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Abstract

Misfolded proteins (MP) are a key component in aging and associated neurodegenerative disorders. For example, misfolded
Amyloid-ß (Aß) and tau proteins are two neuropathogenic hallmarks of Alzheimer’s disease. Mechanisms underlying intra-
brain MP propagation/deposition remain essentially uncharacterized. Here, is introduced an epidemic spreading model
(ESM) for MP dynamics that considers propagation-like interactions between MP agents and the brain’s clearance response
across the structural connectome. The ESM reproduces advanced Aß deposition patterns in the human brain (explaining
46,56% of the variance in regional Aß loads, in 733 subjects from the ADNI database). Furthermore, this model strongly
supports a) the leading role of Aß clearance deficiency and early Aß onset age during Alzheimer’s disease progression, b)
that effective anatomical distance from Aß outbreak region explains regional Aß arrival time and Aß deposition likelihood, c)
the multi-factorial impact of APOE e4 genotype, gender and educational level on lifetime intra-brain Aß propagation, and d)
the modulatory impact of Aß propagation history on tau proteins concentrations, supporting the hypothesis of an
interrelated pathway between Aß pathophysiology and tauopathy. To our knowledge, the ESM is the first computational
model highlighting the direct link between structural brain networks, production/clearance of pathogenic proteins and
associated intercellular transfer mechanisms, individual genetic/demographic properties and clinical states in health and
disease. In sum, the proposed ESM constitutes a promising framework to clarify intra-brain region to region transference
mechanisms associated with aging and neurodegenerative disorders.
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Introduction

Misfolded proteins (MP) are associated with aging processes and

several human neurodegenerative diseases [1]–[3]. The prion-like

hypothesis explains the neurodegenerative progression by the

intercellular transfer of pathogenic proteins [4]–[6], under the

perspective that MP behave like infectious-like agents that

propagate from a few initial host regions to other brain regions.

For instance, in Alzheimer’s disease (AD), soluble Amyloid-ß (sAß)

oligomers are thought to be the principal seeds that carry the

misfolding process from region to region, accelerating the

production/deposition of new misfolded proteins [7]–[9] and thus

contributing to drive the pathology to new areas of the brain [10],

[11]. The associated Aß toxicity has a relevant impact on AD

development and progression [12]–[18]. The cell-cell transference

is possible because sAß oligomers are very small assemblies of MP,

which can be absorbed by axonal processes and transported to cell

bodies, causing cytotoxicity in the receiving cells [10], [11], [19].

Also, sAß oligomers that are immersed in the extracellular fluid are

subjected to the principles of molecular diffusion processes in the
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brain, i.e. a highly anisotropic movement along the axis of nervous

fibers [20]. Consequently, sAß propagation, and the subsequent

Aß deposition and cytotoxicity effects, occurs mainly between

anatomically interconnected areas or between neighboring neu-

ronal cells [10], [11], [21], [22].

Neuropathologic evidence supports the idea that each neuro-

degenerative disorder is linked to the misfolding of a specific

protein or group of proteins [5], [23]–[25]. Thus, the network

degeneration hypothesis proposes that misfolded proteins mech-

anisms should present disease-specific anatomical patterns [26]–

[29]. Two recent studies showed that specific functional and

structural covariance subnetworks of the healthy brain are in

correspondence with the spatially dissociable cortical atrophy

patterns of five distinct dementia syndromes [27], [30]. The

reported link between structural/functional brain connectivity

patterns and neurodegenerative damage supports the network

degeneration hypothesis. This also emphasizes the strategic

importance of developing molecular pathological approaches

capable of reproducing MP propagation, which might not only

be conducive to a better understanding of MP spreading factors,

but could also help to evaluate their contribution to disease

progression in relation with other postulated pathological mech-

anisms (e.g. the neuronal activity dependent degeneration [31]–

[33]).

In this context, a Network Diffusion Model of disease

progression in dementia was proposed [34], where the pathogenic

proteins propagation follows the regional concentration gradients

under the spatial constraints defined by the brain’s connectional

anatomy. Consistent with their theoretical predictions, the authors

found that specific anatomical sub-modules are in correspondence

with characteristic cortical atrophy patterns in AD and behavioral

frontal temporal dementia. However, the ability of this model to

replicate real MP propagation/deposition patterns remained

unexplored. A potential limitation of this model is that it does

not consider possible defense mechanisms of the brain. Rather, the

disease factors can accumulate gradually, without system resis-

tance, while inducing cellular death and cortical atrophy.

Conversely, immunologic brain responses have been demonstrated

to combat MP accumulation [35]–[38]. For instance, Aß clearance

by macrophages and microglia cells are responsible in part for the

remarkable fluctuations in neurological functions that AD patients

present even during the same day [26], [35], [39]. Furthermore,

recent evidence indicates that initial Aß related processes could

have a protective role on the nervous system [40], [41], which

suggests non Aß related neurodegenerative effects (e.g. cellular

death and cortical atrophy) at all the Aß propagation states but

only after an abnormal accumulation process.

Considering the relevance that both intercellular MP transfer

and associated clearance defenses have toward the development of

neurodegenerative disorders, here we proposed a stochastic

epidemic spreading model (ESM) to describe the dynamic

interactions between MP infectious-like agents and the brain’s

clearance response. The validity/applicability of the proposed

hypothesis and model was explored using 733 individual PET Aß

datasets from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI). We found that the ESM is able to reconstruct individual/

group Aß deposition patterns. Most importantly, ESM predicts

that it is not an increased Aß production but mainly a deficit in Aß

clearance processes and an early Aß onset age that result in the

formation of an excessive Aß deposition pattern, and in the

conjectured acceleration of the preceding tauopathy. Additionally,

our results highlight the strategic role of the MP outbreak regions

and their connectional architecture on the disease’s temporal

progression, as well as the impact of individual genetic and

demographic properties on intra-brain Aß propagation.

Results

Recovering the lifetime individual histories of Aß
propagation/deposition
We developed a stochastic epidemic spreading model (ESM) to

describe intra-brain Aß propagation and deposition processes

(Methods section). Then, we proceeded to explore the ability of the

model to reproduce Aß deposition patterns in healthy and

pathological brains. Figure 1 illustrates the key processing steps

of our approach. First, we used Florbetapir (18F-AV-45) PET data

to quantify Aß deposition patterns in a cohort of 733 subjects with

non-Hispanic Caucasian ancestry (Table S1) from the ADNI

database (Methods, Study participants, Dataset 1). Each participant

was previously diagnosed as healthy control (HC, n= 193), early

mild cognitive impairment (EMCI, n = 233), late mild cognitive

impairment (LMCI, n= 196) or probable AD (n= 111). For each

subject, the baseline 18F-AV-45 PET scan was employed to

calculate the Aß deposition probabilities for 78 regions covering all

the gray matter [42], and these were used to define the individual

Aß deposition pattern (Methods, Regional Aß deposition patterns).
Next, we used the developed ESM, and region-region anatomical

connectivity information from 60 healthy young subjects (Methods,
Study participants, Dataset 2), to generate multiple hypothetical

regional courses of Aß propagation/deposition. Each hypothetical

generation corresponded to a specific set of sAß spreading seed

regions, up to a maximum of 6 regions consisting of all possible

combinations, and a set of model parameters from which we

simulated 50 years of propagation starting with Aß presence only

in the seeds. A selective iterative algorithm (Methods, Model
exploration/validation) was used to identify the seed regions that

better explained the PET-based Aß deposition patterns across the

study cohort, as well as the individualized model parameters that

maximized the similarity between the generated and the individual

reference Aß deposition patterns. In sum, a set of the most likely

Author Summary

Misfolded proteins (MP) mechanisms are a characteristic
pathogenic feature of most prevalent human neurode-
generative diseases, such as Alzheimer’s disease (AD).
Characterizing the mechanisms underlying intra-brain MP
propagation and deposition still constitutes a major
challenge. Here, we hypothesize that these complex
mechanisms can be accurately described by epidemic
spreading-like interactions between infectious-like agents
(MP) and the brain’s MP clearance response, which are
constrained by the brain’s connectional architecture.
Consequently, we have developed a stochastic epidemic
spreading model (ESM) of MP propagation/deposition that
allows for reconstructing individual lifetime histories of
intra-brain MP propagation, and the subsequent analysis
of factors that promote propagation/deposition (e.g., MP
production and clearance). Using 733 individual PET
Amyloid-ß (Aß) datasets, we show that ESM explains
advanced Aß deposition patterns in healthy and diseased
(AD) brains. More importantly, it offers new avenues for
our understanding of the mechanisms underlying MP
mediated disorders. For instance, the results strongly
support the growing body of evidence suggesting the
leading role of a reduced Ab clearance on AD progression
and the modulatory impact of Aß mechanisms on tau
proteins concentrations, which could imply a turning point
for associated therapeutic mitigation strategies.
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Aß outbreak regions were identified, assuming the same set of

regions for the whole sample, whereas for each subject four

different model parameters were estimated: Aß production rate

(b), Aß clearance rate (d), onset age of Aß outbreak (Ageonset), and

model noise level (s). For further details see Methods (Model
exploration/validation subsection) and Figure 1.

