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The interplay between disease dynamics on a network and the dynamics of the structure of that network

characterizes many real-world systems of contacts. A continuous-time adaptive susceptible-infectious-susceptible

(ASIS) model is introduced in order to investigate this interaction, where a susceptible node avoids infections

by breaking its links to its infected neighbors while it enhances the connections with other susceptible nodes by

creating links to them. When the initial topology of the network is a complete graph, an exact solution to the

average metastable-state fraction of infected nodes is derived without resorting to any mean-field approximation.

A linear scaling law of the epidemic threshold τc as a function of the effective link-breaking rate ω is found.

Furthermore, the bifurcation nature of the metastable fraction of infected nodes of the ASIS model is explained.

The metastable-state topology shows high connectivity and low modularity in two regions of the τ,ω plane

for any effective infection rate τ > τc: (i) a “strongly adaptive” region with very high ω and (ii) a “weakly

adaptive” region with very low ω. These two regions are separated from the other half-open elliptical-like regions

of low connectivity and high modularity in a contour-line-like way. Our results indicate that the adaptation of

the topology in response to disease dynamics suppresses the infection, while it promotes the network evolution

towards a topology that exhibits assortative mixing, modularity, and a binomial-like degree distribution.
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I. INTRODUCTION

Recently, the coupling between epidemic dynamics and

the underlying network topology has attracted ample attention

[1–3]. A network, where the topology changes independently

from the epidemic spread, is called an evolving network. In

an evolving network, where the topology changes based on

some predefined patterns, the epidemic threshold has been

investigated in a number of studies [4,5]. More complex than

evolving networks are adaptive networks, where the topology

changes in response to the epidemic process. In other words,

there exists an interplay between the dynamics of the network

(i.e., the change of the topology) and the dynamics on the

network (i.e., the epidemic process).

Gross et al. [6] proposed an adaptive network model, where

a rewiring process is introduced in the classical susceptible-

infected-susceptible (SIS) model. In every time step, for every

link connecting a susceptible node with an infected node (i.e.,

S-I link), the susceptible node is infected with probability p.

The infected node recovers with probability r . Meanwhile,

for every S-I link, the susceptible node breaks the S-I link

with probability w and immediately reconnects the link to

another randomly selected susceptible node. The link-breaking

and reconnecting process is an instance of a rewiring process.

Gross et al. [6] reported a complex bifurcation pattern during

the evolution of the adaptive network through the healthy state,

the oscillatory state, the bistable state and the endemic state,

respectively, as p increases with fixed nonzero r and w. An

improved analysis of Gross’s model was presented by Marceau
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†s.trajanovski@tudelft.nl

et al. [7], while the model of Zanette and Risau-Gusmán [8]

differs from that of Gross et al. [6] in that the broken link

is reconnected to a randomly selected, but not necessarily

susceptible node. Lagorio et al. [9] studied the discrete-time

susceptible-infected-recovered (SIR) model in the presence

of a rewiring process and argued that there exists a phase

transition at a critical rewiring rate wc.

Valdez et al. [10] proposed an adaptive SIR model,

where a link-activation-deactivation strategy different from

the link rewiring is introduced to the classical SIR model. In

every discrete time step and for every S-I link, the infected

node i infects its susceptible neighbor j with probability p.

Otherwise, if the node i fails to infect its neighbor j , with

probability σ , its neighbor j breaks (deactivates) the link

connected to node i for a fixed period tB . After tB time steps,

the link between nodes i and j will be created (activated)

again. Every infected node i recovers after a fixed period tR .

In contrast to the link-rewiring process in Gross’s adaptive

model [6] which is a global link-dynamic process, following

the link-dynamic strategy proposed in [10], a link can only

be broken (deactivated) and created (activated) based on the

local information (i.e., the viral states of nodes connected

by the link). There exists a threshold σc above which the

epidemic dies out according to Valdez et al. [10]. A SIS model

with link-activation-deactivation dynamics was investigated

by Tunc et al. [11].

The above related papers on adaptive networks mainly

concentrate on the persistence of the epidemic on the network

by studying the epidemic threshold of the adaptive network in

the metastable state. However, all these papers are based on

mean-field approximations ignoring high-order correlations.

On the other hand, the formation of special structures when

the adaptive network is in the metastable state, such as the
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emergence of a highly connected susceptible component as

well as the associated degree distribution [6], have rarely been

discussed in detail. Wieland et al. [12] addressed how the

degree distribution converges to a well-defined distribution

irrespective of the initial topology in the adaptive SIS model

of Gross et al. [6]. Using stochastic differential equations,

Rogers et al. [13] investigated the mean degree of susceptible

nodes in adaptive networks.

In this paper, we propose a continuous-time adaptive SIS

model (in short, ASIS model) where a new link-dynamic

strategy is introduced into the SIS model. The paper is

organized as follows. Section II describes the ASIS model

and its generality compared with other adaptive SIS models.

Section III explains the simulation method that we employ

to calculate the metastable-state characteristics of the ASIS

model. Section IV constitutes the main part of this article.

When the initial topology is a complete graph, we first propose

and verify an exact formula for the average metastable-state

fraction y of infected nodes. Next, we discuss and calculate

the epidemic threshold of the ASIS model. Then we show

the impact of the disease dynamics and the link dynamics

on the metastable-state topology by investigating many charac-

teristics of the metastable topology such as the modularity [14],

the connectivity [15], and the degree distribution. We show

a complex bifurcation diagram of the metastable fraction of

infected nodes observed from the ASIS model. Finally, we

conclude the paper in Sec. V.

II. ADAPTIVE SIS MODEL

A. Model description

We consider the interplay between the virus spread and

the topology change in an undirected graph G(N,L) with N

nodes and L links denoted by a symmetric adjacency matrix

A. The viral state of node i at time t is specified by a Bernoulli

random variable Xi(t) ∈ {0,1}: Xi(t) = 1 for an infected node

and Xi(t) = 0 for a susceptible node. At time t , a node i can be

in one of the two possible states: inf ected, with probability

vi(t) = Pr[Xi(t) = 1] or healthy, with probability 1 − vi(t),

but susceptible to the virus. We assume that the curing process

per infected node is a Poisson process with rate δ, and that

the infection process per link connecting an infected node and

a susceptible node is a Poisson process with rate β. Both the

curing and the infection Poisson processes are independent.

Only when a node i is infected can it infect its direct neighbors

that are still susceptible. This is the general description of

the simplest type of the continuous-time susceptible-infected-

susceptible (SIS) epidemic model.

