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tHow will a virus propagate in a real network? Does an epidemi
 threshold exist for a �nitepower-law graph, or any �nite graph? How long does it take to disinfe
t a network givenparti
ular values of infe
tion rate and virus death rate?We answer the �rst question by providing equations that a

urately model the virus prop-agation in any network in
luding real and synthesized network graphs. We propose a generalepidemi
 threshold 
ondition that applies to arbitrary graphs: we prove that, under reasonableapproximations, the epidemi
 threshold for a network is 
losely related to the largest eigenvalueof its adja
en
y matrix. Finally, for the last question, we show that infe
tions tend to zeroexponentially below the epidemi
 threshold.We show that our epidemi
 threshold in
ludes many known thresholds for spe
ial-
ase graphs(e.g., Erd�os-R�enyi, BA power-law, homogeneous); we show that the threshold tends to zero forin�nite power-law graphs. Finally, we illustrate the predi
tive power of our model with extensiveexperiments on real and synthesized graphs. We show that our threshold 
ondition holds forarbitrary graphs.Keywords: Computer Virus, Se
urity, Network Modeling, Epidemiologi
al Models
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1 Introdu
tionComputer viruses remain a signi�
ant threat to today's networks and systems. Existing defenseme
hanisms typi
ally fo
us on lo
al s
anning of virus signatures. While these me
hanisms 
andete
t and prevent the spreading of known viruses, they do little for globally optimal defenses.The re
ent proliferation of mali
ious 
ode that spreads with virus 
ode exa
erbates the problem[10, 24, 25℄. From a network dependability standpoint, the propagation of mali
ious 
ode representsa parti
ular form of fault propagation, whi
h may lead to the ultimate demise of the network(
onsider distributed denial-of-servi
e atta
ks). With the ex
eption of a few spe
ialized modelingstudies [7, 8, 16, 19, 26℄, mu
h still remains unknown about the propagation 
hara
teristi
s of
omputer viruses and the fa
tors that in
uen
e them.In this paper, we investigate epidemiologi
al modeling te
hniques to reason about 
omputer viralpropagation. Epidemiologi
al models have been used in several virus and worm studies. Kephartand White [7, 8℄ are among the �rst to propose epidemiology-based analyti
 models. Their studies,however, are based on topologies that do not represent modern networks. Staniford et al. [23℄reported a study of the 
ode red worm propagation, but did not attempt to 
reate an analyti
model. The more re
ent studies by Pastor-Satorras et al. [16, 17, 18, 19, 20℄ and Barab�asi etal. [2, 4℄ fo
used on mathemati
al models for power-law networks.This work aims to develop a general analyti
 model of virus propagation. Spe
i�
ally, we areinterested in models that 
an 
apture the impa
t of the underlying topology but are not limitedby it. We found that, 
ontrary to prior beliefs, viral propagation is largely determined by intrinsi

hara
teristi
s of the network. Our model holds for arbitrary graphs and renders surprisingly simplebut a

urate predi
tions.The layout of this paper is as follows: se
tion 2 gives a ba
kground review of previous models.In se
tion 3, we des
ribe our proposed model for virus propagation. We show that our model
onforms better to simulation results than previous models over real-world networks. In se
tion 4,we revisit the issue of epidemi
 threshold and present a new theory for arbitrary graphs|theepidemi
 threshold of a given network is related intrinsi
ally to the �rst eigenvalue of its adja
en
ymatrix. We summarize in se
tion 6. 1



