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Abstract

How will a virus propagate in a real network? Does an epidemic threshold exist for a finite
power-law graph, or any finite graph? How long does it take to disinfect a network given
particular values of infection rate and virus death rate?

We answer the first question by providing equations that accurately model the virus prop-
agation in any network including real and synthesized network graphs. We propose a general
epidemic threshold condition that applies to arbitrary graphs: we prove that, under reasonable
approximations, the epidemic threshold for a network is closely related to the largest eigenvalue
of its adjacency matrix. Finally, for the last question, we show that infections tend to zero
exponentially below the epidemic threshold.

We show that our epidemic threshold includes many known thresholds for special-case graphs
(e.g., Erdos-Rényi, BA power-law, homogeneous); we show that the threshold tends to zero for
infinite power-law graphs. Finally, we illustrate the predictive power of our model with extensive
experiments on real and synthesized graphs. We show that our threshold condition holds for

arbitrary graphs.
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1 Introduction

Computer viruses remain a significant threat to today’s networks and systems. Existing defense
mechanisms typically focus on local scanning of virus signatures. While these mechanisms can
detect and prevent the spreading of known viruses, they do little for globally optimal defenses.
The recent proliferation of malicious code that spreads with virus code exacerbates the problem
[10, 24, 25]. From a network dependability standpoint, the propagation of malicious code represents
a particular form of fault propagation, which may lead to the ultimate demise of the network
(consider distributed denial-of-service attacks). With the exception of a few specialized modeling
studies [7, 8, 16, 19, 26], much still remains unknown about the propagation characteristics of
computer viruses and the factors that influence them.

In this paper, we investigate epidemiological modeling techniques to reason about computer viral
propagation. Epidemiological models have been used in several virus and worm studies. Kephart
and White [7, 8] are among the first to propose epidemiology-based analytic models. Their studies,
however, are based on topologies that do not represent modern networks. Staniford et al. [23]
reported a study of the code red worm propagation, but did not attempt to create an analytic
model. The more recent studies by Pastor-Satorras et al. [16, 17, 18, 19, 20] and Barabasi et
al. [2, 4] focused on mathematical models for power-law networks.

This work aims to develop a general analytic model of virus propagation. Specifically, we are
interested in models that can capture the impact of the underlying topology but are not limited
by it. We found that, contrary to prior beliefs, viral propagation is largely determined by intrinsic
characteristics of the network. Our model holds for arbitrary graphs and renders surprisingly simple
but accurate predictions.

The layout of this paper is as follows: section 2 gives a background review of previous models.
In section 3, we describe our proposed model for virus propagation. We show that our model
conforms better to simulation results than previous models over real-world networks. In section 4,
we revisit the issue of epidemic threshold and present a new theory for arbitrary graphs—the
epidemic threshold of a given network is related intrinsically to the first eigenvalue of its adjacency

matrix. We summarize in section 6.



2 Earlier models and their limitations

The class of epidemiological models that is most widely used is the so-called homogeneous models [1,
11]. A homogeneous model assumes that every individual has equal contact to every one else in the
population, and the rate of infection is largely determined by the density of the infected population.
Kephart and White adopted a modified homogeneous model, which models the communication
pattern among individuals as a directed graph [7]. Nodes in the graph represent the individuals in
the population, and a directed edge from node ¢ to node j denotes that i can directly infect j. A
rate of infection, called the birth rate, (3, is associated with each edge. A virus death rate, 4, is

associated with each infected node.
If we denote the infection population at time ¢ as 7, a deterministic time evolution of 7; in the

Kephart-White model (hereafter referred to as the KW model) can be represented as

e
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where (k) is the average connectivity. The steady state solution is n =1 — 6/(5(k)) * N, where N
is the number of nodes.

An important prediction of Equation 1 is the epidemic threshold. An epidemic threshold, 7,
is the critical % ratio beyond which epidemics ensue. In a homogeneous network, the epidemic
threshold is,

1
Thom = U (2)

where (k) is the average connectivity.