We now describe the link-dynamic process, reflected by

an adjacency matrix A(t) at time t . Each element aij (t) of

A(t) is a Bernoulli random variable aij (t) ∈ {0,1}, which

specifies the existence of the link between nodes i and j :

When aij (t) = 1, there is a link between nodes i and j at time

t with probability Pr[aij (t) = 1], and, when aij (t) = 0, there is

no link with probability 1 − Pr[aij (t) = 1]. Two processes, the

link-breaking [Fig. 1(a)] and the link-creating [Fig. 1(b)], run

independently based on the viral state of the end nodes of the

link. Suppose that node i and node j were initially connected,

i.e., aij (0) = 1. Once one of them, but not both, is infected,

(a) (b)

FIG. 1. (Color online) Link state changing based on the viral

states of a pair of nodes. (a) The link breaking between the susceptible

node (S) and the infected node (I); (b) the link creating between a

pair of susceptible nodes (S).

the link (i,j ) between them can be broken (deactivated). The

link-breaking process is a Poisson process with rate ζ . Given

that the link between nodes i and j was broken (deactivated)

at one time, a link can be recreated (activated) between them

once both node i and node j are susceptible. The link-creating

process is a Poisson process with rate ξ .

B. Model formulation

Taking the Bernoullian nature, E[Xi] = Pr[Xi = 1], into

account, we formulate the change of the viral state of node i

as

d

dt
E[Xi] = E

[

−δXi + (1 − Xi)β

N
∑

j=1

aijXj

]

, (1)

where the right-hand side of (1) is composed of two parts:

While being infected, node i is cured with rate δ, and

while node i is healthy, it can be infected by each of its

infected neighbors with rate β. In the same manner, using the

Bernoullian property E[Xn] = E[X] for any integer n > 1,

we define the change of the link aij (t) as

d

dt
E[aij ] = aij (0)E{−ζaij [Xi(1 − Xj ) + Xj (1 − Xi)]

+ ξ (1 − aij )(1 − Xi)(1 − Xj )}

= aij (0)E[−ζaij (Xi − Xj )2

+ ξ (1 − aij )(1 − Xi)(1 − Xj )], (2)

where the right-hand side of (2) consists of two opposing

processes. (i) While either node i or node j , but not both, is

infected, the link between nodes i and j is broken (deactivated,

removed) with rate ζ in order to protect the susceptible node

from infection as shown in Fig. 1(a). (ii) While both node i

and node j are susceptible, a link is created between them

with rate ξ as shown in Fig. 1(b) given that the link (i,j )

existed in the original topology [i.e., aij (0) = 1]. In the case

when both node i and node j are infected (i.e., Xi = Xj = 1),

the link is preserved, i.e.,
dE[aij ]

dt
= 0. In the following, the

above model, consisting of governing equations (1) and (2), is

named the adaptive SIS model, or ASIS model in short. Before

proceeding, we recast the governing equations (1) and (2) in a
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dimensionless form by defining

t̃ = tδ, ζ̃ =
ζ

δ
, ξ̃ =

ξ

δ
, τ =

β

δ
, ω =

2ζ

ξ
, (3)

where τ is the effective infection rate, ω is the effective link-

breaking rate, and the time t̃ is measured in units of the curing

rate δ. In the following, we drop the tilde (˜) notation and

work with the dimensionless parameters (3). Employing the

dimensionless variables (3), the dimensionless forms of (1)

and (2) are

d

dt
E[Xi] = E

[

−Xi + (1 − Xi)τ

N
∑

j=1

aijXj

]

, (4)

d

dt
E[aij ] = aij (0)E[−ζaij (Xi − Xj )2

+ ξ (1 − aij )(1 − Xi)(1 − Xj )]. (5)

In this paper, we confine ourselves to the complete graph

KN , where aij (0) = 1 for any nodal pair (i,j ). Only for KN ,

an exact analysis (see Theorem 1 below) is possible.

As explained in Sec. III, the steady state of the ASIS model

in a finite-size network is the purely healthy state. Therefore,

the metastable state of the ASIS model is of interest, in

which the system (consisting of the disease dynamics and

link dynamics) remains for a long time before being trapped

into the absorbing steady state.

C. Generality of the ASIS model

By slightly recasting the governing equations (1) and (2),

our proposed ASIS model can be reduced to some other

models. When a new link can be created between any pair

of healthy nodes, Gross et al.’s model [6] elaborated in Sec. I

applies. Denote by p, r , and w the infection probability, the

curing probability, and the rewiring probability, respectively, in

Gross’s model. The rewiring process in Gross’s model actually

consists of two subprocesses: Within a time step, a susceptible

node i (a) first breaks the link connected to its infected

neighbor j with probability w and (b) then immediately creates

a link to another randomly selected susceptible node. The

link-breaking subprocess depends on the viral states of both

nodes and happens with probability w. Once the link-breaking

subprocess occurs, the link-creating subprocess follows that

increases the degree of another susceptible node disconnected

from i by 1 with probability 1/Ni , where Ni is the number of

these susceptible nodes. By employing the term aij (0) = 1 for

any nodal pair (i,j ) and

β = p,δ = r,ζ = w,ξij =
Ri

Ni

+
Rj

Nj

−
RiRj

NiNj

,

Ri = ζ

N
∑

m=1

aim(t)[1 − Xi(t)]Xm(t), (6)

Ni =

N
∑

m=1

[1 − aim(t)][1 − Xi(t)][1 − Xm(t)],

in the governing equation (2), our proposed ASIS model

reduces to one similar to Gross’s model [6], although there

is only one link-dynamic process (i.e., the rewiring process) in

Gross’ model [6], while two separate link dynamics (i.e., the

link-breaking process and the link-creating process) exist in the

ASIS model. The term ξij denotes the link-creating rate which

depends on node i and j . The term Ri denotes the average

number of links connected to node i which are broken within

a time step, while Ni equals the number of the susceptible

nodes disconnected from i. The link-breaking subprocess of

the rewiring process of Gross’s model is equivalent to the

link-breaking process of the ASIS model. The event that a link

is created between a pair of susceptible nodes i and j in a time

step happens only if node i or j , but not both, rewires a link

to the other with probability Ri/Ni or Rj/Nj , respectively.

Hence, by defining ζ and ξ of the ASIS model following the

notations in (6), the ASIS model will approximate Gross’s

model.

For the case that only an initially existing link can be

deactivated or activated, Valdez’s model [10] applies. By

denoting the infection probability by p, the link-deactivation

probability by σ , and the curing probability and the link-

activation probability by 1/tR and 1/tB , respectively, the

transform

β = p, δ =
1

tR
, ζ = σ, ξ =

1

tB
, (7)

reduces the ASIS model to one with link dynamics similar to

Valdez’s model [10], ignoring the different disease dynamics

in ours and in Valdez’s model [10], i.e., the SIS epidemics

versus the SIR epidemics.