2 Earlier models and their limitationsThe 
lass of epidemiologi
al models that is most widely used is the so-
alled homogeneous models [1,11℄. A homogeneous model assumes that every individual has equal 
onta
t to every one else in thepopulation, and the rate of infe
tion is largely determined by the density of the infe
ted population.Kephart and White adopted a modi�ed homogeneous model, whi
h models the 
ommuni
ationpattern among individuals as a dire
ted graph [7℄. Nodes in the graph represent the individuals inthe population, and a dire
ted edge from node i to node j denotes that i 
an dire
tly infe
t j. Arate of infe
tion, 
alled the birth rate, �, is asso
iated with ea
h edge. A virus death rate, Æ, isasso
iated with ea
h infe
ted node.If we denote the infe
tion population at time t as �t, a deterministi
 time evolution of �t in theKephart-White model (hereafter referred to as the KW model) 
an be represented asd�tdt = �hki�t(1� �t)� Æ�t (1)where hki is the average 
onne
tivity. The steady state solution is � = 1� Æ=(�hki) �N , where Nis the number of nodes.An important predi
tion of Equation 1 is the epidemi
 threshold. An epidemi
 threshold, � ,is the 
riti
al �Æ ratio beyond whi
h epidemi
s ensue. In a homogeneous network, the epidemi
threshold is, �hom = 1hki (2)where hki is the average 
onne
tivity.These earlier models provide a good approximation of virus prevalen
e in networks where the
onta
t among individuals is suÆ
iently homogeneous. However, there is overwhelming eviden
ethat real networks (in
luding so
ial networks [21℄, router and AS networks [6℄, and Gnutella overlaygraphs [22℄) deviate from homogeneity, following power law stru
ture instead. Computer viruses,therefore, are likely to propagate among nodes with a high varian
e in 
onne
tivity.Pastor-Satorras and Vespignani studied epidemi
 spread for power-law networks where the
onne
tivity distribution is 
hara
terized as P (k) = k�
 (P (k) is the probability that a node has k2



links) [14, 16, 18, 19℄. Power-law networks have a highly skewed 
onne
tivity distribution and for
ertain values of 
 resemble the Internet topology [6℄. Pastor-Satorras et al. developed an analyti
model (we refer to their model as the SV model) for the Barab�asi-Albert (BA) power-law topology(
 = 3). Their steady state predi
tion is, � = 2e�Æ=m� (3)where m is the minimum 
onne
tion in the network. The SV model, however, 
riti
ally dependson the assumption 
 = 3, whi
h is not true for real networks [9, 6℄. Their model yields less thana

urate predi
tions for networks that deviate from the BA topology, as we show later in the paper.Pastor-Satorras et al. [18℄ also proposed an epidemi
 threshold 
ondition�SV = hkihk2i (4)where hki is the expe
ted 
onne
tivity and hk2i signals the 
onne
tivity divergen
e.Following [19℄, Bogu~n�a and Satorras studied epidemi
 spreading in networks where the 
onne
-tivity of a node is related to the 
onne
tivity of its neighbors [3℄. These 
orrelated networks in
ludeMarkovian networks where, in addition to P (k), a fun
tion P (kjk0) determines the probability thata node of degree k is 
onne
ted to a node of degree k0.While some degree of 
orrelations may exist in real networks, it is often diÆ
ult to 
hara
terize
onne
tivity relationships with a simple P (kjk0) fun
tion. Indeed, prior studies on real networks[6, 15℄ have not found any 
on
lusive eviden
e to support the type of 
orrelation as de�ned in [3℄.Hen
e, we will not dis
uss models for 
orrelated networks further in this paper.We present a new analyti
 model that does not assume any parti
ular propagation topology.We will show later that our model subsumes previous models that are tailored to �t spe
ial 
asegraphs (homogeneous, BA power-law, et
.).
3



