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1 IntrodutionComputer viruses remain a signi�ant threat to today's networks and systems. Existing defensemehanisms typially fous on loal sanning of virus signatures. While these mehanisms andetet and prevent the spreading of known viruses, they do little for globally optimal defenses.The reent proliferation of maliious ode that spreads with virus ode exaerbates the problem[10, 24, 25℄. From a network dependability standpoint, the propagation of maliious ode representsa partiular form of fault propagation, whih may lead to the ultimate demise of the network(onsider distributed denial-of-servie attaks). With the exeption of a few speialized modelingstudies [7, 8, 16, 19, 26℄, muh still remains unknown about the propagation harateristis ofomputer viruses and the fators that inuene them.In this paper, we investigate epidemiologial modeling tehniques to reason about omputer viralpropagation. Epidemiologial models have been used in several virus and worm studies. Kephartand White [7, 8℄ are among the �rst to propose epidemiology-based analyti models. Their studies,however, are based on topologies that do not represent modern networks. Staniford et al. [23℄reported a study of the ode red worm propagation, but did not attempt to reate an analytimodel. The more reent studies by Pastor-Satorras et al. [16, 17, 18, 19, 20℄ and Barab�asi etal. [2, 4℄ foused on mathematial models for power-law networks.This work aims to develop a general analyti model of virus propagation. Spei�ally, we areinterested in models that an apture the impat of the underlying topology but are not limitedby it. We found that, ontrary to prior beliefs, viral propagation is largely determined by intrinsiharateristis of the network. Our model holds for arbitrary graphs and renders surprisingly simplebut aurate preditions.The layout of this paper is as follows: setion 2 gives a bakground review of previous models.In setion 3, we desribe our proposed model for virus propagation. We show that our modelonforms better to simulation results than previous models over real-world networks. In setion 4,we revisit the issue of epidemi threshold and present a new theory for arbitrary graphs|theepidemi threshold of a given network is related intrinsially to the �rst eigenvalue of its adjaenymatrix. We summarize in setion 6. 1



2 Earlier models and their limitationsThe lass of epidemiologial models that is most widely used is the so-alled homogeneous models [1,11℄. A homogeneous model assumes that every individual has equal ontat to every one else in thepopulation, and the rate of infetion is largely determined by the density of the infeted population.Kephart and White adopted a modi�ed homogeneous model, whih models the ommuniationpattern among individuals as a direted graph [7℄. Nodes in the graph represent the individuals inthe population, and a direted edge from node i to node j denotes that i an diretly infet j. Arate of infetion, alled the birth rate, �, is assoiated with eah edge. A virus death rate, Æ, isassoiated with eah infeted node.If we denote the infetion population at time t as �t, a deterministi time evolution of �t in theKephart-White model (hereafter referred to as the KW model) an be represented asd�tdt = �hki�t(1� �t)� Æ�t (1)where hki is the average onnetivity. The steady state solution is � = 1� Æ=(�hki) �N , where Nis the number of nodes.An important predition of Equation 1 is the epidemi threshold. An epidemi threshold, � ,is the ritial �Æ ratio beyond whih epidemis ensue. In a homogeneous network, the epidemithreshold is, �hom = 1hki (2)where hki is the average onnetivity.These earlier models provide a good approximation of virus prevalene in networks where theontat among individuals is suÆiently homogeneous. However, there is overwhelming evidenethat real networks (inluding soial networks [21℄, router and AS networks [6℄, and Gnutella overlaygraphs [22℄) deviate from homogeneity, following power law struture instead. Computer viruses,therefore, are likely to propagate among nodes with a high variane in onnetivity.Pastor-Satorras and Vespignani studied epidemi spread for power-law networks where theonnetivity distribution is haraterized as P (k) = k� (P (k) is the probability that a node has k2