Consistent with the hypothesis of an intra-brain Aß epidemic

spreading behavior, our propagation/deposition model repro-

duced, from the remote non-binding states, the characteristic Aß

deposition patterns in the adult cohort (Figures 2A,B). It explained

between 46.4,56.8% (all P,10210) of the variance in mean

regional Aß deposition probabilities (adjusted by age, gender, and

educational level) in HC, EMCI, LMCI and AD groups. See

Table S2 for a comparison with previous approaches. In addition,

it identified the posterior and anterior cingulate cortices as the

most probable starting seed regions for the Aß propagation process

(see Table S3 for examples of other tested combinations of regions,

based on previous reports). The cingulate cortex, particularly its

posterior area, is considered a core node of the default mode

network (DMN), and is thought to be involved in self-relevant/

affective decisions, mental simulation, and integration tasks [43],

[44]. This result is in agreement with the large amount of evidence

suggesting the critical role of the DMN on the genesis and

propagation of AD [31], [45], [46]. For a complementary seeds

identification analysis, see Discussion section (Identification of the
MP propagation epicenter subsection) and Figure S1.

Next, we re-evaluated the competence of the ESM framework

to reproduce prion-like spreading mechanisms, but now based on

the idea that, if the ESM is describing real intra-brain

propagation of MP, then alterations in the structural connectional

information should affect the model’s results negatively. We

tested this by comparing the capability of the ESM to explain

advanced Aß deposition patterns, using the available connectivity

information and alternatively using ‘‘non-informative’’ connec-

tional information. For this, 100 randomized versions of the

original anatomical connectivity matrix were created (preserving

its weight, degree and strength distributions [47]), and the

propagation model was evaluated for each of these versions. We

observed a significantly higher model competence (all P,1025) to

explain the Aß deposition patterns when the original anatomical

connectional information was used (Table S4). This result

supports the ability of the SEM to describe real MP spreading

processes, based on the central interrelation between biological

factors directly related to these pathogenic proteins (e.g. Aß

production and clearance) and the complex connectional

architecture of the human brain.

Figure 1. Reconstruction of individual Aß propagation/deposition histories using an ESM. 18F-AV-45 PET scans (A) are used to calculate
individual Aß deposition patterns for different regions covering all the brain’s gray matter (B). Then, detailed region-region anatomical connectivity
information from a young healthy group (C) is used to generate multiple hypothetical lifetime Aß propagation/deposition courses (D). Each
hypothetical course corresponds to an initial set i of sAß spreading seed regions and a different set of global model parameters hi~½bi,di ,si�. Then, a
selective iterative algorithm estimated, for each subject, the model parameters that maximized the similarity between the generated and the
reference Aß deposition pattern, as well as the time point at which this maximization occurred. The latter output was used to calculate the individual
onset age of Aß binding, which in conjunction with the obtained model parameters were assumed to characterize each subject’s Aß propagation/
deposition history.
doi:10.1371/journal.pcbi.1003956.g001
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Finally, the statistical robustness and predictive power of the

introduced ESM was tested via a repeated random sub-sampling

cross-validation. Each clinical group (HC, EMCI, LMCI and

AD) was randomly split into training and test data of the same

size. For each such split, the model values derived at the group

level for the training data were used to test the predictive validity

of the model on the validation group. We observed significant

predictive power across the different clinical states (Figure 2C),

with prediction accuracy values ranging from 40.7% (95% CI:

36.3, 45.0) for the HC group to 31.4 (95% CI: 28.4, 34.2) for the

AD group (Table S5). Slightly lower prediction accuracy was

observed for the AD group. We attribute this to the smaller

sample size, in comparison with the other groups, and as will be

analyzed in the next subsections, to a larger period of Aß

propagation/deposition processes (with a significantly earlier

propagation onset). This larger period of the phenomenon to be

modeled can be consequently associated to a larger accumulation

of model errors.

Predicting regional Aß arrival time with effective
anatomical distance to outbreak region and connectivity
degree

Historically, the identification of outbreak nodes has been

considered a primary step towards the spatiotemporal under-

standing of epidemic phenomena [48]. In the context of brain

neurodegenerative disorders, functional proximity to epicenter

regions implies greater disease-related regional vulnerability [30].

This suggests an organized pattern for propagation of disease

agents, in accordance with the trans-neuronal network-based MP

Figure 2. Characteristic regional Aß deposition patterns in healthy and pathologic brains. A) PET-based mean regional Aß deposition
probabilities (adjusted by age, gender, and educational level) in HC, EMCI, LMCI and AD groups. Nodes correspond to 78 regions covering all the
brain’s gray matter, with node sizes proportional to the associated Aß burden. Note the progressive expansion of the Aß deposition, starting mainly
from DMN regions to the rest of the brain. This supports the development of an abnormal Aß deposition pattern in correspondence with the disease
progression (from HC to advanced AD clinical states). B) Correspondence between the estimated and PET-based mean regional Aß deposition
probabilities for the different groups. C) Prediction accuracy distributions obtained for the different groups (via a repeated random sub-sampling
cross-validation procedure).
doi:10.1371/journal.pcbi.1003956.g002
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spread hypothesis, and supports the key role of specific epicenter

regions in the disease progression processes. Those results were

obtained using an indirect measure of MP presence, i.e. gray

matter atrophy quantified using voxel-based morphometry.

However, the relation between gray matter atrophy and MP

effects is still unclear, and, in addition, the former can also be

caused by multiple different factors (e.g., vascular dysregulation).

To obtain direct evidence of MP dispersion as a function of

proximity to an epicenter, we first explored the relation between

the PET-based regional Aß deposition patterns and the effective

anatomical distances to the identified Aß outbreak regions

(anterior and posterior cingulate cortices; Methods, Model
exploration/validation). We observed a significant negative linear

relationship between these two variables, across the four clinical

states (Figure 3A). Interestingly, best-fit lines for the different

clinical groups displayed a consistent co-linearity (Figure 3A and

Figure S2). The relationships were characterized by similar slope

but different Aß deposition intercepts that increase according to

disease progression. We verified that these associations are not

explainable by the spatial proximity between regions (Table S6).

These results support the role of the outbreak regions as centers of

radial disease factor propagation, which is modulated by the

brain’s connectional architecture.

Next, we used the spatiotemporal information provided by the

ESM to analyze the link between regional Aß arriving times (TAb)

and the effective anatomical distances. For each brain region i,

T
Ab

i was calculated as the time at which the Aß probability

deposition of this region reached a given threshold (e.g. Pi ,0.9

implying no deposition, Pi $0.9 implying deposition). In line with

the previous results, we found a significant linear predictive

relationship between the effective anatomical distances and the

TAb values (Figure 3B). The shape of this relationship was

invariant to the selection of different Aß deposition thresholds.

Notably, these results correspond with the linear predictive

relationship reported for effective distances in human social

networks and disease arrival times for real epidemics propagation

data [49] (e.g. 2009 H1N1 pandemic). This parallelism between

intra-brain MP propagation mechanisms and epidemic propaga-

tion in human disease networks [49], supports our hypothesis of an

intra-brain epidemic spreading behavior of MP propagation.