3 The Proposed ModelIn this se
tion, we des
ribe a model that does not assume homogeneous 
onne
tivity or any par-ti
ular topology. We assume a 
onne
ted network G = (N;E), where N is the number of nodes inthe network and E is the set of edges. Like the traditional models, we assume a universal infe
tionrate � for ea
h edge 
onne
ted to an infe
ted node, and a virus death rate Æ for ea
h infe
ted node.Table 1 lists the symbols used.� Virus birth rate on a link from an infe
ted neighborÆ Virus death rate on an infe
ted nodet Timestamppi;t Probability that node i is infe
ted at time t�k;t Probability that a k-linked node will not re
eive infe
tionsfrom its neighbors at time t�t infe
tion population at time thki Average degree of nodes in a networkhk2i Conne
tivity divergen
eTable 1: Table of Symbols
3.1 ModelOur model assumes dis
rete time. During ea
h time interval, an infe
ted node i will try to infe
tits neighbors with probability �. At the same time, i may be 
ured with probability Æ. We denotethe probability that a node i is infe
ted at time t as pi;t. We de�ne �k;t, the probability that ak-linked node will not re
eive infe
tions from its neighbors at time t as,�k;t = Yj:neighbor of i(pj;t�1(1� �) + (1� pj;t�1))= Yj:neighbor of i(1� � � pj;t�1) (5)In this model, a node i is healthy at time t if� i was healthy before t and not infe
ted at t OR� i was at t� 1, 
ured at t and not infe
ted at t OR4



� i was at t� 1, infe
ted, but 
ured immediately afterwardsThe healthy probability of a k-linked node i at time t, 1� pi;t, 
an be de�ned as,1� pi;t = (1� pi;t�1)�k;t + Æpi;t�1�k;t + 12Æpi;t�1(1� �k;t) i = 1 : : : N (6)Note that for the last term on the right hand side of this equation, we assume that the probabilitythat a 
uring event at node i takes pla
e before infe
tion from neighbors is roughly 50%.Given a parti
ular network topology and values of � and Æ, we 
an solve Equation 6 numeri
allyand obtain the time evolution of infe
ted population, �t, where �t =PNi=1 pi;tIn this paper, we 
ondu
t simulation experiments on a variety of real and synthesized graphs.We use a real network graph 
olle
ted at the Oregon router views1. This dataset 
ontains 31180links among 10900 AS peers. All synthesized power-law graphs used in this study are generatedusing BRITE [12℄. Unless otherwise spe
i�ed, ea
h simulation plot is averaged over 15 individualruns.3.2 ExperimentsIn this se
tion, we present a set of simulation results. The simulations are 
ondu
ted to answer thequestion|how does our model perform in real, BA power law, and homogeneous graphs?Figure 1 shows the time evolution of � as predi
ted by our model (see Equation 6) on the10900-node Oregon AS graph, plotted against simulations and the steady state predi
tion of theSV model in Equation 3 (Sin
e the SV model does not estimate the transients, we plot the steadystate only.) As shown, our model yields a stri
tly more pre
ise result than the SV model.Figure 2 depi
ts the predi
tions of our model against the SV model for Barab�asi-Albert networks(see Equation 3). The topology used in Figure 2 is a synthesized 1000-node BA network. Sin
e theSV model in Equation 3 is spe
i�
ally tailored for BA networks, we expe
t the 
omparison to bevery mu
h a sanity 
he
k. As shown, both models 
onform ni
ely to the simulation results, thoughour model appears to be slightly more pre
ise.Figure 3 shows simulation results of epidemi
 spreading on an 1000-node random network,1http://topology.ee
s.umi
h.edu/data.html 5



(a) (b)Figure 1: Experiments show the time evolution of infe
tion in an 10900-node power-law network.Both simulations were performed on an Oregon network graph, with hki = 5:72 and � = 0:14. Inboth 
ases, our model 
onforms mu
h 
loser to the simulation results than the SV model.plotted against the KW model [7℄ and our model. The random network is 
onstru
ted a