links) [14, 16, 18, 19℄. Power-law networks have a highly skewed onnetivity distribution and forertain values of  resemble the Internet topology [6℄. Pastor-Satorras et al. developed an analytimodel (we refer to their model as the SV model) for the Barab�asi-Albert (BA) power-law topology( = 3). Their steady state predition is, � = 2e�Æ=m� (3)where m is the minimum onnetion in the network. The SV model, however, ritially dependson the assumption  = 3, whih is not true for real networks [9, 6℄. Their model yields less thanaurate preditions for networks that deviate from the BA topology, as we show later in the paper.Pastor-Satorras et al. [18℄ also proposed an epidemi threshold ondition�SV = hkihk2i (4)where hki is the expeted onnetivity and hk2i signals the onnetivity divergene.Following [19℄, Bogu~n�a and Satorras studied epidemi spreading in networks where the onne-tivity of a node is related to the onnetivity of its neighbors [3℄. These orrelated networks inludeMarkovian networks where, in addition to P (k), a funtion P (kjk0) determines the probability thata node of degree k is onneted to a node of degree k0.While some degree of orrelations may exist in real networks, it is often diÆult to haraterizeonnetivity relationships with a simple P (kjk0) funtion. Indeed, prior studies on real networks[6, 15℄ have not found any onlusive evidene to support the type of orrelation as de�ned in [3℄.Hene, we will not disuss models for orrelated networks further in this paper.We present a new analyti model that does not assume any partiular propagation topology.We will show later that our model subsumes previous models that are tailored to �t speial asegraphs (homogeneous, BA power-law, et.).
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3 The Proposed ModelIn this setion, we desribe a model that does not assume homogeneous onnetivity or any par-tiular topology. We assume a onneted network G = (N;E), where N is the number of nodes inthe network and E is the set of edges. Like the traditional models, we assume a universal infetionrate � for eah edge onneted to an infeted node, and a virus death rate Æ for eah infeted node.Table 1 lists the symbols used.� Virus birth rate on a link from an infeted neighborÆ Virus death rate on an infeted nodet Timestamppi;t Probability that node i is infeted at time t�k;t Probability that a k-linked node will not reeive infetionsfrom its neighbors at time t�t infetion population at time thki Average degree of nodes in a networkhk2i Connetivity divergeneTable 1: Table of Symbols
3.1 ModelOur model assumes disrete time. During eah time interval, an infeted node i will try to infetits neighbors with probability �. At the same time, i may be ured with probability Æ. We denotethe probability that a node i is infeted at time t as pi;t. We de�ne �k;t, the probability that ak-linked node will not reeive infetions from its neighbors at time t as,�k;t = Yj:neighbor of i(pj;t�1(1� �) + (1� pj;t�1))= Yj:neighbor of i(1� � � pj;t�1) (5)In this model, a node i is healthy at time t if� i was healthy before t and not infeted at t OR� i was at t� 1, ured at t and not infeted at t OR4



� i was at t� 1, infeted, but ured immediately afterwardsThe healthy probability of a k-linked node i at time t, 1� pi;t, an be de�ned as,1� pi;t = (1� pi;t�1)�k;t + Æpi;t�1�k;t + 12Æpi;t�1(1� �k;t) i = 1 : : : N (6)Note that for the last term on the right hand side of this equation, we assume that the probabilitythat a uring event at node i takes plae before infetion from neighbors is roughly 50%.Given a partiular network topology and values of � and Æ, we an solve Equation 6 numeriallyand obtain the time evolution of infeted population, �t, where �t =PNi=1 pi;tIn this paper, we ondut simulation experiments on a variety of real and synthesized graphs.We use a real network graph olleted at the Oregon router views1. This dataset ontains 31180links among 10900 AS peers. All synthesized power-law graphs used in this study are generatedusing BRITE [12℄. Unless otherwise spei�ed, eah simulation plot is averaged over 15 individualruns.3.2 ExperimentsIn this setion, we present a set of simulation results. The simulations are onduted to answer thequestion|how does our model perform in real, BA power law, and homogeneous graphs?Figure 1 shows the time evolution of � as predited by our model (see Equation 6) on the10900-node Oregon AS graph, plotted against simulations and the steady state predition of theSV model in Equation 3 (Sine the SV model does not estimate the transients, we plot the steadystate only.) As shown, our model yields a stritly more preise result than the SV model.Figure 2 depits the preditions of our model against the SV model for Barab�asi-Albert networks(see Equation 3). The topology used in Figure 2 is a synthesized 1000-node BA network. Sine theSV model in Equation 3 is spei�ally tailored for BA networks, we expet the omparison to bevery muh a sanity hek. As shown, both models onform niely to the simulation results, thoughour model appears to be slightly more preise.Figure 3 shows simulation results of epidemi spreading on an 1000-node random network,1http://topology.ees.umih.edu/data.html 5