III. THE STEADY-STATE INFECTION IN

THE ADAPTIVE ε-SIS MODEL

Van Mieghem et al. [16] showed that the classical SIS model

can be exactly formulated in the form of a continuous-time

Markov chain with 2N states. Later, completely independently,

Simon et al. [17] proposed the same exact SIS equations. Van

Mieghem et al. [16] also argued that the steady state of the

exact SIS model in a finite-size network is the all-healthy

state (i.e., the absorbing state of the SIS Markov chain as

shown in [16]). Hence, Li et al. [18] mentioned (in Secs. I

and III A of [18]) that it is impossible to compare the SIS model

directly with some mean-field approximations such as the

N -intertwined mean-field approximation (NIMFA) proposed

by Van Mieghem et al. [16,19] or the heterogeneous mean-

field (HMF) approximation proposed by Pastor-Satorras and

Vespignani [20], because the steady state of these mean-field

approximations actually corresponds to the metastable state

of the exact SIS model. However, the metastable state is not

defined precisely for finite N . Experimentally, one approach

for determining the metastable state for finite N is to run

many independent simulation instances, compute the average

number of infected nodes over time and look for a plateau. The

average number of infected nodes at an empirically determined

time point of the plateau is defined as the metastable-state

value. This is the approach followed by Chakrabarti et al. [21].

Unfortunately, this approach requires an assessment of the

choice of the time point to calculate the metastable-state value.

The assessment depending on the effective infection rate and

the topology is usually determined empirically, making the

approach inaccurate and less flexible as a simulation method.

An alternative way is to define the metastable state by the
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FIG. 2. (Color online) Comparison between the metastable state

of the ASIS model (solid red curve) and the steady state of the ε-ASIS

model (dashed black straight line). A reasonable instance of a virus

outbreak as well as the corresponding link dynamics are shown in (a)

and (b), respectively.

steady state of the ε-SIS model [22] for a relatively small ε

(e.g., ε < δ
N

). By introducing a nodal self-infection Poisson

process in which each node is infected spontaneously with rate

ε, the absorbing state of the Markov SIS process is eliminated

and thus a nonzero steady state exists for ε > 0. When ε = 0,

the ε-SIS model reduces to the classical SIS model.

Li et al. [18] employed the ε-SIS model as a benchmark

to compare NIMFA [16,19] with HMF [20]. Li et al. [18]

implemented an event-driven time-continuous simulator of the

ε-SIS model (Sec. II A in [18]). Extending the ε-SIS model by

introducing the link-dynamic processes (i.e., the link-breaking

process and the link-creating process as described in Sec. II A),

we name this generalized ε-SIS model incorporating the link

dynamics the adaptive ε-SIS model (or, ε-ASIS model, in

short).

Employing the adaptive ε-SIS model with small positive

ε, we start a simulation instance in a healthy network and

continue to run for a specific warmup period. After the warmup

period, the measurement period starts during which we record

the change in the value of a metric. Based on the recorded

data, we calculate the average steady-state values of many

metrics over the whole measurement period, such as the

average number of infected nodes and the average number

of links. This calculated time-averaged value is defined as the

average steady-state value of a metric. We experimentally

ensure that the steady state does exist for all simulations

and that the initial number of infected nodes in a network

has no influence on the steady state. Hence, to calculate the

average steady-state value of a metric, we only need to run one

simulation instance for a long-enough time period. For any

simulation instance, we have taken both the warmup and the

simulation period to be 104 time units and set the self-infection

rate ε = 10−3.

The steady state of the ε-ASIS model will be close to the

metastable state of the ASIS model. A reasonable instance

of a virus outbreak as well as its corresponding link-dynamic

diagram are shown in Figs. 2(a) and 2(b). For instance, the solid

curve in Fig. 2(a) denotes a single run of the ASIS model in the

metastable state. The dashed line denotes the average steady-

state number of infected nodes of the ε-ASIS model. As shown,

the steady-state number of infected nodes (dashed black line)

of the ε-ASIS model is precisely the line around which the

number of infected nodes in the ASIS model fluctuates. These

examples illustrate that the steady-state of the ε-ASIS model

exists and can be a reasonable approximation to the metastable

state of the ASIS model. In this paper, we use the ε-ASIS model

to calculate the average metastable value of any metric of the

ASIS model.

IV. THE METASTABLE STATE IN

A COMPLETE GRAPH KN

A. The average metastable-state fraction of infected nodes

Denote by Z = 1
N

∑

i Xi the fraction of infected nodes

and by y = E[Z∗] the average metastable-state fraction of the

infected nodes, where Z∗ is the fraction of infected nodes in

the metastable state. In the same manner, the average value of

any other metric in the metastable state can be defined. The

governing equations (1) and (2) lead to an expression (11) for

the average metastable-state fraction y of infected nodes, when

the initial topology is a complete graph KN .

Theorem 1. The average metastable state or maximal

fraction y = E[Z∗] of infected nodes in a graph with N nodes,

produced by (1) and (2) in which aij (0) = 1, satisfies the

quadratic equation

y2 − 2Vy + H = 0, (8)

where

V = 1 −
1

2N
+

ω − 1

2τN
(9)

and

H = 1 −
1

N
+ Var[Z∗] − E

[

1

N2

N
∑

j=1

d∗
j (1 − X∗

j )

]

. (10)
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The solution of (8) is, explicitly,

y =

(

1 −
1

2N
+

ω − 1

2τN

)







1 ±

√

√

√

√1 −
1 − 1

N
+ Var[Z∗] − E

[

1
N2

∑N
j=1 d∗

j

(

1 − X∗
j

)]

(

1 − 1
2N

+ ω−1
2τN

)2







, (11)

where Var[Z∗] and d∗
j denote the variance of the fraction

of infected nodes and the degree of node j , respectively,

when d
dt

E[ 2L
ξ

− (ω−1)N

β
Z] = 0 and the corresponding random

variables are denoted by ∗.

Proof. See Appendix A. !

Although there exist two possible solutions in (11), denoted

by y1 and y2, only one applies, as proved in Appendix C.

If τ → ∞ with finite ω, the positive sign in (11) is correct;

otherwise, the negative sign in (11) applies. When ω → 0 (i.e.,

no link dynamics), (8) reduces to the corresponding equation

for a fixed complete graph [23].

Given that the initial topology is a complete graph KN with

N = 40, we first verify Theorem 1 by simulations for various

effective link-breaking rates ω, given a fixed link-creating

rate ξ . The exact solution (11) is numerically calculated by

substituting the variance Var[Z∗] and the term E[
∑

j d∗
j X∗

j ]

obtained from the simulation results into the right part

of (11). Then this numerically calculated result is compared

with the average metastable-state fraction of infected nodes

experimentally obtained. As observed in Fig. 3(a), the exact

solution (11) fits the simulation results well for various cases.