Furthermore, these model-based findings clarify the distance-

vulnerability effects observed for gray matter atrophy [30] and Aß

deposition (Figure 3A).

In terms of regional vulnerability to disease pathological effects,

recent studies have also suggested a direct link between structural/

functionally connectivity levels and regional vulnerabilities [31],

[50], [51]. Highly connected brain regions are usually known as

‘‘hubs nodes’’ of the brain network (for review see [50]). Buckner

et al., 2009, showed a high correspondence between Aß deposition

levels and functional connectivity in the brain hubs. Further

evidence, based on meta-analyses of published magnetic resonance

imaging data about 26 different brain disorders, suggest that

pathological brain lesions (i.e. gray matter atrophy lesions) are

mainly concentrated in structural hub regions, independently of

the studied disorder [51]. This fact is considered a consequence of

the high topological centrality and biological cost of the hubs,

which make them more vulnerable to a diverse range of

pathogenic processes [31], [51]. In order to explore if the

introduced ESM can clarify this connectional-pathogenic associ-

ation, we analysed the relation between regional anatomical

connectivity degrees and Aß arrival times, as measures of

"hubness" (Methods, Anatomical connection probability) and

temporal vulnerability to receive aberrant disease factors, respec-

tively. We observed significant negative correlations (all P,1029)

between these two variables, independently of the selection of

different Aß deposition thresholds (see Figure S3). This suggests

that regions with higher anatomical connectivity degrees experi-

ence early Aß arrival and, consequently, larger periods of

exposition to the negative effects of this aberrant protein.

A malfunctioning Aß clearance system and an early Aß
onset age are major factors associated with AD
For decades, Aß propagation and accumulation has been

thought to have a causal role on the cascade of cognitive/

clinical events leading to AD [52], [53]. For instance, Aß

toxicity has been causally associated with brain oxidative stress

[14], [18], mitochondrial dysfunction [18], synapse and spine

loss [13], widespread neuronal dysfunction and cell death [12],

synaptic plasticity and memory impairment [16], [17]. To test

the potential clinical impact that progressive Aß presence can

have on the pathology’s progression, we studied whether model

variables controlling intra-brain Aß propagation/deposition are

related to AD and intermediate cognitive/clinical states. For

this, we considered the clinical diagnosis (HC, EMCI, LMCI or

AD) as a dependent variable in a Multinomial Logistic

Regression model with Aß production/clearance rates, noise

and onset age as independent variables (controlling by gender,

age and educational level). Then, the contribution of

each regressor was evaluated using a robust metric of

relative importance in prediction analysis (Methods, Statistical
Analysis).
We observed a statistically significant relationship between

clinical diagnosis and Aß clearance rate and onset age (Figure 4

and Table S7). The clearance rate was found more related to the

clinical diagnosis than the other model parameters (Figure 4A),

explaining 8.45% (95% CI: 4.88, 11.89) of its inter-subject

variance. A closer look at the differences between the four clinical

groups (Figures 4B-E and Table S8), revealed that the clearance

rate is also the model variable with the most consistent variance

across the different clinical diagnoses. It is followed by the onset

age of Aß accumulation, which reflects a decreasing transition

from HC to EMCI-AD states (Figure 4D) and explains 6.77%

(95% CI: 3.42, 9.88) of the variance in clinical diagnoses. We

observed a significant decreasing trend on the Aß production rate

from HC to EMCI-AD states (Figure 4B), however the impact of

this effect on the clinical diagnosis was not significant (95% CI: 2

0.76, 3.77; for further analysis, see Text S1). While the

individualized global Aß production rate can be seen as a

measure of the lifetime individual regional potential to produce

Aß infectious-like factors, the corresponding clearance rate

reflects the lifetime intrinsic capacity to combat the Aß

accumulation. Therefore, these results suggest that although a

significantly earlier onset age of Aß accumulation and a non-

significantly lower production rate of Aß agents are associated to

AD, a deficiency associated to Aß clearance might be the most

determining Aß-mediated factor for the development of the

disease.

APOE e4 genotype multi-factorial impact on Aß
propagation/deposition
Apolipoprotein E (APOE) e4 genotype is considered a relevant

genetic risk factor for AD and intermediate MCI states [54]. It has

been associated to Aß aggregation into fibrils [55], the hindered

clearance of sAß [56], and neurodegeneration by directing toxic

Aß oligomers to synapses [54], [57]. Using our ESM, we explored

how different APOE e4 genotypes impact Aß propagation and

deposition. For each model parameter, we performed a three-way

Epidemic Spreading Behaviour of Misfolded Proteins
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ANOVA test considering as grouping parameters the number of

APOE e4 allele copies, as well as the gender and educational level

of the participants.

We observed a significant effect of APOE e4 genotype on the

Aß production/clearance rates and on the onset age (Figure 5A

and Table S9). In particular, we found that APOE e4 genotype

Figure 3. Effective anatomical distance to outbreak regions modulates the Aß propagation processes. A) PET-based regional Aß
deposition probabilities for the different groups vs effective anatomical distances. B) Regional Aß arriving times vs effective anatomical distances, for
different Aß probability thresholds (i.e. 0.1, 0.5 and 0.9). In A) and B), note the co-linearity between different clinical states or Aß probability
thresholds, with more advanced disease states corresponding to higher depositions and propagation times. See also Figure S2.
doi:10.1371/journal.pcbi.1003956.g003

Epidemic Spreading Behaviour of Misfolded Proteins

PLOS Computational Biology | www.ploscompbiol.org 6 November 2014 | Volume 10 | Issue 11 | e1003956



had highest impact on the onset age, decreasing it proportionally

to the number of APOE e4 allele copies (Figures 5A,E), and

explaining 13.21% of its inter-subject variance (P= 1.12610224,

F = 59.57). This result is in line with previous reports associating

APOE e4 genotype with an earlier age at disease onset and a faster

AD pathological progression [58], [59]. In addition, we observed a

significant decrease in Aß clearance rate with regard to the

number of APOE e4 allele copies (Figures 5A,C), explaining

10.48% of its inter-subject variance (P= 2.24610219, F = 45.60).

This supports our previous result associating AD onset with an Aß

clearance deficiency and, more importantly, evidences that this

clearance deficiency partly has a genetic cause [56]. We also found

significant effects of APOE e4 on Aß production rate (Figur-

es 5A,B; P= 5.38610219, F = 21.98), which reflects the multi-

factorial influence of this genotype on the evolution of AD and

intermediate MCI states [54]–[57].

Further statistical analyses were performed to assess how the

specific number of APOE e4 allele copies impact on Aß

propagation and deposition (Table S10). We found that the effects

due to the presence of two e4 allele copies are more relevant (in

terms of the model parameters) than the effects due to the presence

of only one copy (Figures 5B–E and Table S10). This is in

agreement with the reported semi dominant inheritance effect of

APOE genotype on developing AD [60].

When investigating the relationship of the model parameters

with the demographic variables, we also found a significant impact

of gender on Aß production rate (P = 1.9061023,F = 9.68), Aß

clearance rate (P = 1.3561023,F = 19.19) and Aß onset age

(P = 2.0661023,F = 36.84) (Tables S9 and S11). For all these

cases, female gender was associated with significantly lower model

parameter values (Table S11). This result is in high correspon-

dence with the fact that women are more likely to develop AD

than men [61], [62]. Furthermore, we found a significant

interaction between APOE e4 genotype and gender, which

together are modulating the Aß onset age (P= 161025,

F = 9.30). This is consistent with the higher propensity for women

to develop AD across most ages and APOE genotypes [62], with

the most pronounced detrimental effect of APOE e4 on DMN

connectivity and CSF tau levels [61], and with the reported

greatest amyloid plaque and neurofibrillary tangle pathology for

women [63].