(a) (b)Figure 1: Experiments show the time evolution of infetion in an 10900-node power-law network.Both simulations were performed on an Oregon network graph, with hki = 5:72 and � = 0:14. Inboth ases, our model onforms muh loser to the simulation results than the SV model.plotted against the KW model [7℄ and our model. The random network is onstruted aording tothe Erd�os-R�enyi model [5℄. Sine an Erd�os-R�enyi network is suÆiently lose to being homogeneousas far as epidemiologial models are onerned, the results in Figure 3 suggest that our model is aspreise as a model designed spei�ally for homogeneous networks. In one ase where � is 0.2 andÆ is 0.72, simulations appear to follow our predition more losely than that of the KW model.The experiments we show here, onduted on a real network, a synthesized BA power-lawnetwork, and an Erd�os-R�enyi network, illustrate the preditive power of our model|as a generalmodel, it subsumes prior models and produes preditions that equal or outperform preditionsthat are designed for spei� topologies.4 Epidemi Threshold and EigenvaluesAs desribed previously, an epidemi threshold is a ritial state beyond whih infetions beomeendemi. Prediting the epidemi threshold is an important part of an epidemiologial model. Theepidemi threshold of a graph depends fundamentally on the graph itself. The hallenge thereforeis to apture the essene of the graph in as few parameters as possible. We present one suh modelhere that predits the epidemi threshold with a single parameter|the largest eigenvalue of the6



Figure 2: Experiments on BA topology: shows time evolution of infeted population in a 1000-nodepower-law network. Our model outperforms the SV model in its steady state predition.adjaeny matrix of the graph|for arbitrary graphs.We note that it is possible to develop threshold onditions for speial ase but unrealisti graphs.For instane, the epidemi threshold for a homogeneous network is the inverse of the averageonnetivity, hki. Similarly, threshold for in�nite power-law networks is zero. But a unifying modelfor arbitrary, real graphs has not appeared in the literature yet. The losest model thus far is theone put forth by Pastor-Satorras et al. (see Equation 4. But we show later that their model is notaurate for arbitrary graphs.In this setion, we desribe a general theory for epidemi threshold that holds for arbitrarygraphs. We observe that the epidemi threshold is the ondition linking the birth and death ratesto the adjaeny matrix of the graph, suh that an infetion beomes an epidemi if the onditionholds, and dies out if it does not. Our theory is surprisingly simple yet aurate at the same time.We show later in this setion that this new threshold ondition subsumes prior models for speialase graphs. Table 2 lists the symbols used in this setion.Next, we will show that our estimate for the epidemi threshold � is� = 1�1;A (7)where �1;A is the largest eigenvalue of the adjaeny matrix A.7