The term (10) is not larger than 1, which is indeed confirmed

by Fig. 3(b).

Furthermore, Fig. 4(a) and Fig. 4(b) illustrate the behavior

of y and H versus the effective link-breaking rate ω. Theorem

1 is verified again and the term H is indeed less than 1. As the

average metastable-state fraction of infected nodes decreases

in the effective link-breaking rate ω, the adaptation of the

topology in response to the epidemic spread does suppress the

infection.

B. Epidemic threshold

The existence of an epidemic threshold τc for a specific

finite-size network was reported in the classical SIS model

(see, e.g., [16], [24], [25], and [21]). For the effective infection

rate τ > τc, a disease can eventually persist and become

endemic; otherwise, it will vanish quickly (i.e., the metastable

state of the SIS model is the purely healthy state).

Theorem 2. The epidemic threshold in the ASIS epidemic

process on KN equals

τc(ω; ξ ) =
ω − 1

N
(

h(ω; ξ ) − 2 + 1
N

) , (12)

where h(ω; ξ ) = limy↓0
H
y

is a positive, slowly varying func-

tion obeying, for all ω > 0,

1 " h(ω; ξ ) " 2 +
1

N

(

1
∂τc(ω;ξ )

∂ω

∣

∣

ω→∞

− 1

)

and h(1; ξ ) = 2 − 1
N

.

Proof. See Appendix B. !

Theorem 2 implies that the epidemic threshold τc tends

to be a linear function of ω since the function h(ω; ξ ) varies

slowly in ω, especially for large ω.

Experimentally, we compute the epidemic threshold by

setting a baseline yc on the average metastable-state fraction

y(τ ) of infected nodes and by defining τc for which y(τc) = yc

as the epidemic threshold for a specific set of parameters

(δ,ζ,ξ,ε). Employing this method with yc = 1
N

, we determine

the epidemic threshold τc as a function of the effective

link-breaking rate ω. The function h(ω; ξ ) can be calculated

experimentally by h =
H (τc)

yc
.
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FIG. 3. (Color online) (a) Comparison between the formula (11)

numerically calculated and the simulation results on the average

metastable-state fraction y of infected nodes versus the effective

infection rate τ in the network taking complete graph as the initial

topology. The blue markers denote the simulation results, while the

solid red lines are calculated numerically based on (11). (b) H in (10)

corresponding to the cases in (a).
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FIG. 4. (Color online) (a) Comparison between the formula (11)

numerically calculated and the simulation results on the average

metastable-state fraction y of infected nodes versus ω when the initial

topology is a complete graph, i.e., ASIS model on KN . The blue

markers denote the simulation results while the solid red lines are

calculated numerically based on (11). (b) H in (10) corresponding to

the cases in (a).

As shown in Fig. 5(b), the function h(ω; ξ ) is indeed a

slowly varying function of ω. Specifically, when ω is large,

h(ω; ξ ) is almost a constant, as shown in the inset of Fig. 5(b).

The epidemic threshold τc well approximates a linear function

of ω as shown in Fig. 5(a). Both observations are consistent

with Theorem 2.

The linear law of the epidemic threshold as a function of

the link-breaking rate was also reported by Tunc et al. [11] in

a similar model based on a mean-field analysis.

C. Metastable-state topology

1. Impact of the disease dynamics on the metastable-state topology

We aim to investigate the impact of the disease dynamics

(i.e., the infection process and the curing process) on the

metastable-state topology when the initial topology is a

complete graph. Some metastable-state topological charac-

teristics such as the connectivity [15], the average number of
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FIG. 5. (Color online) (a) Epidemic threshold τc versus effective

link-breaking rate ω in complete graph of size N = 40. The inset

shows τc for a large range of ω. Simulations (blue circles) are

computed by the method described in Sec. IV B. (b) h(ω; ξ ) as a

function of ω corresponding to the cases in (a). The inset shows

h(ω; ξ ) for a large range of ω.

components, the size of the biggest component [26], the assor-

tativity, the modularity [14], and the number of links are shown.

The average metastable-state number of links [normalized by

N (N − 1)], demonstrated in Fig. 6(a), drops down at the very

beginning and then approaches asymptotically a constant as τ

increases. The constant plateau goes against the intuition that

the number E[2L∗]/[N (N − 1)] of links should be almost

1 if the effective infection rate τ is extremely high because

almost all nodes are infected immediately so that no link

will be broken. Actually, for a larger range of τ , namely

τ ∈ [0,1500], the inset in Fig. 6(a) demonstrates that the

number E[2L∗]/[N (N − 1)] of links does rise, albeit rather

slowly after the initial dropping. One possible reason for this

observation is described as follows. When τ is not high enough,

it is very likely that the link between an infectious i and its

susceptible neighbor j is broken before i infects j . However,

once the link between them was broken, no link between them

will be created again, because each node is infected with high
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FIG. 6. (Color online) Impact of the effective infection rate τ on the characteristics of the metastable-state topology. (a) The normalized

average metastable-state number E[2L∗]

N(N−1)
of links versus τ . The inset shows E[2L∗]

N(N−1)
for a large range of τ . (b) The metastable-state probability

that a graph is connected versus τ . (c) The normalized average metastable-state size
E[G∗

c ]

N
of the biggest component versus τ . (d) The average

metastable-state number of components of a graph versus τ . (e) The average metastable-state linear degree correlation coefficient (assortativity)

E[ρ∗
D] versus τ . (f) The average metastable-state modularity E[M∗] [14] versus τ .

probability even for a not too high τ and a relatively small ω.

The number of links will decrease slowly but gradually. In con-

trast, the link between i and j tends not to be broken when τ is

extremely high (e.g., τ → ∞) because both nodes are infected

with high probability. Other metrics such as the connectivity

and the size of the biggest component are correlated to the

number of links. Figure 6(b) (the connectivity) illustrates that

when the effective link-breaking rate (e.g., ω = 2ζ/ξ > 1) is

relatively high, the network tends to be disconnected. Also,

as the effective infection rate τ increases from 0 to a not too

high value, the probability of connectivity declines gradually.

Figures 6(d) and Fig. 6(c), respectively, show the number

of the components and the size of the biggest component

of a network in metastable state. The network breaks into

a biggest component of size near to N and a few small-size

components with high probability for the cases with relatively

high ω > 1.

In order to demonstrate the assortativity of the metastable-

state topology, the linear degree correlation coefficient ρD [27]

for an undirected graph is computed as shown in Fig. 6(e).

Given that the effective infection rate τ is fixed and the effective

link-breaking rate ω is not too large, the larger ω is, the larger is

the assortativity of a graph. The introduction of link dynamics

with moderate rates promotes the correlation in a network,

which was also reported by Gross et al. [6]. The modularity

[14] behaves the same as the assortativity, as shown in

Fig. 6(f). The observation that a high modularity leads to a high

assortativity indicates that the modularity is correlated to the

assortativity [28].