These earlier models provide a good approximation of virus prevalence in networks where the
contact among individuals is sufficiently homogeneous. However, there is overwhelming evidence
that real networks (including social networks [21], router and AS networks [6], and Gnutella overlay
graphs [22]) deviate from homogeneity, following power law structure instead. Computer viruses,
therefore, are likely to propagate among nodes with a high variance in connectivity.

Pastor-Satorras and Vespignani studied epidemic spread for power-law networks where the

connectivity distribution is characterized as P(k) = k=7 (P(k) is the probability that a node has k



links) [14, 16, 18, 19]. Power-law networks have a highly skewed connectivity distribution and for
certain values of y resemble the Internet topology [6]. Pastor-Satorras et al. developed an analytic
model (we refer to their model as the SV model) for the Barabasi-Albert (BA) power-law topology

(v = 3). Their steady state prediction is,
n = 2 0/mP (3)

where m is the minimum connection in the network. The SV model, however, critically depends
on the assumption v = 3, which is not true for real networks [9, 6]. Their model yields less than
accurate predictions for networks that deviate from the BA topology, as we show later in the paper.
Pastor-Satorras et al. [18] also proposed an epidemic threshold condition

TSy = <<i2> (4)
where (k) is the expected connectivity and (k?) signals the connectivity divergence.

Following [19], Boguna and Satorras studied epidemic spreading in networks where the connec-
tivity of a node is related to the connectivity of its neighbors [3]. These correlated networks include
Markovian networks where, in addition to P(k), a function P(k|k’) determines the probability that
a node of degree k is connected to a node of degree k'.

While some degree of correlations may exist in real networks, it is often difficult to characterize
connectivity relationships with a simple P(k|k’) function. Indeed, prior studies on real networks
[6, 15] have not found any conclusive evidence to support the type of correlation as defined in [3].
Hence, we will not discuss models for correlated networks further in this paper.

We present a new analytic model that does not assume any particular propagation topology.
We will show later that our model subsumes previous models that are tailored to fit special case

graphs (homogeneous, BA power-law, etc.).



3 The Proposed Model

In this section, we describe a model that does not assume homogeneous connectivity or any par-
ticular topology. We assume a connected network G = (N, E), where N is the number of nodes in
the network and F is the set of edges. Like the traditional models, we assume a universal infection
rate B for each edge connected to an infected node, and a virus death rate § for each infected node.

Table 1 lists the symbols used.

B Virus birth rate on a link from an infected neighbor
0 Virus death rate on an infected node

t Timestamp

pi+ | Probability that node ¢ is infected at time ¢

(k¢ | Probability that a k-linked node will not receive infections
from its neighbors at time ¢

i infection population at time %

(k) | Average degree of nodes in a network

(k%) | Connectivity divergence

Table 1: Table of Symbols

3.1 Model

Our model assumes discrete time. During each time interval, an infected node 7 will try to infect
its neighbors with probability 8. At the same time, 7 may be cured with probability J. We denote
the probability that a node 4 is infected at time ¢ as p;;. We define (3 ;, the probability that a

k-linked node will not receive infections from its neighbors at time ¢ as,

Cep = 11 (pjt-1(1—8)+ (1 —pji-1))

jmeighbor of i
= II a-8xpj) (5)
jmeighbor of i
In this model, a node ¢ is healthy at time ¢ if

e ; was healthy before ¢ and not infected at ¢ OR

e ; was at ¢ — 1, cured at ¢ and not infected at ¢ OR



e | was at £ — 1, infected, but cured immediately afterwards

The healthy probability of a k-linked node 4 at time ¢, 1 — p;;, can be defined as,

1 .
1—pig =1 —pit—1)Cht+ 0pi—1Cks + §5pi,t71(1 ~Cky) 1=1...N (6)

Note that for the last term on the right hand side of this equation, we assume that the probability
that a curing event at node 7 takes place before infection from neighbors is roughly 50%.