Figure 3: Experiments on ER topology: shows time evolution of infeted population in a 1000-node random Erd�os network. Our model generally yields similar preditions to the KW model, butoutperforms it when Æ is high.A Adjaeny matrix of the networktrA The transpose of matrix A�i;A The i-th largest eigenvalue of Aui;A The eigenvetor of A orresponding to �i;AS The `system' matrix desribing the equations of infetion�i;S The i-th largest eigenvalue of STable 2: Symbols used in the eigenvalue analysisTheorem 1 (Epidemi Threshold) When an epidemi dies out, we should have �Æ < � = 1�1;A ,where � is the birth rate, Æ is the death rate and �1;A is the largest eigenvalue of the adjaenymatrix A.Proof: Restating Equation 6,1� pi;t = (1� pi;t�1)�k;t + Æpi;t�1�k;t + 12Æpi;t�1(1� �k;t) i = 1 : : : N (8)Rearranging the terms,1� pi;t = 12Æpi;t�1 + �1 + �12Æ � 1� pi;t�1� �k;t (9)= 12Æpi;t�1 + 1 + �12Æ � 1� pi;t�1 � �Xj pj;t�18



= 1 + Æpi;t�1 � pi;t�1 � �Xj pj;t�1 (10)This uses the approximation (1� a)(1 � b) � 1� a� b (11)when a� 1; b� 1.Thus, we have �pi;t = Æpi;t�1 � pi;t�1 � �Xj pj;t�1so, pi;t = (1� Æ)pi;t�1 + �Xj pj;t�1 (12)Converting to matrix notation (Pt is the olumn vetor (p1;t; p2;t; : : : ; pN;t)),Pt = ((1� Æ) I+ �A)Pt�1 (13)Thus, Pt is of the form Pt = SPt�1 (14)= StP0 (15)where S = (1� Æ)I+ �A is the `system' matrix.As we show in Lemma 1 in the Appendix, the matries A and S have the same eigenvetorsui;S, and their eigenvalues, �i;A and �i;S, are losely related:�i;S = 1� Æ + ��i;A 8i (16)Using the spetral deomposition, we an sayS = Xi �i;S ui;S tr(ui;S)and, St = Xi �ti;S ui;S tr(ui;S) (17)9



Using this in Equation 15, Pt =Xi �ti;S ui;S tr(ui;S) Pt�1 (18)Without loss of generality, order the eigenvalues suh that �1;A � �2;A : : :. For an infetion todie o� and not beome an epidemi, the vetor Pt should go to zero for large t, whih happenswhen 8i, �ti;S tends to 0. That implies �1;S < 1. So,1� Æ + ��1;A < 1 (19)whih means that, � = 1�1;A 2Theorem 2 (Exponential Deay) When the ondition above is met, the probability of infetiondeays exponentially over time.Proof: We have: Pt = StP0 (from Equation 15)� Xi �ti;S ui;S tr(ui;S) (from Equation 17)� �t1;S �C (20)where C is some onstant vetor depending on the initial onditions. The value of �1;S is less than 1(beause of the no-epidemi ondition). Thus, the values of pi;t are exponentially dereasing overtime. 2Corollary 1 When the network is below the epidemi threshold, the number of infeted nodesdeays exponentially over time.Proof: Let the number of infeted nodes at time t be denoted by nt.nt = NXi=1 pi;t= Xi �t1;S � Ci10



= �t1;S �Xi Ci (21)where Ci are the individual elements of the matrix C in Equation 20 above. Now, PiCi is aonstant and �1;S < 1 (from Theorem 1). Thus, we see that nt deays exponentially with time. 2.
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(a) Star topology (b) Oregon topologyFigure 4: This �gure shows the exponential deay in the number of infeted nodes over time, whenwe are under the epidemi threshold. Plot (a) ompares the logarithm of the number of infetednodes over time for a 100-node star topology; plot (b) shows the same for the Oregon topology. Inboth ases, the plot beomes linear for large t, meaning that the deay is exponential.The exponential deay in the number of infeted nodes an be seen learly in Figure 4, wherewe plot the logarithm of the number of infeted nodes, �t, versus t. Two plots are shown: one forthe star topology, and one for the Oregon dataset. In both ases, we observe that for large valuesof time t, the plots beome linear, implying that the number of nodes deays exponentially.5 Disussion|generality of our threshold onditionWe now turn to show that our threshold ondition is general and holds for other graphs. Inpartiular, we show that the threshold ondition holds for a) homogeneous, b) star, ) in�nitepower-law, and d) �nite power-law graphs. We do that with the following orollaries.Corollary 2 The new threshold model holds for homogeneous or random Erd�os-R�enyi graphs.11