The high modularity also indicates an apparent division

on the topology. Thus, we claim that after introducing a

link-breaking process, the structure of a network is divided

into two loosely interconnected components consisting of

susceptible nodes and infected nodes, called the S component

and the I component, respectively. The link-creating process

enhances the intraconnectivity in the S component, while the

link-breaking process degrades the interconnectivity between

the S component and the I component. On the other hand, both

the infection process and the curing process ruin the division

between the S component and the I component. Figure 6(e)

shows that as the disease dynamics and the link dynamics

compete, the assortativity reaches its maximum followed by a

drop down as the effective infection rate increases. So does the

modularity shown in Fig. 6(f). The division between S and I

components also appears in other adaptive models such as the

one proposed by Gross et al. [6].

2. Impact of the link dynamics on the metastable-state topology

In this section, we focus on the impact of the link dynamics

(including the link-breaking process and the link-creating

process) on the metastable-state infection and topology. In

other words, for a fixed effective infection rate τ , we investigate

some metrics in metastable state as a function of the effective

link-breaking rate ω. For a fixed τ , the average metastable-state

fraction y of infected nodes decreases as ω increases, which is

demonstrated in Fig. 4(a). This also implies that the epidemic

threshold τc grows up as ω increases. Since the epidemic
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FIG. 7. (Color online) Impact of the effective link-breaking rate ω on the characteristics of the metastable-state topology such as (a) the nor-

malized average metastable-state number E[2L∗]

N(N−1)
of links, (b) the probability that a graph is connected in the metastable state, (c) the normalized

average metastable-state size
E[G∗

c ]

N
of the biggest component, (d) the average number of components of a graph in the metastable state, (e) the

average metastable-state linear degree correlation coefficient (assortativity) E[ρ∗
D], and (f) the average metastable-state modularity E[M∗] [14].

threshold τc > 1/(N − 1) [16] for a complete graph of size

N is the smallest among all graphs of size N and that a

network will become a noncomplete graph after introducing

link-dynamic processes, the epidemic threshold τc will always

be larger than 1/(N − 1) given that ω # 0.

The network becomes more sparse as the effective link-

breaking rate ω increases, as shown in Fig. 7(a). However, for

the case (τ = 0.2) there is a drop followed by an uncommon

rise in the number of the links. This observation is explained

in Appendix D based on the analysis of the existence state

of each link. For the connectivity, Fig. 7(b) shows that a

network will be disconnected with high probability if ω > 1

under the condition (δ = 1,ξ = 1). Figures 7(c) and 7(d)

show that the size of the biggest component behaves the

same as the connectivity and that the higher τ is, the

more disconnected components the network will break into.

Moreover, the assortativity E[ρ∗
D] of the network will increase

and then decline as ω increases, as shown in Fig. 7(e). The

introduction of the link dynamics will increase the assortativity

of a network, which was also reported by Gross et al. [6]. As

shown in Fig. 7(f), the modularity behaves in a way similar to

that of the assortativity.

3. Structure of the metastable-state topology

In Secs. IV C1 and IV C2, the metastable-state topological

properties are demonstrated for some special combinations

of parameters. This section provides an overview on the

metastable-state topology in terms of the modularity, connec-

tivity, and degree distribution.
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FIG. 8. (Color online) Modularity contours in the τ − ω plane for three different values of link-creating rate ξ , namely, (a) ξ = 0.1,

(b) ξ = 1, and (c) ξ = 10.
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FIG. 9. (Color online) Connectivity contours in the τ − ω plane for three different values of link-creating rate ξ , namely, (a) ξ = 0.1, (b)

ξ = 1, and (c) ξ = 10.

Figures 8(b) and Fig. 9(b) demonstrate, respectively, the

modularity diagram and the connectivity diagram in a τ,ω

plane with δ = 1,ξ = 1. The metastable-state topology of

the ASIS model shows high modularity within a “half-open

elliptical-like” domain where τ is relatively high, ω is not too

high, and τ ≪ ω. This can be explained as follows. According

to its definition [14], the high modularity means (i) that the

infected nodes and the susceptible nodes are well separated

and (ii) that the I component is comparable in size to the S

component. For the domains with low τ , the number of infected

nodes is extremely low. Because the network is partitioned

based on the viral states of nodes in order to compute its

modularity (explained in [14]), a low fraction of infected

nodes (i.e., the size of the I component is small) will induce

a low modularity. For the domains with extremely high ω,

the infection will be strongly suppressed, which also leads

to a low modularity. Moreover, the connectivity shown in

Fig. 9(b) behaves in contrast to the modularity in the τ,ω

plane. The high connectivity is achieved at the expense of a

low modularity as the network is compact and a noticeable

separation of the susceptible and the infectious communities

(components) does not emerge. Naturally, for extremely low

values of τ the network is likely to be connected with high

probability, independent on the link-breaking rate ω. For a

fixed relatively high value of τ , high connectivity could be

achieved either for (a) extremely high ω, which corresponds

to the high adaptability of the network that suppresses the

virus spread and prevents the high connectivity of the S

component being ruined, or (b) extremely low ω, which

corresponds to the weak link dynamics that is not fast enough to

separate the infected nodes from the susceptible nodes. In what

follows, we take as examples the regions of high ω [i.e., the

above case (a)] in Figs. 9(a)–9(c) to explain some interesting

observations. High connectivity can be achieved for high ω

as demonstrated. The higher the link-creating rate ξ is, the

higher the link-breaking rate ζ has to be to keep the topology

connected, although the ratio ω of ζ to ξ decreases. To illustrate

this, let us consider the curves for the connectivity equal to 0.7

in Figs. 9(a)–9(c). Fixed τ = 1 corresponds to ω ≈ 40,12,2,

as shown. Meanwhile, the corresponding ζ = 2,6,10 because

ω = 2ζ/ξ , which increases as ξ increases from 0.1 to 10.

The higher ξ is, the denser the S component consisting of all

susceptible nodes becomes. For a given τ and a high ξ , if ζ

is not high enough to separate the I component from the S

component and once one of the susceptible node is infected,

many other nodes in the S component will be infected soon.

Consequently, the number of S-I links increases and thus

more link-breaking events tend to happen, which ruins the

connectivity. Thus, ζ should become higher as ξ increases in

order to keep a specific connectivity. The increase in ζ is not

linearly proportional to the increase in ξ in order to keep a

specific connectivity and thus ω = 2ζ/ξ decreases. Moreover,

the “concentric half-open elliptical-like” connectivity regions

always exist, albeit slightly different from each other. Hence,

it is anticipated that the half-open concentric elliptical-like

contour line is a universal diagram of the connectivity as well

as the modularity in a τ,ω plane for any link-creating rate ξ .