Finally, when investigating the relationship of the noise

parameter s with APOE e4 and the demographic variables

(Table S9) we found that female subjects with a higher educational

level have a higher noise level (P = 0.019, F= 5.45). In conjunction

with a significant impact of gender and educational level on the Aß

onset age (P= 0.01, F = 5.45) and a non-significant trend effect of

educational level on Aß clearance rate (P = 0.093, F= 2.82), this

may be reflecting the complex relationship that exists between Aß

binding, gender, cognitive reserve and clinical state [64]. The

larger variability in Aß deposition patterns associated with higher

noise, gender and educational level, could explain the disputed

results of the cognitive reserve hypothesis [65]–[67].

Modulatory impact of Aß propagation/deposition history
on CSF Aß1-42, t-tau and p-tau levels
CSF measures of Aß, total tau (t-tau) and phosphorylated tau (p-

tau) are considered the most relevant early biomarkers of AD [68],

[69]. Although Aß and tau proteins were historically considered to

Figure 4. Subjects with different clinical states presented different Aß propagation histories. A) Explained variance of the clinical
diagnoses (HC, EMCI, LMCI and AD) by the different Aß propagation model parameters. Mean (6 standard error) Aß production rate (B), Aß clearance
rate (C), noise standard deviation (D) and onset age of Aß propagation (E) for the different clinical groups (adjusted for gender and educational level).
*p,0.05, **p,0.01, ***p,1025, Student’s t-test.
doi:10.1371/journal.pcbi.1003956.g004
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arise and act independently, now it is thought that both proteins

are strongly interrelated [13]. Based on different converging

evidences, it has been suggested that Aß pathophysiology might

drive and accelerate pre-existing tauopathy [70]. Here, we aimed

to re-evaluate this interrelation hypothesis under the assumption

that, if the intra-brain ESM of Aß propagation/deposition can

reflect Aß pathophysiology accurately, then abnormalities in CSF

Aß, t-tau and p-tau concentrations should be correctly reflected by

the individualized model parameters. For this, we used CSF Aß1-

42, t-tau and p-tau181 measures from a subsample of 307 healthy

and non-healthy subjects belonging to the 18F-AV-45 PET

scanned group (Methods, CSF measures). For each CSF measure,

we performed a seven-way ANOVA test, considering the model

parameters, age, sex and educational level as modulatory factors.

The results (Figure 6A and Table S12) show a significant impact

of Aß production/clearance rates on CSF Aß1-42, explaining

10.40% (P= 1.24610212, F = 55.02) and 11.85%

(P=4.83610214, F = 62.66) respectively, of its across-subject

variance (see also Text S1). We also found that the Aß onset age

and the chronological age are significant modulators of CSF Aß1-

42, explaining 2.31% (P=5.3661024, F = 12.24) and 2.97%

(P=9.2961025, F = 15.69) respectively, of its variance. Together,

all considered modulators accounted for 28.82% of the CSF Aß1-

42 variance. Aß production/clearance rates were also found to

have significant impact on CSF t-tau, explaining 4.45%

(P=1.6861025, F = 19.33) and 2.77% (P=6.3261024,

F = 11.93) respectively of its variance. However, in this case the

higher impacts correspond to the Aß onset age and chronological

age (Figure 6B), with 5.08% (P= 4.4161026, F = 21.87) and

5.45% (P= 2.0761026, F = 23.44) respectively, of explained

variances. Similar effects were observed for CSF p-tau (Figure 6C),

for which Aß onset age was the strongest modulator and

accounted for 4.44% (P= 2.0761025, F = 18.23) of its variance.

According to these results, while Aß production/clearance rates

might be influencing the deposition and recirculation of Aß and

subsequently its inter-relationship with tau proteins, the observed

Aß onset age and chronological age effects on t-tau and p-tau may

be reflecting the time duration of such inter-relationship. These

results are consistent with the idea of an interrelated pathway

between amyloid pathophysiology and tauopathy [70], [71] and,

in combination with results from the previous subsections, they are

also consistent with the notion of an associated failure to clear

mislfolded proteins [70], [72].

Discussion

Characterizing the mechanisms underlying intra-brain MP

propagation and deposition constitutes a major challenge of the

molecular pathological approaches devoted to the study of

neurodegenerative disorders. Here, we showed that these complex

mechanisms can be biophysically described by epidemic spread-

ing-like interactions between the infectious-like agents (misfolded

proteins) and the brain’s clearance response, across the human

structural connectome. We identified several genetic, structural

and demographic factors associated to the biophysical model

variables controlling these interactions. The proposed ESM

Figure 5. Multi-factorial impact of APOE e4 genotype on Aß propagation/deposition. A) Explained variance of the propagation model
parameters by the different APOE e4 genotypes (zero, one or two e4 allele copies). Mean (6 standard error) Aß production rate (B), Aß clearance rate
(C), noise standard deviation (D) and onset age of Aß propagation (E) for the different number of e4 allele copies (adjusted for gender and
educational level). *p,0.05, **p,0.01, ***p,10210, Student’s t-test.
doi:10.1371/journal.pcbi.1003956.g005
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constitutes a promising framework to clarify intra-brain region to

region transference mechanisms related to aging and neurode-

generative disorders.

The prion-like hypothesis and the misfolded proteins
epidemic spreading behavior
The prion-like hypothesis explains the neurodegenerative

progression by the intercellular transfer of pathogenic factors

[4], [73]. This perspective presents a striking similarity with the

spread of real infectious diseases in biological populations. Social

networks constitute a common structural substrate over which

infectious factors propagate, reaching in some cases an epidemic/

uncontrollable behavior [74]. Independently of the pathogenic

agent’s characteristics, its propagation dynamics are always

constrained by the connectivity structure of the attacked system.

It is in this context that we hypothesized the Aß proteins

propagation and deposition as a natural epidemic spreading

event, whose dynamics are determined by infectious-like agents

and immunologic response actions that compete under a

restrictive anatomical network (the structural human connec-

tome). Note, however, that the term infectious does not

necessarily imply the presence of fully negative propagating

factors, since the genesis and role of MP in the brain are not

completely understood [40].

Previous studies have used the brain’s structural and

functional connectivity to explain neurodegenerative atrophy

patterns (for recent reviews see [75], [76]). We extended

previous connectivity-based approaches [27], [30], [34] by

combining pathogenic factors actions (production and spread-

ing) with possible defense responses, including also the influence

of stochastic or undetermined processes. The inclusion of basic

biological variables (e.g. MP production/clearance rates, time of

propagation) provides a more realistic characterization and

understanding of the studied phenomenon, allowing not only to

reproduce the MP dynamics but also to identify the genetic,

structural, and demographic factors associated to it. For

purposes of comparing different methods, we applied the

Network Diffusion Model (NDM) [34] to the same Aß datasets

and connectivity information (for further details see Table S2).

We found that NDM also identified the posterior and anterior

cingulate cortices as the most probable starting seed regions for

the Aß propagation process. However, even when the obtained

mean regional explained variance for the NDM was around 27–

33%, with a significant statistical association (p,0.05), the

corresponding root mean square errors (RMSEs) were consid-

erably high, reflecting large absolute differences between

estimated and reference Aß concentration patterns. In addition,

Akaike Information Criterion (AIC) values evaluated for both

models (ESM and NDM) revealed a significantly lower accuracy

performance for the NDM (P = 7.1361028, Z =25.26), inde-

pendently of the number of models parameters. We noted that

although the NDM is capable of dispersing the initial infectious-

like factors from the seed regions to the rest of the brain

network, such dispersion is at the expense of the local

concentrations, which after the initial exchange decreases

continuously. As a consequence, the total Aß concentration is

never higher than the ‘‘injected’’ amount and after a given time

the propagation of the factors stops. This behavior is not

physiologically realistic as shown in the literature [77]. Note that

this issue is a consequence of the absence of a source term in the

NDM, which is included in the ESM.

In addition, consistent with reported associations between

functional proximities to a pathogenic epicenter and gray

matter atrophy levels [27], [30], we found that effective

anatomical distances to the Aß outbreak regions can predict

regional Aß depositions and arrival times values. In terms of

prediction accuracy, anatomical connectional proximities to

the epicenter seem to be more interrelated to Aß levels than

functional proximities to gray matter atrophy levels (Table S2).