(a) Simulation (b) Our modelFigure 5: Critial Æ for an 100-node star topology: number of infeted nodes versus time in log-logsales, given � = 0:016. Our model predits ritial Æ at 0.16. (Triangles at left and rosses at rightplot)Proof: As reported previously, the epidemi threshold in a homogeneous network or a randomErd�os-R�enyi graph is �hom = 1=hki where hki is the average onnetivity. It is easily shown that, ina homogeneous or random network, the largest eigenvalue of the adjaeny matrix is hki. Therefore,our model of epidemi threshold yields the same threshold ondition as the homogeneous models[11℄. 2Corollary 3 The epidemi threshold, � , for a star topology is exatly 1pd , where pd is the squareroot of the degree of the entral node.Proof: In a star topology, we have two types of nodes, the enter node and the satellite nodes.Suppose that we have d satellites, the �rst eigenvalue of the adjaeny matrix, �1, is pd. Thestability ondition then beomes �1 = 1� Æ + � � pd = 1 (22)whih means that Æ = � � pd to ahieve stability, thus rendering � = 1pd . 2
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Figure 5 shows the infetion spread over time in a 100-node star graph with � = 0:016. Given� = 1p99 , the ritial Æ on the threshold is approximately 0.16. This is on�rmed by our propagationmodel as shown in Figure 5(b). Notie that our predition for ritial Æ holds. More spei�ally,our model losely reets the simulation, for Æ > 0:16. For Æ < 0:16, there is no epidemi. ForÆ = 0:16, a very interesting setting appears.For the ase of Æ = 0:16, our model seems to show that the expeted number of infeted nodes�t drops approximately at the rate of t�1, whih is qualitatively di�erent from the other two ases:for Æ > 0:16; �t � �t1; for Æ < 0:16, �t stablilizes. This suggests a phase transition phenomenon,whih indiates a very interesting future researh question.Figure 6() and (d) depit a further example for the star topology, plotting the number ofinfeted nodes �200 at time t=200, for several values of the �=Æ ratio. We plot both the theoretial,as well as simulation results. We also show the two epidemi thresholds with vertial lines: ourthreshold with \rosses", at �=Æ= 1=�1; A = 0.1 and the SV threshold with \squares", at �=Æ=0.02. The simulation results indiate that our threshold is learly in the orret region, while theSV threshold predition is not aurate.Corollary 4 The epidemi threshold for an in�nite power-law network is zero.Proof: In a power-law network, the �rst eigenvalue of the adjaeny matrix, �1, is pdmax (aord-ing to [13℄). Sine dmax / ln(N) and N is in�nite, �1 is in�nite. Our epidemi threshold onditionstates that Æ must be greater than � � �1 in order for there not be any epidemi. Therefore, theepidemi threshold is e�etively zero for in�nite power-law networks. This result onurs withprevious work, whih �nds that in�nite power-law networks lak epidemi thresholds. 2Corollary 5 The epidemi threshold, � , for �nite power-law networks is more preisely indiatedby 1�1 , where �1 is the �rst eigenvalue of the adjaeny matrix.Proof: This follows diretly from the Theorem 1 shown above. 2We ompare our threshold predition with the threshold model by Pastor-Satorras et al. inEquation 4. Their model, �SV = hki=hk2i, where k is the average onnetivity, is put forth as ageneral model for arbitrary graphs. Figure 6(a) and (b) show simulated epidemi spreading on the13
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Oregon network. The lagest eigenvalue �1 of the adjaeny matrix for this network is approximately58.7211.We strutured the experiment suh that 5000 nodes are infeted initially. Simulations proeedwith � = 0:001 and Æ ranging from 0.05 to 0.14. For the partiular values of � and �1, our epidemithreshold model predits a ritial Æ at 0.0587211, while the SV threshold predition puts theritial Æ at 0.2078. As shown in Figure 6(a), the simulation with Æ = 0:05 reahes equilibriumwhile the run with Æ = 0:07 approahes zero at approximately timetik 600. The run with Æ = 0:06steadily approahes zero, but has yet to reah it at timetik 1000. These results losely mirror ourthreshold predition, whih shows a ritial Æ at approximately 0.06.Figure 6(b) shows an alternate view of the experiment result, plotting the number of infetednodes �500 at time t=500, for several values of the �=Æ ratio. We plot both the theoretial, as wellas simulation results. We also show the two epidemi thresholds with vertial lines: our thresholdwith \rosses", at �=Æ= 1=�1; A = 0.0167 and the SV threshold with \squares", at �=Æ= 0.0048.Notie that our threshold is learly in the orret region, while the SV threshold is way o�.6 Conlusions - ContributionsHow will a virus propagate in a real omputer network? What is the epidemi threshold for a �nitegraph, if any? How long does it take for a viral outbreak to reah steady state? These questionshave for deades intrigued researhers. In this paper we attempt to answer these questions byproviding a new analyti model that aurately models the propagation of viruses on arbitrarygraphs. The primary ontributions of this paper are:� We propose a new model for virus propagation in networks (Equation 6), and show that ourmodel is more preise and general than those used before. We demonstrate the auray ofour model in both real and syntheti networks.� We are the �rst to show that we an apture the virus-propagation properties of a graph ina single parameter, namely the eigenvalue �1;A. We propose a preise epidemi threshold,� = 1=�1;A, whih holds irrespetive of the network topology; an epidemi is prevented when15