Given a particular network topology and values of 8 and §, we can solve Equation 6 numerically
and obtain the time evolution of infected population, 7y, where 7, = Zfil Dit

In this paper, we conduct simulation experiments on a variety of real and synthesized graphs.
We use a real network graph collected at the Oregon router views'. This dataset contains 31180
links among 10900 AS peers. All synthesized power-law graphs used in this study are generated
using BRITE [12]. Unless otherwise specified, each simulation plot is averaged over 15 individual

runs.

3.2 Experiments

In this section, we present a set of simulation results. The simulations are conducted to answer the
question—how does our model perform in real, BA power law, and homogeneous graphs?

Figure 1 shows the time evolution of n as predicted by our model (see Equation 6) on the
10900-node Oregon AS graph, plotted against simulations and the steady state prediction of the
SV model in Equation 3 (Since the SV model does not estimate the transients, we plot the steady
state only.) As shown, our model yields a strictly more precise result than the SV model.

Figure 2 depicts the predictions of our model against the SV model for Barabasi-Albert networks
(see Equation 3). The topology used in Figure 2 is a synthesized 1000-node BA network. Since the
SV model in Equation 3 is specifically tailored for BA networks, we expect the comparison to be
very much a sanity check. As shown, both models conform nicely to the simulation results, though
our model appears to be slightly more precise.

Figure 3 shows simulation results of epidemic spreading on an 1000-node random network,

"http://topology.eecs.umich.edu/data. html
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Figure 1: Experiments show the time evolution of infection in an 10900-node power-law network.
Both simulations were performed on an Oregon network graph, with (k) = 5.72 and § = 0.14. In
both cases, our model conforms much closer to the simulation results than the SV model.

plotted against the KW model [7] and our model. The random network is constructed according to
the Erdos-Rényi model [5]. Since an Erdos-Rényi network is sufficiently close to being homogeneous
as far as epidemiological models are concerned, the results in Figure 3 suggest that our model is as
precise as a model designed specifically for homogeneous networks. In one case where g is 0.2 and
0 is 0.72, simulations appear to follow our prediction more closely than that of the KW model.
The experiments we show here, conducted on a real network, a synthesized BA power-law
network, and an Erdos-Rényi network, illustrate the predictive power of our model—as a general
model, it subsumes prior models and produces predictions that equal or outperform predictions

that are designed for specific topologies.

4 Epidemic Threshold and Eigenvalues

As described previously, an epidemic threshold is a critical state beyond which infections become
endemic. Predicting the epidemic threshold is an important part of an epidemiological model. The
epidemic threshold of a graph depends fundamentally on the graph itself. The challenge therefore
is to capture the essence of the graph in as few parameters as possible. We present one such model

here that predicts the epidemic threshold with a single parameter—the largest eigenvalue of the
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Figure 2: Experiments on BA topology: shows time evolution of infected population in a 1000-node
power-law network. Our model outperforms the SV model in its steady state prediction.

adjacency matrix of the graph—for arbitrary graphs.

We note that it is possible to develop threshold conditions for special case but unrealistic graphs.
For instance, the epidemic threshold for a homogeneous network is the inverse of the average
connectivity, (k). Similarly, threshold for infinite power-law networks is zero. But a unifying model
for arbitrary, real graphs has not appeared in the literature yet. The closest model thus far is the
one put forth by Pastor-Satorras et al. (see Equation 4. But we show later that their model is not
accurate for arbitrary graphs.

In this section, we describe a general theory for epidemic threshold that holds for arbitrary
graphs. We observe that the epidemic threshold is the condition linking the birth and death rates
to the adjacency matrix of the graph, such that an infection becomes an epidemic if the condition
holds, and dies out if it does not. Our theory is surprisingly simple yet accurate at the same time.
We show later in this section that this new threshold condition subsumes prior models for special
case graphs. Table 2 lists the symbols used in this section.