This might be responding to several possible causes, such as: a)

a tentative higher impact of the anatomical connectivity

(implying only direct links) than the functional connectivity

(implying both direct and indirect links) on pathogenic agents

propagation, b) the use on [27], [30] of indirect measures of

MP presence to evaluate prion-like mechanisms, i.e. gray

matter atrophy quantified using voxel-based morphometry,

and c) the fact that gray matter atrophy can be caused by

multiple pathogenic factors (e.g., vascular and metabolic

dysregulations). In addition, in these studies the nodes of the

analyzed networks were obtained based on a priori statistical

selection of the significantly affected brain regions in the

diseased group, ignoring other brain regions, which may have

introduced a bias in the posterior atrophy level vs functional

proximity analysis.

Figure 6. Influence of parameters controlling Aß propagation/deposition on CSF Aß1-42, t-tau and p-tau181 levels.While CSF Aß1-42 (A)
is mainly influenced by Aß production/clearance rates, t-tau (B) and p-tau (C) are highly influenced by chronological age and Aß onset age
(combined, these two temporal factors should reflect the interrelation period between amyloid pathophysiology and tauopathy).
doi:10.1371/journal.pcbi.1003956.g006

Epidemic Spreading Behaviour of Misfolded Proteins

PLOS Computational Biology | www.ploscompbiol.org 9 November 2014 | Volume 10 | Issue 11 | e1003956



Anatomic connectivity impact on intra-brain MP
propagation
The intercellular transference of pathogenic proteins (e.g. across

axonal projections [10], [19], or the extracellular space that is

constrained by the connectional architecture [20]), is a major

statement of the prion-like hypothesis. The ability of ESM to

reconstruct Aß deposition patterns from early to advanced disease

states, suggest the methodological importance of considering the

structural connectional information on the modeling of MP

propagation/deposition mechanisms. However, these alone do not

offer an evaluation of the real contributions/advantages of using

or not the connectional information on MP propagation modeling.

We tested this contribution by comparing the ability of the

introduced ESM framework to explain advanced Aß deposition

patterns, using the available connectivity information and

alternatively using equivalent non-informative connectional infor-

mation (Results, first subsection, and Table S4). The results

supported a significantly higher model competence to explain Aß

deposition patterns when the original anatomical connectional

information was used. Similarly, effective anatomical distances

estimated using the structural human connectome were signifi-

cantly better predictors of regional Aß levels (all P,10211) than

the equivalent distances estimated using the randomized networks.

In addition, we verified that spatial proximities of the considered

78 regions to the identified epicenter (cingulate cortex) cannot

explain the observed predictive relationship between effective

anatomical distances to epicenter and regional Aß levels (Table

S6). Together, these results add evidence to the previously

postulated prion-like mechanisms associated to Aß proteins [10],

[19], [39] and, furthermore, highlight the methodological impor-

tance of considering structural brain connectivity information for

the study of such processes.

In accordance with previous studies [31], [32], [50], [51], our

results support a significant relationship between regional connec-

tional degrees and pathological vulnerability. We observed that

regions with higher connectivity degrees are primarily targeted by

the Aß factors (Figure S3). This suggests that hub regions in the

brain are most extensively exposed to the negative effects of these

aberrant proteins. Considering that similar connectivity-based

modulatory effects could be presented for different MP (e.g. tau, a-

synuclein) or even, as previous literature is suggesting, for other

transferable region-region pathogenic mechanisms (e.g. metabolic

or functional dysregulations), this phenomenological relationship

could explain the spatiotemporal association between regional

hubness and lesional levels observed for different diseases.

Identification of MP propagation epicenters
Converging evidence suggests that cingulate cortex is one of the

earlier structures presenting Aß deposition [29], [31] and other

structural/functional alterations related to AD progression [31],

[46], [51]. Therefore it is not surprising to find this structure as a

strong candidate to be the Aß outbreak region and to have a

consistently high Aß deposition across the whole sample. However,

with the current data it is hard to determine whether the

identification of this structure, or any other, as propagator

epicenter is more related to: a) the fact that it is the real Aß

outbreak center, or b) it is located spatially close to the real

outbreak, or c) its selection is reflecting a model limitation (e.g.

potentially, the model could not identify peripheral regions but

only some kind of ‘‘best MP propagator’’). Despite this intrinsic

limitation, we know that while a realistic selection should be

influenced by the deposition level of each seed candidate, it should

also depend on the seed’s anatomical connectivity patterns. In

order to explore this and its relation with our previous results, we

performed a complementary analysis for the seed identification,

now assuming that the regional connectional proximities to the

real outbreak should be capable to reflect the regional levels of Aß

deposition, as a direct consequence of an aberrant factor

propagation from the initial center [49]. For this, we calculated

the correlation between the regional Aß deposition values and the

effective anatomical distances to each considered brain region.

The results (Figure S1) suggested that, in accordance with the

previous reasoning, the cingulate regions are the most likely

candidates to have a leading role in Aß outbreak and subsequent

propagation, presenting the highest correspondences between

connectional distances and brain Aß deposition levels. However, a

conclusive validation of these results requires more integrated

data, e.g. longitudinal PET Aß datasets from initial to more

advanced Aß binding states, and/or animal models to evaluate the

level of mismatches between a given MP/Aß injection site and the

corresponding identified epicenter.

Aß clearance deficiency and implications for medication
therapies
Historically, Ab binding features associated with AD have been

assumed to be a causal consequence of the imbalance between Ab

production and clearance. With the exception of rare genetic

forms of AD [78], an increased Aß production in typical AD

patients has not been consistently confirmed [38], [79]. In fact,

recent metabolic labeling analyses in a cohort of AD (n= 12) and

normal controls (n = 12) revealed a non-significant inter-group

difference in the Ab production rates, while clearance rates were

found significantly decreased in the AD group [38]. Moreover,

new evidence suggests that under certain conditions Aß proteins

may play a protective role on the nervous system [40], [41]. Our

results are in agreement with a decreased Aß clearance capacity

associated with AD onset [38], [39]. Once we evaluated the ESM

variables associated to Aß propagation/deposition with real data,

we found a significant association between individual Aß clearance

rates and clinical states. In terms of the relative importance as a

clinical predictor, the clearance rate demonstrated a considerably

higher impact in comparison with the other variables (i.e. Aß onset

time and production, physiological/external noise). This result

strongly suggests that differences in the capacity to clear/degrade

the Aß proteins result in vast differences in the net amounts ending

up in the receiving cells [39], which can cause more seeding and

pathology in these cells. At the cellular level, ubiquitin–proteasome

and the autophagy–lysosome pathways are considered the two

main routes for intracellular MP protein degradation [72].

Although the ESM cannot distinguish between these two

pathways, the obtained results are in some way highlighting the

importance of considering these and other similar mechanisms

related to MP clearance, which might have a relevant role on the

development and progression of different neurodegenerative

diseases. Specifically, the growing body of evidence supporting a

reduced Ab clearance in AD development could imply a turning

point for associated therapeutic mitigation strategies [35], [39],

[72]. A significant increment of Ab and tau clearance capacities

attending in parallel to the individual genotype and demographic

characteristics, through an immunologic reinforcement [35], [80],

or through a genetically induced enhancement [81], may be,

tentatively, an alternative to combat AD onset and progression,

with the subsequent impact on the associated undesirable

symptoms.

Ab and other factors contributing to neurodegeneration
Although ESM was created to describe the spatiotemporal

propagation of different MP (Aß, tau, a-synuclein, superoxide
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dismutades-1, etc), here it was explored only with Aß patterns. As

it is well known, Aß is not the unique pathogenic factor associated

with neurodegenerative progression. In AD and intermediate mild

cognitive states, tau proteins are thought to also have a primary

role on disease progression, presenting a higher correspondence

than Aß to gray matter atrophy patterns and clinical states [70].