ording tothe Erd�os-R�enyi model [5℄. Sin
e an Erd�os-R�enyi network is suÆ
iently 
lose to being homogeneousas far as epidemiologi
al models are 
on
erned, the results in Figure 3 suggest that our model is aspre
ise as a model designed spe
i�
ally for homogeneous networks. In one 
ase where � is 0.2 andÆ is 0.72, simulations appear to follow our predi
tion more 
losely than that of the KW model.The experiments we show here, 
ondu
ted on a real network, a synthesized BA power-lawnetwork, and an Erd�os-R�enyi network, illustrate the predi
tive power of our model|as a generalmodel, it subsumes prior models and produ
es predi
tions that equal or outperform predi
tionsthat are designed for spe
i�
 topologies.4 Epidemi
 Threshold and EigenvaluesAs des
ribed previously, an epidemi
 threshold is a 
riti
al state beyond whi
h infe
tions be
omeendemi
. Predi
ting the epidemi
 threshold is an important part of an epidemiologi
al model. Theepidemi
 threshold of a graph depends fundamentally on the graph itself. The 
hallenge thereforeis to 
apture the essen
e of the graph in as few parameters as possible. We present one su
h modelhere that predi
ts the epidemi
 threshold with a single parameter|the largest eigenvalue of the6



Figure 2: Experiments on BA topology: shows time evolution of infe
ted population in a 1000-nodepower-law network. Our model outperforms the SV model in its steady state predi
tion.adja
en
y matrix of the graph|for arbitrary graphs.We note that it is possible to develop threshold 
onditions for spe
ial 
ase but unrealisti
 graphs.For instan
e, the epidemi
 threshold for a homogeneous network is the inverse of the average
onne
tivity, hki. Similarly, threshold for in�nite power-law networks is zero. But a unifying modelfor arbitrary, real graphs has not appeared in the literature yet. The 
losest model thus far is theone put forth by Pastor-Satorras et al. (see Equation 4. But we show later that their model is nota

urate for arbitrary graphs.In this se
tion, we des
ribe a general theory for epidemi
 threshold that holds for arbitrarygraphs. We observe that the epidemi
 threshold is the 
ondition linking the birth and death ratesto the adja
en
y matrix of the graph, su
h that an infe
tion be
omes an epidemi
 if the 
onditionholds, and dies out if it does not. Our theory is surprisingly simple yet a

urate at the same time.We show later in this se
tion that this new threshold 
ondition subsumes prior models for spe
ial
ase graphs. Table 2 lists the symbols used in this se
tion.Next, we will show that our estimate for the epidemi
 threshold � is� = 1�1;A (7)where �1;A is the largest eigenvalue of the adja
en
y matrix A.7



Figure 3: Experiments on ER topology: shows time evolution of infe
ted population in a 1000-node random Erd�os network. Our model generally yields similar predi
tions to the KW model, butoutperforms it when Æ is high.A Adja
en
y matrix of the networktrA The transpose of matrix A�i;A The i-th largest eigenvalue of Aui;A The eigenve
tor of A 
orresponding to �i;AS The `system' matrix des
ribing the equations of infe
tion�i;S The i-th largest eigenvalue of STable 2: Symbols used in the eigenvalue analysisTheorem 1 (Epidemi
 Threshold) When an epidemi
 dies out, we should have �Æ < � = 1�1;A ,where � is the birth rate, Æ is the death rate and �1;A is the largest eigenvalue of the adja
en
ymatrix A.Proof: Restating Equation 6,1� pi;t = (1� pi;t�1)�k;t + Æpi;t�1�k;t + 12Æpi;t�1(1� �k;t) i = 1 : : : N (8)Rearranging the terms,1� pi;t = 12Æpi;t�1 + �1 + �12Æ � 1� pi;t�1� �k;t (9)= 12Æpi;t�1 + 1 + �12Æ � 1� pi;t�1 � �Xj pj;t�18