Next, we will show that our estimate for the epidemic threshold 7 is

where A; 4 is the largest eigenvalue of the adjacency matrix A.
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Figure 3: Experiments on ER topology: shows time evolution of infected population in a 1000-
node random Erdos network. Our model generally yields similar predictions to the KW model, but
outperforms it when § is high.

A Adjacency matrix of the network

trA | The transpose of matrix A

Ai,a | The i-th largest eigenvalue of A

u; 4 | The eigenvector of A corresponding to A; 4

S The ‘system’ matrix describing the equations of infection

Ai,s | The 4-th largest eigenvalue of S

Table 2: Symbols used in the eigenvalue analysis

1
Ar,a”’

Theorem 1 (Epidemic Threshold) When an epidemic dies out, we should have % <T=
where 3 is the birth rate, 0 is the death rate and \i 4 s the largest eigenvalue of the adjacency

matriz A.

Proof: Restating Equation 6,

1 .
1—pit= (1= pit—1)Cht + 0Dit—1Cks + §5pi,t71 (1—=Cre) i=1...N (8)

Rearranging the terms,

1 1
1 —piy = 5 0Pig—1 + (1 + (55 - 1) pi,tl) Ch.t (9)

1 1
= Eépi,tfl +1+ (55 - 1) Pit—1 — 52?@54
J



= 1+ 6pig—1—pig—1—BY_ pji (10)
J

This uses the approximation

(1—a)(1-b)=1—-a—b (11)
when e < 1, b K 1.
Thus, we have
—Pit = OPit-1— Pit—1 — 52%,#1
J
50, pix = (1=0)pis1+BY pita (12)
J
Converting to matrix notation (Py is the column vector (p1 . p24,---.PN 1)),
P, = ((1-0)1+BA)P; 4 (13)
Thus, Py is of the form
P, = SP, (14)
= S'Pg (15)

where S = (1 — §)I + BA is the ‘system’ matrix.
As we show in Lemma 1 in the Appendix, the matrices A and S have the same eigenvectors

u; s, and their eigenvalues, A\; 4 and A; s, are closely related:
)\i’_g:l*(s-l-,@)\iﬂq Vi (16)
Using the spectral decomposition, we can say

S = ) Aisus tr(ug)
;

and, St = Z)\g’s ui’s tr(ui,s) (17)
[



Using this in Equation 15,

Pt — Z )\is uj s tr(ui,s) Pt,1 (18)

13
Without loss of generality, order the eigenvalues such that A\; 4 > A2 4 .... For an infection to
die off and not become an epidemic, the vector Py should go to zero for large ¢, which happens

when Vi, )\;‘r,s tends to 0. That implies A\; s < 1. So,

1—0+pBMa<l (19)

which means that, |7

kg
£

Theorem 2 (Exponential Decay) When the condition above is met, the probability of infection

decays exponentially over time.

Proof: We have:

P, = S'Pg (from Equation 15)

&

Z )‘f,s u;s tr(u;g) (from Equation 17)
i

~ ANgxC (20)

where C is some constant vector depending on the initial conditions. The value of A g is less than 1
(because of the no-epidemic condition). Thus, the values of p;; are exponentially decreasing over

time. O

Corollary 1 When the network is below the epidemic threshold, the number of infected nodes

decays exponentially over time.

Proof: Let the number of infected nodes at time ¢ be denoted by 7.

N
ng = Zpi,t
i=1

i

10



= Mg+ Zoi

(21)

where C; are the individual elements of the matrix C in Equation 20 above. Now, ) ,C; is a

constant and A\; g < 1 (from Theorem 1). Thus, we see that n; decays exponentially with time. O.
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Figure 4: This figure shows the exponential decay in the number of infected nodes over time, when
we are under the epidemic threshold. Plot (a) compares the logarithm of the number of infected
nodes over time for a 100-node star topology; plot (b) shows the same for the Oregon topology. In
both cases, the plot becomes linear for large ¢, meaning that the decay is exponential.