However, Aß toxicity has been evidenced in different forms and its

negative role is currently the subject of scientific debate. Aß

toxicity has been causally related to brain oxidative stress [14],

[18], mitochondrial dysfunction [18], synapse and spine loss [13],

widespread neuronal dysfunction and cell death [12], synaptic

plasticity and memory impairment [16], [17]. Moreover, as

evidenced by previous studies [13]–[15] and as was verified in our

analysis (Results, Figure 6), Aß proteins have a significant

modulatory impact on tau proteins concentrations.

A hierarchical model of Aß acting on tau is supported by several

lines of evidence [13]. As a consequence, many scientific groups

are now emphasizing the strategic importance of considering the

mutual interrelation (Aß, tau) as an alternative to get a better

understanding of the pathogenic mechanisms and clinical conse-

quences associated to both proteins [80]. Furthermore, the current

consensus is that a given clinical state can not only be caused

independently by one protein (Aß or tau), but it can also derive

from complex interactions between these and/or other contribut-

ing factors (e.g. metabolic, vascular and functional dysregulations).

Methodological issues and future work
This study presents several limitations. The anatomical connec-

tivity information used in the model evaluation still presents notable

limitations [75], [82]. In this sense, current difficulties to distinguish

between real and spurious connections may have a significant

impact on the results, by distorting the modeled structural relations

among the regions and consequently the probabilities of receiving or

not new MP agents from connected regions. The symmetrical

property of the connectivity matrix, which is the result of the

limitations of current diffusionMRI tractography techniques, makes

it impossible to consider anterograde or retrograde MP propagation

processes, which could potentially present different kinetic mech-

anisms. Additionally, the use of a gray matter parcellation template

with variably sized regions [42], may introduce a significant bias in

the connectivity evaluation. The probabilistic connectivity measure

used in this study is based on regional maximum-voxel levels of

connectivity, and thus reflects the fibers orientational coherence

across the estimated connecting fibers pathways [83]. This

approach may be less sensitive to the sizes of the regions than

other traditional probabilistic connectivity measures, e.g. the

frequentist ratio between the number of connecting and generated

fiber pathways, with different seed sizes implying different number

of generated paths. However, independently of the connectivity

approach used, it is still not clear how to evade the influence of the

nodes selection on the structural network’s estimation [84]. While

model estimation at the voxel level could be a tentative solution to

this issue, such approach would imply other limitations, such as low

inter-subjects correspondence across nodes, the difficulty to

interpret regional findings, and a considerably high computational

cost. In the ESM, regional MP production and clearance rates

depend of the local MP deposition probabilities, which implies

different effective rates across the time and brain regions. But, at the

same time, these local effective rates are subjected to global

individual parameters ofMP production and clearance (bo and do in

Equations 4 and 5, respectively). This generalization may cause the

loss of real variability at the local tissue levels, such as possible spatial

differences in MP production/clearance rates due to changes in

neuronal and glial cells properties across the cortex. However, the

inclusion of regional production/clearance parameters in the model

could lead to a very high dimensional parameters space (i.e. with at

least two additional parameters per region), and subsequently result

in considerably higher difficulty to evaluate these at individual

levels. In addition to these limitations, errors in defining an

appropriate gray matter parcellation scheme [85] and the

characteristic low signal to noise ratio of the 18F-AV-45 PET data

are factors that may affect the global capability of the proposed

ESM to predicts regional Aß deposition patterns.

This study can be extended in multiple directions. These should

include further validation of the developed formulation with

animal models and longitudinal datasets, in order to characterize

its robustness and predictive competence. In this sense, it would be

of relevance to validate the identified epicenter regions, and to

evaluate the ability of the model to predict future MP deposition

states, and/or validate the estimated production and clearance

rates. Additionally, structural connectivity information should be

continuously improved, along with available anatomical network

reconstruction techniques. The influence on the model variables of

other genes identified as essential Aß modulators (e.g. BCHE,

MGAT3 and CD33 genes [35]–[37], [54]) should be also

explored. Since the formulated model (Equation 1) presents the

same mathematical structure as the well described predator-prey

Lotka-Volterra systems [86], [87], it would be interesting to

analyze the individual anatomical stability conditions supporting

the intra-brain propagation of the MP factors. Finally, and based

on the fact that MP are not the unique factors associated to

neurodegenerative progression, more advanced models should be

directed towards characterizing MP effects in conjunction with

other pathological mechanisms, such as metabolic, vascular and

functional dysregulations.

Methods

Ethics statement
The study was conducted according to Good Clinical Practice

guidelines, the Declaration of Helsinki, US 21CFR Part 50 –

Protection of Human Subjects, and Part 56 – Institutional Review

Boards, and pursuant to state and federal HIPAA regulations [88].

Study subjects and/or authorized representatives gave written

informed consent at the time of enrollment for sample collection

and completed questionnaires approved by each participating sites

Institutional Review Board (IRB) [88]. The authors obtained

approval from the ADNI Data Sharing and Publications

Committee for data use [89] and publication [90].

Intra-brain Epidemic spreading model (ESM) of misfolded
proteins (MP) propagation/deposition
Here we consider the brain as a system with N structurally

interconnected gray matter regions, where each region i (i = 1..N)

is characterized by its temporal probability (Pi) of MP burden.

The dynamic behaviour of this system, in terms of MP

propagation and deposition, will depend on the interactions

between the MP ‘‘infested’’ and ‘‘non-infested’’ regions, where

temporal changes in the regional Pi values can be described by the

non-linear differential model:

dPi

dt
~ 1{Pi tð Þð Þei tð Þ{di tð ÞPi tð ÞzQ: ð1Þ

The first term on the right side of Equation (1) represents the

regional probability of receiving MP infectious-like agents (ei tð Þ) if
region i is ‘‘non-infested’’ (which happens with probability
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1{Pi tð Þ). The second term, corresponds to the probability of

being clean of MP at time t (di(t)) if region i was ‘‘infested’’ before t
(which happens with probability Pi tð Þ). The last term, represents

an additive noise (Q) due to possible stochastic processes, such as

natural stochastic factors mediating MP aggregation mechanisms

[91] or unknown effects of therapeutic medications.

In the traditional epidemic disease spreading framework, self

infection processes are not considered (i.e. the ei tð Þ term only

quantifies the possibility of receiving infectious-like agents from

other system entities/nodes). However, in our case, each system

entity corresponds to a macroscopic brain region, which comprises

several neuronal groups (a direct consequence of the limited PET/

MRI spatial resolution and available gray matter parcellation

schemes, e.g., [42], [92]). Then, we need to consider the fact that a

particular ‘‘infested’’ sub-region in i can potentially ‘‘infect’’

neighboring sub-regions. Therefore, ei tð Þ is modeled as the

probabilistic accumulation of exogenous and endogenous infec-

tious-like factors:

ei tð Þ~
X

j=i

Paj?ib
ext
j t{tij
� �

Pj t{tij
� �

zPai?ib
int
i tð ÞPi tð Þ, ð2Þ

where Paj?i is the weighted anatomical connection probability

between the regions j and i (see Anatomical connection probability

subsection), bextj t{tij
� �

is the extrinsic ‘‘infection’’ rate of region j

at time t{tij , tij is the delay corresponding to the time the soluble

MP takes to depart from j, with propagation velocity VMP [20],

and cover the connection distance Lj?i; b
int
i tð Þ is the intrinsic

‘‘infection’’ rate of region i at t.
The distinction between extrinsic and intrinsic regional

‘‘infection’’ rates reflects the fact that the total soluble MP

produced at a given region is subdivided in two competing

processes: the diffusion towards the region’s external space

(contributing to the global MP expansion) and the molecules

staying inside the region (contributing to the production of new

seeds and participating in local aggregation mechanisms). As

mentioned, soluble MP diffuse from regions of higher concentra-

tion to regions of lower concentration. Thus, a high inequality in

the deposition levels of all the considered gray matter regions will

cause an increase in the extrinsic propagation of soluble MP across

the entire brain, and a decrease in the intrinsic fraction of soluble

MP that stays in each seed region. These effects are characterized

by the relations:

bexti tð Þ~g tð Þbi tð Þ,

binti tð Þ~ 1{g tð Þð Þbi tð Þ,
ð3Þ

where g is a global tuning variable that quantifies the temporal MP

deposition inequality among the different brain regions, and

bi~bexti zbinti is the total ‘‘infection’’ rate of the region i. We

assume g as the Gini coefficient [93], a well established measure of

statistical dispersion in a given system, with value 0 reflecting

perfect equality and value 1 corresponding to a complete

inequality. bi is defined as a sigmoid function of the regional

MP deposition probability, with a high MP deposition probability

implying a high probability of producing new infectious-like

factors (according to the seeding/nucleation mechanisms, see [94],

[95]):

bi tð Þ~bi Pi,boð Þ~1{e{boPi tð Þ, ð4Þ

being bo[ 0,z?½ � an unknown constant parameter.