= 1 + Æpi;t�1 � pi;t�1 � �Xj pj;t�1 (10)This uses the approximation (1� a)(1 � b) � 1� a� b (11)when a� 1; b� 1.Thus, we have �pi;t = Æpi;t�1 � pi;t�1 � �Xj pj;t�1so, pi;t = (1� Æ)pi;t�1 + �Xj pj;t�1 (12)Converting to matrix notation (Pt is the 
olumn ve
tor (p1;t; p2;t; : : : ; pN;t)),Pt = ((1� Æ) I+ �A)Pt�1 (13)Thus, Pt is of the form Pt = SPt�1 (14)= StP0 (15)where S = (1� Æ)I+ �A is the `system' matrix.As we show in Lemma 1 in the Appendix, the matri
es A and S have the same eigenve
torsui;S, and their eigenvalues, �i;A and �i;S, are 
losely related:�i;S = 1� Æ + ��i;A 8i (16)Using the spe
tral de
omposition, we 
an sayS = Xi �i;S ui;S tr(ui;S)and, St = Xi �ti;S ui;S tr(ui;S) (17)9



Using this in Equation 15, Pt =Xi �ti;S ui;S tr(ui;S) Pt�1 (18)Without loss of generality, order the eigenvalues su
h that �1;A � �2;A : : :. For an infe
tion todie o� and not be
ome an epidemi
, the ve
tor Pt should go to zero for large t, whi
h happenswhen 8i, �ti;S tends to 0. That implies �1;S < 1. So,1� Æ + ��1;A < 1 (19)whi
h means that, � = 1�1;A 2Theorem 2 (Exponential De
ay) When the 
ondition above is met, the probability of infe
tionde
ays exponentially over time.Proof: We have: Pt = StP0 (from Equation 15)� Xi �ti;S ui;S tr(ui;S) (from Equation 17)� �t1;S �C (20)where C is some 
onstant ve
tor depending on the initial 
onditions. The value of �1;S is less than 1(be
ause of the no-epidemi
 
ondition). Thus, the values of pi;t are exponentially de
reasing overtime. 2Corollary 1 When the network is below the epidemi
 threshold, the number of infe
ted nodesde
ays exponentially over time.Proof: Let the number of infe
ted nodes at time t be denoted by nt.nt = NXi=1 pi;t= Xi �t1;S � Ci10



= �t1;S �Xi Ci (21)where Ci are the individual elements of the matrix C in Equation 20 above. Now, PiCi is a
onstant and �1;S < 1 (from Theorem 1). Thus, we see that nt de
ays exponentially with time. 2.
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(a) Star topology (b) Oregon topologyFigure 4: This �gure shows the exponential de
ay in the number of infe
ted nodes over time, whenwe are under the epidemi
 threshold. Plot (a) 
ompares the logarithm of the number of infe
tednodes over time for a 100-node star topology; plot (b) shows the same for the Oregon topology. Inboth 
ases, the plot be
omes linear for large t, meaning that the de
ay is exponential.The exponential de
ay in the number of infe
ted nodes 
an be seen 
learly in Figure 4, wherewe plot the logarithm of the number of infe
ted nodes, �t, versus t. Two plots are shown: one forthe star topology, and one for the Oregon dataset. In both 
ases, we observe that for large valuesof time t, the plots be
ome linear, implying that the number of nodes de
ays exponentially.5 Dis
ussion|generality of our threshold 
onditionWe now turn to show that our threshold 
ondition is general and holds for other graphs. Inparti
ular, we show that the threshold 
ondition holds for a) homogeneous, b) star, 
) in�nitepower-law, and d) �nite power-law graphs. We do that with the following 
orollaries.Corollary 2 The new threshold model holds for homogeneous or random Erd�os-R�enyi graphs.11