The exponential decay in the number of infected nodes can be seen clearly in Figure 4, where
we plot the logarithm of the number of infected nodes, 7;, versus ¢. Two plots are shown: one for
the star topology, and one for the Oregon dataset. In both cases, we observe that for large values

of time %, the plots become linear, implying that the number of nodes decays exponentially.

5 Discussion—generality of our threshold condition

We now turn to show that our threshold condition is general and holds for other graphs. In
particular, we show that the threshold condition holds for a) homogeneous, b) star, ¢) infinite

power-law, and d) finite power-law graphs. We do that with the following corollaries.

Corollary 2 The new threshold model holds for homogeneous or random Erdos-Rényi graphs.

11
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Figure 5: Critical ¢ for an 100-node star topology: number of infected nodes versus time in log-log
scales, given # = 0.016. Our model predicts critical J at 0.16. (Triangles at left and crosses at right
plot)

Proof: As reported previously, the epidemic threshold in a homogeneous network or a random
Erdos-Rényi graph is 74, = 1/(k) where (k) is the average connectivity. It is easily shown that, in
a homogeneous or random network, the largest eigenvalue of the adjacency matrix is (k). Therefore,
our model of epidemic threshold yields the same threshold condition as the homogeneous models

[11]. O

Corollary 3 The epidemic threshold, T, for a star topology is exactly ﬁ, where \/d is the square

root of the degree of the central node.

Proof: In a star topology, we have two types of nodes, the center node and the satellite nodes.
Suppose that we have d satellites, the first eigenvalue of the adjacency matrix, i, is v/d. The

stability condition then becomes
M=1-0+p8+Vd=1 (22)

which means that § = 3 % V/d to achieve stability, thus rendering 7 = ﬁ. O
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Figure 5 shows the infection spread over time in a 100-node star graph with § = 0.016. Given
T= \/%, the critical § on the threshold is approximately 0.16. This is confirmed by our propagation
model as shown in Figure 5(b). Notice that our prediction for critical § holds. More specifically,
our model closely reflects the simulation, for § > 0.16. For § < 0.16, there is no epidemic. For
0 = 0.16, a very interesting setting appears.

For the case of § = 0.16, our model seems to show that the expected number of infected nodes
n; drops approximately at the rate of t~!, which is qualitatively different from the other two cases:
for § > 0.16,m; ~ Xi; for § < 0.16, n; stablilizes. This suggests a phase transition phenomenon,
which indicates a very interesting future research question.

Figure 6(c) and (d) depict a further example for the star topology, plotting the number of
infected nodes 7700 at time t=200, for several values of the (3/§ ratio. We plot both the theoretical,
as well as simulation results. We also show the two epidemic thresholds with vertical lines: our
threshold with “crosses”, at §/d= 1/A1, A = 0.1 and the SV threshold with “squares”, at (3/d=
0.02. The simulation results indicate that our threshold is clearly in the correct region, while the

SV threshold prediction is not accurate.
Corollary 4 The epidemic threshold for an infinite power-law network is zero.

Proof: In a power-law network, the first eigenvalue of the adjacency matrix, A1, is /daz (accord-
ing to [13]). Since dq, x In(N) and N is infinite, \; is infinite. Our epidemic threshold condition
states that  must be greater than G % \; in order for there not be any epidemic. Therefore, the
epidemic threshold is effectively zero for infinite power-law networks. This result concurs with

previous work, which finds that infinite power-law networks lack epidemic thresholds. O

Corollary 5 The epidemic threshold, T, for finite power-law networks is more precisely indicated

by )\—11, where \1 s the first eigenvalue of the adjacency matriz.