Besides the modularity and the connectivity, the metastable-

state degree distribution is another important characteristic to

investigate. Unfortunately, it is hard to provide an overview

of the degree distribution due to its complexity. Instead, we

just investigate some extreme cases, namely, τ ≪ {ζ,ξ} and

τ ≫ {ζ,ξ}, while ensuring τ > τc, as shown in Fig. 10. For

other cases, the distributions are hard to depict. Figure 10(a)

demonstrates the degree distributions for susceptible and

infected nodes for these extreme cases. As shown in Fig. 10(a),

the degree distribution for susceptible nodes is a binomial-like

one with a peak near N − 1 for the case with τ ≪ {ζ,ξ}, while

it is a binomial-like one with a medium mean value for τ ≫
{ζ,ξ}. In other words, the impact of link dynamics, if much

stronger than the disease dynamics (i.e., τ ≪ {ζ,ξ}), may

induce a high-mean-value degree distribution for susceptible

nodes. The degree distribution for infected nodes centers at

a low value for the case with high τ or at a high value for

the case with low τ . Based on the above observations, the

degree distribution for all nodes is depicted as follows [also

shown in Fig. 10(b)]. For τ ≪ {ζ,ξ}, the degree distribution

centers nearly N − 1 with low variance, owning one peak

[e.g., the case with (τ = 0.007,ζ = ξ = 0.07)] or multiple

peaks [e.g., the case with (τ = 0.08,ζ = ξ = 10)] but only

one is noticeable. In contrast, for τ ≫ {ζ,ξ}, the degree

distribution is a binomial-like distribution with low mean

value for high τ [e.g., the case with (τ = 0.08,ζ = ξ =

0.001)] or high mean value for low τ [e.g., the case with

(τ = 0.0065,ζ = ξ = 0.0005)]. In the following, we explain

how the binomial-like degree distribution could emerge for

cases with τ ≫ {ζ,ξ}. Because the S component (consisting

of all susceptible nodes) is well mixed with the I component
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FIG. 10. (Color online) The metastable-state degree distributions

for (a) susceptible and infected nodes, and (b) for all nodes.

(consisting of all infected nodes) for the case with τ ≫ {ζ,ξ},

the link-breaking event happens between any nodal pair with

almost the same probability, which could be considered as

a random link-removing. Randomly removing links from a

regular graph (e.g., a complete graph) will induce a topology

with the binomial degree distribution

Pr[D = k] =

(

N − 1

k

)

pk
L(1 − pL)(N−1−k), (13)

where N and pL denote the size of the network and the link

density after deletion. Hence, if substituting the normalized

metastable-state number of links to the right part of (13), we

will obtain a metastable-state degree distribution similar to the

distribution experimentally obtained.

D. Determination of the bistability in the ASIS model

In this section, we concentrate on the distribution Pr[Z∗] of

the metastable-state fraction Z∗ of infected nodes rather than

the average metastable-state fraction y = E[Z∗] of infected

nodes. Figure 11 demonstrates the distribution of Z∗ for cases

with various effective infection rate τ and fixed link-dynamic

rates ζ and ξ . For low (τ = 0.15), the metastable state is
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FIG. 11. (Color online) The distribution of the metastable-state

fraction Z∗ of infected nodes.

close to the healthy state, while the metastable state is the

endemic state for the case with high (τ = 3). However, the

metastable-state fraction Z∗ of infected nodes is around either

0 or a nonzero positive value for some other case (e.g., the case

τ = 1 shown in Fig. 11). For the case τ = 1, the probability

that the metastable state is the healthy state (i.e., Pr[Z∗ = 0])

is comparable in value to the probability that the metastable

state is the endemic state (i.e., Pr[Z∗ = c]), where c is a

positive value depending on τ . This indicates that maybe the

metastable state is stable in either of two dramatically different

infection states, which is likely the bistability phenomenon.

The bistability phenomenon in adaptive networks in the

presence of disease dynamics was first reported by Gross

et al. [6]. The bistable state is a metastable state where there

is no infection in the ASIS model or the infection persists in

the ASIS model on average.

If the probability Pr[Z∗ = 0] is comparable in value with

the probability Pr[Z∗ = c] for a specific τ , where the factor

c depends on τ , we plot these two values simultaneously
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Bifurcation Diagram for
Complete Graph N=40,
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FIG. 12. (Color online) The bifurcation diagram of the

metastable-state fraction of infected nodes. The metastable-state

infection of the ASIS model is in the healthy state (for 0 " τ " 0.3),

the bistable infection state (for 0.3 " τ " 1.6), and the endemic state

(for τ # 1.6), in sequence, as the effective infection rate τ increases.
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in a τ,Z∗ plane and think that the metastable state of the

ASIS model is possibly stable in either of the two states.

Otherwise, if one probability is extremely higher than the other

in value, or there exists only one peak in Pr[Z∗] versus τ , we

consider that the metastable state is stable just in one infection

state. Following the above-mentioned manner, we plot Fig. 12

showing a bifurcationlike behavior in the ASIS model. It seems

that the metastable state changes from the healthy state, to

the bistable state, and to the endemic state as τ increases.

Because of the similarity between the ASIS model and Gross’s

model [6] discussed previously in Sec. II C, we argue that the

bistability phenomenon may also exist in the ASIS model when

concentrating on Z∗ rather than its average value.

V. CONCLUSION

In order to characterize the coevolution and interplay

between the dynamics on a network (i.e., disease dynamics)

and the dynamics of the network (i.e., dynamics of the

link state), we proposed an adaptive network model named

ASIS, where a link-breaking Poisson process with rate ζ and

a link-creating Poisson process with rate ξ are introduced

in the classical SIS model. For the case that the initial

topology of an adaptive network is a complete graph, we de-

duced the average metastable-state fraction of infected nodes

(see Theorem 1). Furthermore, we derived a linear law of

the epidemic threshold τc versus the effective link-breaking

rate ω = 2ζ/ξ (see Theorem 2 ). The phase transition that a

disease can persist in the presence of link dynamics for the

effective infection rate τ > τc and the linear function τc(ω)

are also experimentally verified.

Simulations reveal how the disease dynamics and the

link dynamics promote an adaptive network evolving into a

topology with specific characteristics in terms of the number

of links, the connectivity, the size of the biggest component,

the modularity, and the assortativity. Nodes in the network are

divided into two loosely interconnected components according

to their viral states, namely the I (infectious) component and

the S (susceptible) component, based on which the modularity

[14] is calculated. When the disease dynamics dominate (i.e.,

the infection process is faster than the link-breaking process

and the link-creating process in rate), the network evolves

to one with a binomial-like degree distribution, no apparent

community structure, and disassortative mixing. When the link

dynamics are much faster than the disease dynamics in rate,

the degree distribution is composed of multiple peaks and the

topology becomes a little, but clearly, modular and assortative.