Similarly to bi(t), the regional probability of being clean of MP

after ‘‘infection’’ (di(t)) is expressed as a function of Pi tð Þ and a

constant parameter. However, because MP deposition implies

inflammation processes and cellular death, the regional capacity to

clear/remove infectious-like agents will decrease with the increase

in MP deposition, following a decreasing exponential relationship:

di tð Þ~di Pi,doð Þ~e{doPi tð Þ, ð5Þ

where do[ 0,z?½ � is also an unknown constant parameter. We

hypothesize that bo and do will depend on the specific MP under

study, as well as on the individual characteristics (e.g. genetic

properties, life style, environmental conditions).

The additive noise (Q) in Equation 1 is assumed to follow a

Gaussian distribution with unknown mean m and standard

deviation s. From equations (1)–(5) we see that the proposed

model depends on four unknown parameters (bo, do, m and s),

which will control the continuous competition between the MP

infectious-like agents, the system’s clearance response, and the

unidentified random processes or external inputs.

Data description and processing
Study participants. Dataset 1: This study used 733 individ-

ual data from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) [88]. The ADNI was launched in 2003 by the National

Institute on Aging (NIA), the National Institute of Biomedical

Imaging and Bioengineering (NIBIB), the Food and Drug

Administration (FDA), private pharmaceutical companies and

non-profit organizations, as a $60 million, 5-year public-private

partnership. The primary goal of ADNI has been to test whether

serial magnetic resonance imaging (MRI), positron emission

tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the

progression of mild cognitive impairment (MCI) and early

Alzheimer’s disease (AD). Determination of sensitive and specific

markers of very early AD progression is intended to aid

researchers and clinicians to develop new treatments and monitor

their effectiveness, as well as lessen the time and cost of clinical

trials. The Principal Investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of California –

San Francisco. ADNI is the result of efforts of many co-

investigators from a broad range of academic institutions and

private corporations, and subjects have been recruited from over

50 sites across the U.S. and Canada. The initial goal of ADNI was

to recruit 800 subjects but ADNI has been followed by ADNI-GO

and ADNI-2. To date these three protocols have recruited over

1500 adults, ages 55 to 90, to participate in the research, consisting

of cognitively normal older individuals, people with early or late

MCI, and people with early AD. The follow up duration of each

group is specified in the protocols for ADNI-1, ADNI-2 and

ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-

GO had the option to be followed in ADNI-2 [88]. Written

informed consent was obtained from all participants before

protocol-specific procedures were performed [88]. For up-to-date

information, see www.adni-info.org.

See Table S1 for demographic and clinical characteristics of the

included ADNI subjects.

Dataset 2: In addition, this study used the data of 60 young

healthy subjects, from the CMU-60 DSI Template (http://www.

psy.cmu.edu/,coaxlab/?page_id=423). The CMU-60 DSI Tem-

plate is a freely available map of reconstructed fiber orientations

from very high angular resolution diffusion MRI data, acquired

with a 257-direction diffusion spectrum imaging (DSI) sequence. It
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was developed by The Cognitive Axon (CoAx) Lab, in the Center

for the Neural Basis of Cognition and Department of Psychology

at Carnegie Mellon University. The 60 subjects (29 male and 31

female) were recruited from the local Pittsburgh community and

the Army Research Laboratory in Aberdeen Maryland. All

subjects were neurologically healthy, with no history of either

head trauma or neurological or psychiatric illness. Subject ages

ranged from 18 to 45 years of age (mean 26 6 6) at the time of

scanning. All acquisition and preprocessing steps described below

were performed originally by the members of the CoAx Lab.

Image acquisition. Dataset 1: A 370 MBq (10 mCi+/-10%)

bolus injection of AV-45 was administered to each participant,

and 20 minute continuous brain PET imaging were acquired

approximately 50 minutes post-injection. The images were recon-

structed immediately after the 20 minute scan, and when motion

artifact was detected, another 20 minute continuous scan was

acquired.

Dataset 2: Participants were scanned on a Siemen’s Verio 3T

system in the Scientific Imaging & Brain Research (SIBR) Center

at Carnegie Mellon University using a 32-channel head coil.

50 min, 257-direction DSI scan using a twice-refocused spin-echo

EPI sequence and multiple q values (TR = 9,916 ms, TE

= 157 ms, voxel size = 2.462.462.4 mm, FoV = 2316231 mm,

b-max = 5,000 s/mm2, 51 slices) were collected. Head-move-

ment was minimized during the image acquisition through

padding supports and all subjects were confirmed to have

minimal head movement during the scan prior to inclusion in

the template.

Image processing. Dataset 1: For each individual PET

acquisition, images were initially preprocessed according to four

main steps [96]: 1) dynamic co-registration (separate frames were

co-registered to one another lessening the effects of patient

motion), 2) across time averaging, 3) re-sampling and reorientation

from native space to a standard voxel image grid space (‘‘AC-PC’’

space), and 4) spatial filtering to produce images of a uniform

isotropic resolution of 8 mm FWHM. Next, all images were

spatially normalized to the MNI space [97].

Dataset 2: All images were processed using a q-space

diffeomorphic reconstruction method described previously [98].

This method uses a non-linear coregistration approach (ICBM-

152 space template regularization, 16 non-linear iterations) that

registers the voxel-coordinate into MNI space while also main-

taining distortion of the q-space vector during the normalization

process. From here, orientation distribution functions (ODFs) were

reconstructed to spatial resolution of 2 mm3. The final template

image was created by averaging the ODF maps across all 60

subjects, constituting a detailed and unbiased representative map

of the nervous fiber orientations in the young healthy brain.

Regional Aß deposition patterns. Considering the Cere-

bellum as an Aß non-specific binding reference, individual Aß

deposition probabilities for 78 regions covering all the brain’s gray

matter [42] were calculated. First, a bootstrap sampling, consisting

of 40,000 randomized sub-samples of the Cerebellum’s PET signal

values, was used to approximate the extreme value distribution for

the maximum values at this region (denoted as PETmaxs
CB ). Next,

the maximum likelihood parameters associated to the empirical

PETmaxs
CB distribution were used to calculate the cumulative

distribution value of each brain voxel r with signal intensity PETr.

Note that this value will be expressing the probability of the

presence, at voxel r, of an equal or higher value than all the

possible maximum values within the Cerebellum, i.e.

P PETmaxs
CB ƒPETr

� �

. Then, the Aß deposition probability for a

given region i (PA�

i ) was calculated as:

PA�

i ~
1

DVi D

X

r[Vi

P PETmaxs
CB ƒPETr

� �

, ð6Þ

where Vi is the set of voxels demarked by the region i. Finally,

these PA�

i values (i = 1..78) were assumed to represent the

individual Aß deposition patterns.

Anatomical connection probability. Probabilistic axonal

connectivity values between each brain voxel and the surface of

each considered gray matter region (voxel-region connectivity)

were estimated using a fully automated fiber tractography

algorithm [83] and the intravoxel fiber ODFs of the CMU-60

DSI Template. A maximum of 500 mm trace length and a

curvature threshold of 690 were imposed as tracking parameters.

Based on the resulting voxel-region connectivity maps, the

anatomical connection probability between any pair of regions i
and j (ACPij ; ACPji) was calculated as the maximum voxel-

region connectivity value between both regions. The ACP
measure [83] reflects the degree of evidence supporting the

existence of each hypothetical white matter connection, indepen-

dently of the density/strength of this connection, and is thus a

measure of low susceptibility to gross fiber degeneration effects

related to aging processes. Self connections were considered with

ACPii =1.