Æ > Æ = ���1;A. We show that our epidemi threshold is more general, and more preise thanprevious models for speial-ase graphs (e.g., Erd�os-R�enyi, homogeneous, BA power-law); weshow that it tends to zero for in�nite power-law graphs.� We show that, below the epidemi threshold, the number of infeted nodes in the networkdeays exponentially.Future researh diretions abound, both for theoretial as well as experimental work. One ouldexamine phase transition phenomena, when we are exatly on the epidemi threshold. Anotherpromising diretion is to enhane the model with a \vigilane" parameter to model environmentalfators that a�et viral propagations.7 AppendixLemma 1 (Eigenvalues of the system matrix) The i�th eigenvalue of S is of the form �i;S =1� Æ + ��i;A, and the eigenvetors of S are the same as those of A.Proof: Let ui;A be the eigenvetor of A orresponding to eigenvalue �i;A. Then, by de�nition,Aui;A = �i;Aui;A (beause A is symmetri in our ase). Now,Sui;A = (1� Æ)ui;A + �Aui;A= (1� Æ)ui;A + ��i;Aui;A= (1� Æ + ��i;A)ui;A (23)Thus, ui;A is also an eigenvetor of S, and the orresponding eigenvalue is (1� Æ + ��i;A). 2Referenes[1℄ Norman Bailey. The Mathematial Theory of Infetious Diseases and its Appliations. GriÆn,London, 1975.
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[2℄ Albert-L�aszl�o Barab�asi and R�eka Albert. Emergene of saling in random networks. Siene,286:509{512, 15 Otober 1999.[3℄ Mari�an Bogu~n�a and Romualdo Pastor-Satorras. Epidemi spreading in orrelated omplexnetworks. Physial Review E, 66:047104, 2002.[4℄ Zolt�an Dezs�o and Albert-L�aszl�o Barab�asi. Halting viruses in sale-free networks. PhysialReview E, 65:055103(R), 21 May 2002.[5℄ Paul Erd�os and Alfred R�enyi. On the evolution of random graphs. In Publiation 5, pages17{61. Institute of Mathematis, Hungarian Aademy of Sienes, Hungary, 1960.[6℄ Mihalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationship ofthe internet topology. In Proeedings of ACM Sigomm 1999, September 1999.[7℄ Je�rey O Kephart and Steve R White. Direted-graph epidemiologial models of omputerviruses. In Proeedings of the 1991 IEEE Computer Soiety Symposium on Researh in Seurityand Privay, pages 343{359, May 1991.[8℄ Je�rey O Kephart and Steve R White. Measuring and modeling omputer virus prevalene.In Proeedings of the 1993 IEEE Computer Soiety Symposium on Researh in Seurity andPrivay, pages 2{15, May 1993.[9℄ S. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins. Trawlingthe web for emerging yber-ommunities. Computer Networks, 31(11-16):1481{1493, 1999.[10℄ Helen Martin, editor. The Virus Bulletin: Independent Anti-Virus Advie. World Wide Web,http://www.virusbtn.om, 2002. Ongoing.[11℄ A G MKendrik. Appliations of mathematis to medial problems. In Proeedings of Edin.Math. Soiety, volume 14, pages 98{130, 1926.[12℄ Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. Brite: Universal topologygeneration from a user's perspetive. Tehnial Report BUCS-TR2001-003, Boston University,2001. World Wide Web, http://www.s.bu.edu/brite/publiations/.17