For the other cases than those described above, it is hard

to sketch the topology. Nevertheless, a universal contour-line

behavior is observed from the modularity diagram in the τ,ω

plane. Either a very low effective infection rate τ or a very

high effective link-breaking rate ω will lead to the region of

low modularity and disassortative mixing. The connectivity is

opposite to the modularity, meaning that a low connectivity

leads to a high modularity in the ASIS model.

Finally, rather than the average metastable-state fraction

of infected nodes, the investigation on the distribution of the

infection fraction reveals that between the healthy state and

the endemic state there may exist a bistable state where the

metastable-state infection fraction is stable either around 0

(i.e., the healthy state) or around a positive nonzero value (i.e.,

the endemic state).
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APPENDIX A: PROOF OF THEOREM 1

We transform the link dynamic Eq. (2) into

d

dt
E[aij ] = ξ (1 − E[aij ]) − ξE[(Xi + Xj )]

− (ζ − ξ )E[aij (Xi + Xj )] + ξE[XiXj ]

+ (2ζ − ξ )E[aijXiXj ].

After summing these equations over all j *= i and using the

degree of node i, di =
∑N

j=1 aij and aii = 0, we obtain

d

dt
E[di]

= ξ (N − 1 − E[di]) − ξE



(N − 1)Xi +

N
∑

j=1;j *=i

Xj





− (ζ − ξ )E



diXi +

N
∑

j=1

aijXj





+ ξE



Xi

N
∑

j=1;j *=i

Xj



 + (2ζ − ξ )E





N
∑

j=1

aijXiXj



 .

Using

(N − 1)Xi +

N
∑

j=1;j *=i

Xj = (N − 2)Xi +

N
∑

j=1

Xj

and

Xi

N
∑

j=1;j *=i

Xj = Xi





N
∑

j=1

Xj − Xi



 = Xi

N
∑

j=1

Xj − Xi,

we find

d

dt
E[di] = ξ (N − 1 − E[di]) − ξE



(N − 1)Xi +

N
∑

j=1

Xj





− (ζ − ξ )E



diXi +

N
∑

j=1

aijXj





+ ξE



Xi

N
∑

j=1

Xj



+(2ζ − ξ )E





N
∑

j=1

aijXiXj



 .
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Substituting

E





N
∑

j=1

aijXiXj



 = −
1

β

d

dt
E[Xi] −

1

τ
E [Xi]

+E





N
∑

j=1

aijXj





from (1) into the above relation to remove the highest order

correlation term yields

d

dt
E[di]

= ξ (N − 1) − ξE[di] − ξE

[(

N − 1 +
(2ζ − ξ )

τξ

)

Xi

]

− ξE





N
∑

j=1

Xj



 − (ζ − ξ )E[diXi] + ξE



Xi

N
∑

j=1

Xj





−
(2ζ − ξ )

β

d

dt
E[Xi] + ζE





N
∑

j=1

aijXj



 .

Rewritten, using ω =
2ζ

ξ
,

d

dt
E

[

di

ξ
+

(ω − 1)

β
Xi

]

= N−1−E

{

di+

[

N − 1 +
ω − 1

τ
+

(

ω

2
− 1

)

di

]

Xi

}

−E





N
∑

j=1

Xj



+E



Xi

N
∑

j=1

Xj



+
ω

2
E





N
∑

j=1

aijXj



 .

Now we sum over all i, using
∑N

i=1 di = 2L; then

d

dt
E

[

2L

ξ
+

(ω − 1)

β

N
∑

i=1

Xi

]

= N (N − 1) − E

[

2L +

(

N − 1 +
ω − 1

τ

) N
∑

i=1

Xi

+

(

ω

2
− 1

) N
∑

i=1

diXi

]

− E



N

N
∑

j=1

Xj





+E





(

N
∑

i=1

Xi

)2


 +
ω

2
E





N
∑

j=1

djXj



 .

Simplified, with t̃ = δt and the fraction of infected nodes Z =
1
N

∑N
j=1 Xj ,

d

dt̃
E

[

2δL

ξ
+

(ω − 1)N

τ
Z

]

= N (N − 1) − N

(

2N − 1 +
ω − 1

τ

)

E[Z]

+N2E[Z2] + E

[

N
∑

i=1

diXi

]

− E[2L].

When the derivative at the left-hand side vanishes (in the

steady-state or at an extreme value, which we denote by a

superscript ∗), we have

N (N − 1) − N

(

2N − 1 +
ω − 1

τ

)

E[Z∗] + N2E[Z∗2]

− E

[

N
∑

i=1

d∗
i

(

1 − X∗
i

)

]

= 0.

Using E[Z2] = Var[Z] + (E[Z])2 and y = E[Z∗], we ar-

rive at (8). Solving the quadratic equation (8) finally

yields (11). !

APPENDIX B: PROOF OF THEOREM 2

From the quadratic equation (8), we find for y > 0 that

V =
1

2

(

y +
H

y

)

.

Using the definition (9) of V , we can extract τ as

τ =
ω − 1

2N
[

1
2

(

y + H
y

)

− 1 + 1
2N

] .

The epidemic threshold is defined as the largest non-negative

value of τ when y ↓ 0, such that

τc =
ω − 1

N
(

limy↓0
H
y

− 2 + 1
N

) ,

where H
y

= q(τ,ω; ξ ) is a function of both τ and ω (and ξ )

[29], but limy↓0
H
y

= q(τc,ω; ξ ) =h(ω; ξ ). Thus, we obtain the

analytic expression (12) for epidemic threshold. The remainder

of the proof consists of demonstrating that h(ω; ξ ) is a positive,

slowly varying function.

The two roots of (8) satisfy y1 + y2 = 2V and y1y2 = H .

Since H # 0, the roots are either both negative or both positive.

Since negative roots have no physical meaning, we must

require that V # 0, which implies, with the definition (9) that

1 − ω

2N
(

1 − 1
2N

) " τ.

This condition for the effective infection rate τ , which is only

confining for ω < 1, can be sharpened. The roots y1 and y2

must be real so that the discriminant of (8) is non-negative,

H " V 2 or (
√

H − V )(
√

H + V ) " 0. Requiring positive

roots so that 0 "
√

H " V , leads, with the definition (9) of

V , to

ω − 1

2N
(√

H + 1
2N

− 1
) # τ.

Since
√

H + 1
2N

− 1 < 0, we arrive at the improved lower

bound

1 − ω

2N
(

1 − 1
2N

−
√

H
) = τ ∗

" τ. (B1)

If ω # 1 (more link breaking than link creation), then there is

no confinement for τ .