Proof: This follows directly from the Theorem 1 shown above. O
We compare our threshold prediction with the threshold model by Pastor-Satorras et al. in
Equation 4. Their model, 75y = (k)/(k?), where k is the average connectivity, is put forth as a

general model for arbitrary graphs. Figure 6(a) and (b) show simulated epidemic spreading on the

13
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Figure 6: Epidemic threshold on the Oregon and Star topology. Plot (a) shows that the critical
0 at 0.06 is very close to our predicted epidemic threshold critical § = 0.0587211. The SV model
predicts critical § ~ 0.207796. Plot (b) shows that our predicted 7 at 0.0167 approximates the
behavior of the infection at timetick 500 where the system state has stabilized. As shown, the
threshold predicted by the SV model does not accurately reflect reality. Plots (¢) and (d) show the
same information for the Star topology. Again, our estimate of the threshold is better that of the

SV model.
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Oregon network. The lagest eigenvalue A; of the adjacency matrix for this network is approximately
58.7211.

We structured the experiment such that 5000 nodes are infected initially. Simulations proceed
with = 0.001 and § ranging from 0.05 to 0.14. For the particular values of 8 and A, our epidemic
threshold model predicts a critical § at 0.0587211, while the SV threshold prediction puts the
critical ¢ at 0.2078. As shown in Figure 6(a), the simulation with § = 0.05 reaches equilibrium
while the run with 6 = 0.07 approaches zero at approximately timetick 600. The run with ¢ = 0.06
steadily approaches zero, but has yet to reach it at timetick 1000. These results closely mirror our
threshold prediction, which shows a critical § at approximately 0.06.

Figure 6(b) shows an alternate view of the experiment result, plotting the number of infected
nodes 7500 at time t=>500, for several values of the 3/J ratio. We plot both the theoretical, as well
as simulation results. We also show the two epidemic thresholds with vertical lines: our threshold
with “crosses”, at §/d= 1/A1, A = 0.0167 and the SV threshold with “squares”, at 3/d= 0.0048.

Notice that our threshold is clearly in the correct region, while the SV threshold is way off.

6 Conclusions - Contributions

How will a virus propagate in a real computer network? What is the epidemic threshold for a finite
graph, if any? How long does it take for a viral outbreak to reach steady state? These questions
have for decades intrigued researchers. In this paper we attempt to answer these questions by
providing a new analytic model that accurately models the propagation of viruses on arbitrary

graphs. The primary contributions of this paper are:

e We propose a new model for virus propagation in networks (Equation 6), and show that our
model is more precise and general than those used before. We demonstrate the accuracy of

our model in both real and synthetic networks.

e We are the first to show that we can capture the virus-propagation properties of a graph in
a single parameter, namely the eigenvalue A; 4. We propose a precise epidemic threshold,

T = 1/X1,4, which holds irrespective of the network topology; an epidemic is prevented when

15



0 > 0. = B\ 4. We show that our epidemic threshold is more general, and more precise than
previous models for special-case graphs (e.g., Erdos-Rényi, homogeneous, BA power-law); we

show that it tends to zero for infinite power-law graphs.

e We show that, below the epidemic threshold, the number of infected nodes in the network

decays exponentially.

Future research directions abound, both for theoretical as well as experimental work. One could
examine phase transition phenomena, when we are exactly on the epidemic threshold. Another
promising direction is to enhance the model with a “vigilance” parameter to model environmental

factors that affect viral propagations.

7 Appendix

Lemma 1 (Eigenvalues of the system matrix) Thei—th eigenvalue of S is of the form X\; g =

1 — 0+ B a, and the eigenvectors of S are the same as those of A.

Proof: Let u; o be the eigenvector of A corresponding to eigenvalue A; 4. Then, by definition,

Au; A = A auia (because A is symmetric in our case). Now,

Suia = (1-9d)uja +BAuia
= (I —-0)uja +BAiauja

= (1-0+ BN a)uja (23)

Thus, u; o is also an eigenvector of S, and the corresponding eigenvalue is (1 — 0 + 5X; 4). O
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