[13℄ Milena Mihail and Christos H Papadimitriou. On the eigenvalue power law. In RANDOM2002, Harvard University, Cambridge, MA, 15 September 2002.[14℄ Yamir Moreno, Romualdo Pastor-Satorras, and Alessandro Vespignani. Epidemi outbreaks inomplex heterogeneous networks. The European Physial Journal B, 26:521{529, 4 February2002.[15℄ Mark E J Newman, Stephanie Forrest, and Justin Balthrop. Email networks and the spreadof omputer viruses. Physial Review E, 66:035101(R), 10 September 2002.[16℄ Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemi dynamis and endemi statesin omplex networks. Physial Review E, 63:066117, 2001.[17℄ Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemi spreading in sale-free net-works. Physial Review Letters, 86(14):3200{3203, 2 April 2001.[18℄ Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemi dynamis in �nite size sale-free networks. Physial Review E, 65:035108, 2002.[19℄ Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemis and immunization in sale-free networks. In Stefan Bornholdt and Heinz Georg Shuster, editors, Handbook of Graphsand Networks: From the Genome to the Internet. Wiley-VCH, Berlin, May 2002.[20℄ Romualdo Pastor-Satorras and Alessandro Vespignani. Immunization of omplex networks.Physial Review E, 65:036104, 2002.[21℄ M. Rihardson and P. Domingos. Mining the network value of ustomers. In Proeedings ofthe Seventh International Conferene on Knowledge Disovery and Data Mining, pages 57{66,San Franiso, CA, 2001.[22℄ M. Ripeanu, I. Foster, and A. Iamnithi. Mapping the gnutella network: Properties of large-sale peer-to-peer systems and impliations for system design. IEEE Internet ComputingJournal, 6(1), 2002.[23℄ Stuart Staniford, Vern Paxson, and Niholas Weaver. How to 0wn the internet in your sparetime. In Proeedings of the 11th USENIX Seurity Symposium, August 2002.18



[24℄ CERT Advisory CA-1999-04.Melissa maro virus. World Wide Web, http://www.ert.org/advisories/CA-1999-04.html,1999.[25℄ CERT Advisory CA-2001-23. Continued threat of the "ode red" worm. World Wide Web,http://www.ert.org/advisories/CA-2001-23.html, 2001.[26℄ Chenxi Wang, John C Knight, and Matthew C Elder. On omputer viral infetion and thee�et of immunization. In Proeedings of the 16th ACM Annual Computer Seurity AppliationsConferene, Deember 2000.

19