Since (B1) indicates, for ω < 1, that τ ∗ " τc, there must

hold for ω < 1 that 2
√

H " h(ω; ξ ) < 2 − 1
N

. In particular,
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h(0; ξ ) # 1 because τc(0; ξ ) # 1
N−1

, the epidemic threshold in

SIS epidemics in KN without link dynamics. More precisely

[23], with τc(0; ξ ) = 1
N

[1 + c√
N

+ O(N−1)], we find

h (0; ξ ) = 1 +
c

√
N

+ O
(

N−1
)

.

A continuity argument requires for ω → 1 that τc > 0 so

that limω→1 h(ω; ξ ) = 2 − 1
N

and τc(1; ξ ) = 1

N
∂h(ω;ξ )

∂ω
|ω=1

. For

ω > 1 to have an epidemic threshold τc(ω; ξ ) > 0, it must

be that h(ω; ξ ) > 2 − 1
N

. For an extremely high effective

link-breaking rate ω, an infected node is immediately isolated

from the healthy nodes almost surely and cures in isolation so

that the epidemic threshold τc(ω; ξ ) is increasing for all ω > 1

and that limω→∞ τc(ω; ξ ) = ∞. It is reasonable to assume

that h(ω; ξ ) is not decreasing in ω for any ω # 0, in which

case we deduce from (12) that limω→∞
∂h(ω;ξ )

∂ω
= 0 and that

h(ω; ξ ) " 2 + 1
N

( 1
∂τc (ω;ξ )

∂ω
|ω→∞

− 1) for all ω > 1. !

APPENDIX C: SIGN BEFORE THE SQUARE ROOT IN (11)

The roots of the quadratic equation (8) satisfy y1y2 = H

and 0 " y1y2 " 2 − 1
N

. If H # 1, then not both can be smaller

than 1. Since V # 1 in this case (due to H " V 2), (11) shows

that the physically relevant root (0 " y1 " 1) is obtained with

the minus sign. When H " 1, both y1 and y2 can lie in the

[0,1] interval and the hyperbola y1y2 = H shows that

y1 "
√

H " y2.

If H " 1 " V , implying that ω # 1 + τ , then again the

negative sign in (11) applies.

If H " V 2 " V " 1, implying that ω " 1 + τ , then the

situation becomes more complex and both signs in (11) seem

to be possible. In the limit case where H ≪ V , (11) shows

that y2 ≃ 2V so that again the negative sign applies if V > 1
2

and H ≪ V . Finally, we show that a positive sign can occur. If

τ → ∞ (and ω finite), in which case X∗
j → 1 and Var[Z∗] =

0, then (8) reduces to

y2 −
(

2 −
1

N

)

y + 1 −
1

N
= 0,

from which

y =

(

1 −
1

2N

)

±

√

(

1 −
1

2N

)2

−
(

1 −
1

N

)

=

(

1 −
1

2N

)

±
1

2N
.

Since y = 1, the plus sign is required.

APPENDIX D: THE METASTABLE LINK PROBABILITY pi j

In the metastable state (where
dE[aij (t)]

dt
= 0), we deduce

from (2) that

ζE[aij (Xi − Xj )2] = ξE[(1 − aij )(1 − Xi)(1 − Xj )]. (D1)

By the Cauchy-Schwarz inequality, we have

E[aij (Xi − Xj )2] "

√

E
[

a2
ij

]

E[(Xi − Xj )4]

=

√

E[aij ]E[(Xi − Xj )2].

Using the metastable link probability pij = E[aij ] = Pr[aij =

1], the following inequality arises:

ξ 2{E[(1 − aij )(1 − Xi)(1 − Xj )]}2
" pijζ

2E[(Xi − Xj )2].

(D2)

Similarly for the other term,

E[(1 − aij )(1 − Xi)(1 − Xj )]

"

√

E[(1 − aij )2]E[(1 − Xi)2(1 − Xj )2]

=
√

E[(1 − aij )]E[(1 − Xi)(1 − Xj )],

we find the inequality

ζ 2{E[aij (Xi − Xj )2]}2
" (1 − pij )ξ 2E[(1 − Xi)(1 − Xj )],

(D3)

which, after reworking, leads to

ξ 2E[(1 − Xi)(1 − Xj )] − ζ 2{E[aij (Xi − Xj )2]}2

# pijξ
2E[(1 − Xi)(1 − Xj )].

Combining both bounds yields, with ω =
2ζ

ξ
and (D1),

{E[aij (Xi − Xj )2]}2

E[(Xi − Xj )2]
" pij " 1 −

ω2

4

{E[aij (Xi − Xj )2]}2

E[(1 − Xi)(1 − Xj )]
.

Approximating " by ≈ in the bounds (D2) and (D3) leads,

after introducing into the metastable link condition (D1), to

ζ 2pijE[(Xi − Xj )2] ≈ ξ 2(1 − pij )E[(1 − Xi)(1 − Xj )].

We estimate that the metastable link probability pij =

E[aij ] = Pr[aij = 1] is about

pij ≈
ξ 2E[(1 − Xi)(1 − Xj )]

ζ 2E[(Xi − Xj )2] + ξ 2E[(1 − Xi)(1 − Xj )]

=
1

1 + ω2 E[(Xi−Xj )2]

4E[(1−Xi )(1−Xj )]

. (D4)

The derivation for the link density (D4) is physically mean-

ingful, despite the approximations. Equation (D4) qualitatively

corresponds with the simulations of the normalized average

metastable-state number E[2L∗]/[N (N − 1)] of links (i.e.,

the link density) shown in Fig. 7(a). In the following, we take

as an example the case τ = 0.2 (the blue circles) in Fig. 7(a).

For ω close to zero (the “weakly adaptive” region), the

metastable-state topology is almost the initial topology KN

and we have a high link density (close to 1). Further, for

ω ∈ [0,1.5], we have a quadratic decrease in ω. Then the

link density pij reaches its minimum near ω = 1.5, as the

term
E[(Xi−Xj )2]

4E[(1−Xi )(1−Xj )]
in (D4) decreases in the same order of

magnitude as ω2. Finally, for ω ∈ [1.5,∞], the link dynamics

strongly suppresses the infection on the network, Xi ≈ Xj ≈ 0,
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so that the term
E[(Xi−Xj )2]

4E[(1−Xi )(1−Xj )]
→ 0 and decreases faster than

ω increases; hence, the influence of ω vanishes and the link

density is again 1.

For a fixed τ , the connectivity behaves in a similar way

as the link density pij does. Figure 9(b) shows that even

the regions with dramatically different effective link-breaking

rates, e.g., the “weakly adaptive” region with very low ω and

the “strongly adaptive” region with very high ω, can have the

same connectivity. As ω increases, the connectivity decreases,

reaches its minimum, and increases to 1.
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