(a) Simulation (b) Our modelFigure 5: Criti
al Æ for an 100-node star topology: number of infe
ted nodes versus time in log-logs
ales, given � = 0:016. Our model predi
ts 
riti
al Æ at 0.16. (Triangles at left and 
rosses at rightplot)Proof: As reported previously, the epidemi
 threshold in a homogeneous network or a randomErd�os-R�enyi graph is �hom = 1=hki where hki is the average 
onne
tivity. It is easily shown that, ina homogeneous or random network, the largest eigenvalue of the adja
en
y matrix is hki. Therefore,our model of epidemi
 threshold yields the same threshold 
ondition as the homogeneous models[11℄. 2Corollary 3 The epidemi
 threshold, � , for a star topology is exa
tly 1pd , where pd is the squareroot of the degree of the 
entral node.Proof: In a star topology, we have two types of nodes, the 
enter node and the satellite nodes.Suppose that we have d satellites, the �rst eigenvalue of the adja
en
y matrix, �1, is pd. Thestability 
ondition then be
omes �1 = 1� Æ + � � pd = 1 (22)whi
h means that Æ = � � pd to a
hieve stability, thus rendering � = 1pd . 2
12



Figure 5 shows the infe
tion spread over time in a 100-node star graph with � = 0:016. Given� = 1p99 , the 
riti
al Æ on the threshold is approximately 0.16. This is 
on�rmed by our propagationmodel as shown in Figure 5(b). Noti
e that our predi
tion for 
riti
al Æ holds. More spe
i�
ally,our model 
losely re
e
ts the simulation, for Æ > 0:16. For Æ < 0:16, there is no epidemi
. ForÆ = 0:16, a very interesting setting appears.For the 
ase of Æ = 0:16, our model seems to show that the expe
ted number of infe
ted nodes�t drops approximately at the rate of t�1, whi
h is qualitatively di�erent from the other two 
ases:for Æ > 0:16; �t � �t1; for Æ < 0:16, �t stablilizes. This suggests a phase transition phenomenon,whi
h indi
ates a very interesting future resear
h question.Figure 6(
) and (d) depi
t a further example for the star topology, plotting the number ofinfe
ted nodes �200 at time t=200, for several values of the �=Æ ratio. We plot both the theoreti
al,as well as simulation results. We also show the two epidemi
 thresholds with verti
al lines: ourthreshold with \
rosses", at �=Æ= 1=�1; A = 0.1 and the SV threshold with \squares", at �=Æ=0.02. The simulation results indi
ate that our threshold is 
learly in the 
orre
t region, while theSV threshold predi
tion is not a

urate.Corollary 4 The epidemi
 threshold for an in�nite power-law network is zero.Proof: In a power-law network, the �rst eigenvalue of the adja
en
y matrix, �1, is pdmax (a

ord-ing to [13℄). Sin
e dmax / ln(N) and N is in�nite, �1 is in�nite. Our epidemi
 threshold 
onditionstates that Æ must be greater than � � �1 in order for there not be any epidemi
. Therefore, theepidemi
 threshold is e�e
tively zero for in�nite power-law networks. This result 
on
urs withprevious work, whi
h �nds that in�nite power-law networks la
k epidemi
 thresholds. 2Corollary 5 The epidemi
 threshold, � , for �nite power-law networks is more pre
isely indi
atedby 1�1 , where �1 is the �rst eigenvalue of the adja
en
y matrix.Proof: This follows dire
tly from the Theorem 1 shown above. 2We 
ompare our threshold predi
tion with the threshold model by Pastor-Satorras et al. inEquation 4. Their model, �SV = hki=hk2i, where k is the average 
onne
tivity, is put forth as ageneral model for arbitrary graphs. Figure 6(a) and (b) show simulated epidemi
 spreading on the13
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(
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ted population vs. time for Star (d)infe
tion at timeti
k 500 vs. �=Æ for StarFigure 6: Epidemi
 threshold on the Oregon and Star topology. Plot (a) shows that the 
riti
alÆ at 0.06 is very 
lose to our predi
ted epidemi
 threshold 
riti
al Æ � 0:0587211. The SV modelpredi
ts 
riti
al Æ � 0:207796. Plot (b) shows that our predi
ted � at 0.0167 approximates thebehavior of the infe
tion at timeti
k 500 where the system state has stabilized. As shown, thethreshold predi
ted by the SV model does not a

urately re
e
t reality. Plots (
) and (d) show thesame information for the Star topology. Again, our estimate of the threshold is better that of theSV model.
14



