—namely the degree distribution—and as such are not without their limitations in 

making inferences to epidemic potential. While our findings are based on random networks, 

one can easily extend the analytic results to more realistic networks for STIs, and we would 

expect qualitatively similar outcomes (in fact our networks appear similar to those observed 

in real-world settings, see Helleringer & Kohler, 2007). For example, clustering features—

such as strong assortative mixing based on sexual preference, number of partners, or race—

might prevent giant components from forming by isolating subpopulations, but the 

restrictions would need to be nearly absolute. Anything less than absolute isolation will 

simply increase path redundancy within the assortative groups, creating localized disease 

cores rather than the simple core-periphery shape identified here. Degree assortativity has 

well-known effects on the extent of reachability in networks; future work should extend 

these results to assess whether such effects are contingent jointly on volume and variability. 

Additionally, our approach assumes distributions result from a single underlying behavior 

(sex). Future work should address how different actors (e.g., men vs. women), or different 

ties (e.g., sex vs. needle-sharing) differential and sometimes complementary contributions to 

those distributions (see e.g., adams et al., 2013) alter our results.

We have enumerated degree distributions across a somewhat narrow range, and one could 

extend along both dimensions, though there is no a priori reason to expect a discontinuity in 

the shape of the response surface found in Figure 4. That is, extending to higher maximum 

degree (beyond 6) or higher volume (beyond 2.5) should continue with the surface shape 

identified here, and is well beyond most empirical estimates over disease-relevant time 

frames.

Finally, more realistic transmission simulations could more precisely target policy toward 

disease specific transmission times and windows, as a key limitation of this work is that we 

ignore relationship temporal dynamics. Timing features have at least two implications. First, 

realistic transmission dynamics would respect the infectivity window of each disease (and 

the population demographics and behaviors). The effect of this, however, is largely to 

shorten the relevant duration within which partners can contribute to connectivity, effectively 

lowering volume, and variability. As a result, the effective transmissibility networks will be 

sparser than those examined here and likely with shorter tails. Second, continued 

transmission depends on a temporal sequence of relations to create a continually connected 

set of future susceptible cases linked to currently infectious nodes (Moody, 2002; Morris et 

al., 2009). This effectively limits exposure to the forest of paths existing after transmission, 

further limiting the relevant degree distribution to the lower volume portion examined here. 

In general, there are complex interactions between volume, variability, and relationship 

timing, particularly in open populations, that make identifying reachability complicated. 

However, analytic work on identifying expected size of the forward reachable path— the set 

of people downstream in time in an open population—has begun (see Morris et al., 2010), 

which holds great promise for understanding the joint interaction of structure and timing. 

Our initial simulation forays into this work suggest a general correspondence between the 

11We thank a reviewer for pointing this out.
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shape of the response surface in Figure 4 when relational timing is built in, so we expect the 

results to be robust to timing in general shape, if not level, though a full examination of this 

is beyond the scope of the current paper.

Since adding such features come at considerable computational cost, and depend crucially 

on setting-specific transmission details, we leave that to future work. Any transmission 

effects must occur within a subset of edges and paths identified here. We therefore anticipate 

that the contours of high epidemic potential in such work would correlate highly with the z-

axis of Figure 4 here, but with lower absolute levels.

The main contribution of this paper has been to highlight a qualitative tradeoff in network 

connectivity between the shape and volume of sexual degree distributions. In very low-

volume settings, long-tailed degree distributions generate higher connectivity, as high-degree 

hubs are the only way to generate any connectivity, though much of that connectivity is 

fragile. As total relational volume increases, however, we see a shift, where short-tailed 

degree distributions generate higher total connectivity than long-tailed distributions. Short-

tailed distributions reach more people, and do so more robustly than long-tailed 

distributions, at higher volumes.

If both highly skewed and short-tailed networks can sustain high connectivity, the public 

health question becomes empirical and context specific: What do sexual networks look like 

in the populations and time-spans of interest? The short infectious period of many STDs 

requires large components to emerge relatively quickly and maintain in the face of rapid 

population churn to sustain transmission. If the volume levels in such settings create 

relatively sparse contact networks, concurrency will be crucial for maintaining the temporal 

connectivity needed for disease spread (Moody & Benton, 2016, Morris et al., 2009). Armed 

with a better sense of how changes in individual behavior might affect contact structure, 

researchers can next turn our attention more directly to questions of how timing and 

population turnover affect disease spread within these structures.
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Fig. 1. 
Example network illustrating multiple connectivity. (Color online)
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Fig. 2. 
Connectivity in two short-tailed, low-volume networks. (Color online)
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Fig. 3. 
Size of Largest component and bicomponent by average number of sexual partners for short-

tailed and scale-free distributions. The curves plot the growth of the largest component and 

bicomponent as a function of the average degree, based on 100 simulations of a 10,000-node 

network at each degree setting. The red curve plots the analytic solution for the size of the 

giant component for the simulated networks with scale-free distributions, and the orange 

curve plots the largest bicomponent. The dark blue curve plots the analytic solution for the 

size of the largest component for the simulated low-degree networks, and the light blue 

curve plots the size of the largest bicomponent. The bicomponent curves are not continuous 

due to sampling. (Color online)
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Fig. 4. 
Size of largest component and bicomponent over the degree distribution state space. Point 

color and contour lines corresponds to the size of the largest component (left panel) and 

bicomponent (right panel) respectively. Contour lines mark approximate decile levels of the 

distributions. The scale-free and low-degree distributions from Figure 2 are plotted as lines 

across this space for reference. To avoid point stacking, a small amount of randomness has 

been added to the mean degree score for each plot. (Color online)
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Fig. 5. 
Select degree distribution and partial sociograms for simulated giant components. Histogram 

bars are for degree = 1 to 6 from left to right; a bar reaching the top of a subpanel would be 

100%. The number of nodes in components of at least 1% is given in the upper left of each 

subfigure. If there is more than one such component, the number is given in parentheses 

following the count. The count for size of the largest bicomponent is also given. For each 

network figure, blue nodes are in the largest component, red in the largest bicomponent. 

(Color online)
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