Effective anatomical distances to the outbreak regions were

estimated as the length of the shortest path (in terms of ACP

values) linking region i with the posterior and anterior cingulate

cortices [49].

CSF measures. In addition to the neuroimaging data, CSF

Aß1-42, t-tau and p-tau181 measurements were acquired for 307

subjects belonging to Dataset 1. This subsample comprised HC

(n= 78), EMCI (n= 150), LMCI (n= 58) and AD (n= 21) subjects.

The xMAP Luminex platform and Innogenetics/Fujirebio

AlzBio3 immunoassay kits were used following the SOP in place

at the UPenn/ADNI Biomarker Laboratory [68], [99], [100].

Further details on data collection can be found at http://www.

adni-info.org. Data were preprocessed as described in [68], [100].

Model exploration/validation with simulated

data. Finally, we tried to reproduce the individual PET-based

Aß deposition patterns from remote ‘‘non-infectious’’ states. All

brain regions, or their combinations up to a maximum of 6 regions

(i.e. a total of 78!= 6!: 78{6ð Þ!ð Þ=256851595 combinations), were

considered as possible candidates to start the Aß propagation. For

each set of sAß spreading seed regions, multiple lifetime

trajectories of Aß propagation were simulated (Equation 1). Each

simulated trajectory consisted of 50 continuous years of hypothet-

ical Aß deposition patterns, with each pattern corresponding to a 1

day period. Similar to the creation of the Aß reference patterns,

each simulated Aß time point pattern (representing one day across

the 50 years) consisted of 78 regional probability values, reflecting

the local Aß ‘‘infection’’ levels. For each subject i (i= [1,733]), we

explored iteratively across the parameters space (bo,,do,s[R,

assuming positive values) and the corresponding 50 years

trajectories until we identified the set bo ið Þ,do ið Þ,s ið Þ½ � that

minimized, at a unique one day time point t(i), the Euclidean

distance between the reference and the simulated Aß deposition

patterns. Note that, ideally, this time point t(i) should match the
18F-AV-45 PET scan acquisition day for subject i (Figure 1).

Once we selected the most likely ‘‘infectious’’ seed regions that

best explained the reference Aß deposition patterns across the

study cohort, as well as the optimized individual parameters

bo ið Þ,do ið Þ,s ið Þ½ � and corresponding t(i), we marginalized across all

possible regional P values to obtain the individualized global Aß
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production and clearance rates: bi~
1
0 b P,bo ið Þð ÞdP and

di~
1
0 d P,do ið Þð ÞdP, respectively. The individual onset ages of

Aß binding were also calculated as the difference between the

chronological ages and the optimum time points t(i). In sum, for

each subject, the individual Aß propagation/deposition history

was characterized by the set of model parameters hi~ bi,di,si½ �
and the associated onset age (Figure 1).

Statistical analysis
Model cross-validation analysis (Results, first subsection,

Figure 2C). Repeated random sub-sampling was used to split

each clinical group dataset into training and test data (both data

with same sample sizes, n/2). For each split, the model was fitted

to the training data, and predictive accuracy (explained variance)

was assessed using the test data.
Model variables impact on clinical states (Results, third

subsection, Figure 4A). The LMG metric [101] was used, in

combination with a Multinomial Logistic Regression, to assess relative

importance of regressors. LMG quantify the proportionate contribu-

tion of each regressor to the global coefficient of determination (see

Grömping, 2006, for review on relative importance metrics). Boot-

strapping was used to construct the sampling distributions of the LMG

measures and the associated empirical confidence intervals [102].
APOE E4, demographic variables and model-based

variables (Results, fourth subsection, Figure 5). Seven-

way ANOVA was used to assess predictors association with each

model variable. Pair-wise predictor interactions were considered.

Model-based and demographic variables association with CSF
measures (Results, final subsection, Figure 6): Seven-way ANOVA

was used to assess predictors association with each CSF measure.

One-tailed Student’s test was used for all the between group

comparisons in the study.
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their helpful suggestions and comments on the manuscript. We would also

like to thank Dr. Tim Verstynen, who kindly collaborated on the use of the

CMU-60 DSI Template.

Data used in preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [88]. As

such, the investigators within the ADNI contributed to the design and

implementation of ADNI and/or provided data but did not participate in

analysis or writing of this report [89], [90]. A complete listing of ADNI

investigators can be found in Text S2.

Author Contributions

Conceived and designed the experiments: YIM RCS. Performed the

experiments: YIM. Analyzed the data: YIM. Contributed reagents/

materials/analysis tools: YIM ADNI. Wrote the paper: YIM RCS. Study

Supervision: ACE Manuscript revision and associated discussions: YIM

RCS PJT ACE.

Epidemic Spreading Behaviour of Misfolded Proteins

PLOS Computational Biology | www.ploscompbiol.org 14 November 2014 | Volume 10 | Issue 11 | e1003956



References

1. Dobson CM (2002) Protein misfolding diseases: Getting out of shape. Nature
418: 729–730.

2. Dobson CM (2003) Protein folding and misfolding. Nature 426: 884–890.
3. Reynaud E (2010) Protein Misfolding and Degenerative Diseases. Nat Educ

3(9): 28.
4. Frost B, Diamond MI (2010) Prion-like mechanisms in neurodegenerative

diseases. Nat Rev Neurosci 11: 155–159.
5. Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein

aggregates in neurodegenerative diseases. Nat Rev 11: 301–307.
6. Frost B., Jacks, R. & Diamond M (2009) Propagation of tau misfolding from the

outside to the inside of a cell. J Biol Chem 284: 12845–12852.
7. Jarrett JT, Berger EP, Lansbury PT (1993) The Carboxy Terminus of the

Amyloid Protein Is Critical for the Seeding of Amyloid Formation :
Implications for the Pathogenesis of Alzheimer’s Disease ? Am Chem Soc
32: 4693–4697.

8. Moreno-gonzalez I, Soto C (2011) Seminars in Cell & Developmental Biology
Misfolded protein aggregates : Mechanisms, structures and potential for disease
transmission. Semin Cell Dev Biol 22: 482–487.

9. Collins SR, Douglass A, Vale RD WJ (2004) Mechanism of Prion Propagation:
Amyloid Growth Occurs by Monomer Addition. PLoS Biol 2: e321.

10. Hallbeck M, Nath S, Marcusson J (2013) Neuron-to-neuron transmission of
neurodegenerative pathology. Neuroscientist 19: 560–566.

11. Nath S, Agholme L, Kurudenkandy FR, Marcusson J (2012) Spreading of
Neurodegenerative Pathology via Neuron-to-Neuron Transmission of beta-
Amyloid and Martin Hallbeck. J Neurosci 32: 8767–8777.

12. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration:
lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:
101–112.

13. Ittner LM, Jürgen G (2011) Amyloid-b and tau — a toxic pas de deux in
Alzheimer’s disease. Nat Rev Neurosci 12, 67–72.

14. Lloret A, Badia M-C, Giraldo E, Ermak G, Alonso M-D, et al. (2011) Amyloid-
b toxicity and tau hyperphosphorylation are linked via RCAN1 in Alzheimer’s
disease. J Alzheimers Dis 27: 701–709.

15. Giraldo E, Lloret A, Fuchsberger T, Viña J (2014) Ab and tau toxicities in
Alzheimer’s are linked via oxidative stress. Redox Biol 2: 873–877.

16. Shankar GM, Li S, Mehta TM, Al E (2008) Amyloid-b protein dimers drom
AD impair synaptic plasticity and memory. Nat Med 14, 8, 837–842.

17. Desrumaux C, Pisoni A, Meunier J, Deckert V, Athias A, et al. (2013)
Increased amyloid-b peptide-induced memory deficits in phospholipid transfer
protein (PLTP) gene knockout mice. Neuropsychopharmacology 38: 817–825.

18. Lloret A, Badı́a M-C, Mora NJ, Ortega A, Pallardó F V, et al. (2008) Gender
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