Oregon network. The lagest eigenvalue �1 of the adja
en
y matrix for this network is approximately58.7211.We stru
tured the experiment su
h that 5000 nodes are infe
ted initially. Simulations pro
eedwith � = 0:001 and Æ ranging from 0.05 to 0.14. For the parti
ular values of � and �1, our epidemi
threshold model predi
ts a 
riti
al Æ at 0.0587211, while the SV threshold predi
tion puts the
riti
al Æ at 0.2078. As shown in Figure 6(a), the simulation with Æ = 0:05 rea
hes equilibriumwhile the run with Æ = 0:07 approa
hes zero at approximately timeti
k 600. The run with Æ = 0:06steadily approa
hes zero, but has yet to rea
h it at timeti
k 1000. These results 
losely mirror ourthreshold predi
tion, whi
h shows a 
riti
al Æ at approximately 0.06.Figure 6(b) shows an alternate view of the experiment result, plotting the number of infe
tednodes �500 at time t=500, for several values of the �=Æ ratio. We plot both the theoreti
al, as wellas simulation results. We also show the two epidemi
 thresholds with verti
al lines: our thresholdwith \
rosses", at �=Æ= 1=�1; A = 0.0167 and the SV threshold with \squares", at �=Æ= 0.0048.Noti
e that our threshold is 
learly in the 
orre
t region, while the SV threshold is way o�.6 Con
lusions - ContributionsHow will a virus propagate in a real 
omputer network? What is the epidemi
 threshold for a �nitegraph, if any? How long does it take for a viral outbreak to rea
h steady state? These questionshave for de
ades intrigued resear
hers. In this paper we attempt to answer these questions byproviding a new analyti
 model that a

urately models the propagation of viruses on arbitrarygraphs. The primary 
ontributions of this paper are:� We propose a new model for virus propagation in networks (Equation 6), and show that ourmodel is more pre
ise and general than those used before. We demonstrate the a

ura
y ofour model in both real and syntheti
 networks.� We are the �rst to show that we 
an 
apture the virus-propagation properties of a graph ina single parameter, namely the eigenvalue �1;A. We propose a pre
ise epidemi
 threshold,� = 1=�1;A, whi
h holds irrespe
tive of the network topology; an epidemi
 is prevented when15



Æ > Æ
 = ���1;A. We show that our epidemi
 threshold is more general, and more pre
ise thanprevious models for spe
ial-
ase graphs (e.g., Erd�os-R�enyi, homogeneous, BA power-law); weshow that it tends to zero for in�nite power-law graphs.� We show that, below the epidemi
 threshold, the number of infe
ted nodes in the networkde
ays exponentially.Future resear
h dire
tions abound, both for theoreti
al as well as experimental work. One 
ouldexamine phase transition phenomena, when we are exa
tly on the epidemi
 threshold. Anotherpromising dire
tion is to enhan
e the model with a \vigilan
e" parameter to model environmentalfa
tors that a�e
t viral propagations.7 AppendixLemma 1 (Eigenvalues of the system matrix) The i�th eigenvalue of S is of the form �i;S =1� Æ + ��i;A, and the eigenve
tors of S are the same as those of A.Proof: Let ui;A be the eigenve
tor of A 
orresponding to eigenvalue �i;A. Then, by de�nition,Aui;A = �i;Aui;A (be
ause A is symmetri
 in our 
ase). Now,Sui;A = (1� Æ)ui;A + �Aui;A= (1� Æ)ui;A + ��i;Aui;A= (1� Æ + ��i;A)ui;A (23)Thus, ui;A is also an eigenve
tor of S, and the 
orresponding eigenvalue is (1� Æ + ��i;A). 2Referen
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