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Recent work has shown that different theoretical approaches to the dynamics of the susceptible-infected-
susceptible (SIS) model for epidemics lead to qualitatively different estimates for the position of the epidemic
threshold in networks. Here we present large-scale numerical simulations of the SIS dynamics on various types of
networks, allowing the precise determination of the effective threshold for systems of finite size N . We compare
quantitatively the numerical thresholds with theoretical predictions of the heterogeneous mean-field theory and
of the quenched mean-field theory. We show that the latter is in general more accurate, scaling with N with the
correct exponent, but often failing to capture the correct prefactor.
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I. INTRODUCTION

Models for disease propagation are a paradigmatic example
of processes for which the interplay of a simple dynamics and
a topologically complex interaction pattern [1,2] gives rise to
nontrivial phenomena [3–6]. In this context, the susceptible-
infected-susceptible (SIS) model [7] plays a paramount role,
as the simplest model undergoing an epidemic phase transition
between an absorbing [8], healthy phase, where infection
rapidly disappears, and an active phase, with a stationary
endemic state characterized by a finite fraction of infected
individuals. In the SIS model, nodes can be either susceptible
or infected. An infected node spreads the disease to each one
of its susceptible contacts at rate λ, while it heals at a rate μ,
usually taken to be 1. A critical value λc of the spreading rate
separates the absorbing phase (λ � λc) from the endemic one
(λ > λc).

Traditional mathematical epidemiology has analyzed the
behavior of the SIS model mainly within a mean-field (homo-
geneous mixing) approximation [7]. In this case, the epidemic
transition occurs for a finite value λc of the control parameter,
inversely proportional to the average connectivity 〈k〉 of the
interaction pattern. This view was completely revolutionized
after the study of SIS on networks with large variations of
nodes’ connectivities. The first mathematical approaches to
SIS in networks [9,10] were based on the heterogeneous
mean-field (HMF) approach [4], an extension of standard
mean-field theory taking explicitly into account the large
fluctuations of the degree k (number of connections) of single
nodes, and that is based on replacing the actual topological
structure of the network, given by its adjacency matrix Aij ,1 by
an average Āki ,kj

, expressing the probability that two vertices
of degree ki and kj are connected in the original network (the
so-called annealed network approximation [4]).

1A matrix taking value 1 if nodes i and j are connected and zero
otherwise.

From here, an expression for the epidemic threshold is
derived for uncorrelated networks2 [11]

λHMF
c = 〈k〉

〈k2〉 , (1)

where 〈kn〉 = ∑
k knP (k) is the nth moment of the network’s

degree distribution P (k) [1]. Equation (1) predicts the epi-
demic threshold to vanish for networks with diverging second
moment (“scale-free”) and to be finite otherwise. This result
has huge implications, since many real networks have a
power-law degree distribution P (k) ∼ k−γ with γ < 3, so that
〈k2〉 grows unboundedly with the system size [1,2,5].

For almost a decade, HMF results for the SIS model
were considered essentially correct in the case of random
networks within the statistical physics community,3 although
no systematic detailed investigation of their accuracy was
performed [14]. In other communities, however, different
theoretical approaches have been applied, yielding opposite
results. Chatterjee and Durrett [15,16] have rigorously proven
that, for strictly infinite system size, the epidemic threshold
is exactly 0 for any exponent γ of the degree distribution.
Although of fundamental importance, this result does not
provide a simple understanding of the physical origin of the
threshold vanishing. Within the computer science community,
another approximate approach, which we term quenched
mean-field (QMF) theory, has been put forward by Wang
et al. [17,18]. The basic idea is to write down the evolution
equation for the probability ρi that a certain node i is infected.
Taking into account the actual connections in the network,
as given by the adjacency matrix, this approach predicts the
existence of a threshold given, for any graph, by the inverse of

2Networks such that the probability that an edge arrives at a node
of degree k is proportional to kP (k) [2].

3Its validity in random regular graphs has been, however, contested
by means of a HMF pair approximation theory [12,13].
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the largest eigenvalue of the adjacency matrix, namely

λQMF
c = 1

�N

. (2)

This result has been obtained later also by Gomez et al. [19]
and, in a more refined way, by Van Mieghem et al. [20].

Equation (2) can be complemented with the expression for
�N obtained by Chung et al. [21], to obtain an explicit estimate
of the epidemic threshold [22]:

λCL
c =

{
c1/

√
kmax

√
kmax >

〈k2〉
〈k〉 ln2(N )

c2/
〈k2〉
〈k〉

〈k2〉
〈k〉 >

√
kmax ln(N )

, (3)

where kmax is the largest degree in the network and c1 and
c2 are numerical constants. This formula agrees with the
result of Ref. [15] since the threshold vanishes for large N

as soon as kmax diverges with N , independently of γ [2].
The threshold Eq. (3) scales as the HMF result only for
γ < 5/2. The validity of the predictions of Eq. (3) has been
qualitatively verified for scale-free and scale-rich networks in
Ref. [22]. The physical origin of the different scaling for γ

larger or smaller than 5/2 has been clarified in Ref. [23].
However, a detailed investigation of the accuracy of the
different theoretical approaches for generic graphs is still
lacking.

It is important to stress that Eq. (2) is an improvement
over HMF, but it is not exact. While in HMF theory the
actual network structure is replaced by an annealed one [24],
QMF theory fully preserves the detailed quenched structure
of the network as described by the adjacency matrix. In fact,
Eq. (1) can be derived from Eq. (2) by inserting the largest
eigenvalue of the annealed network.4 In this sense, the HMF
approach is equivalent to QMF theory plus an additional,
annealed network, approximation. Yet both approaches rely on
the mean-field (single-particle) assumption that the probability
that nearest neighbor nodes are active can be factorized as
the product of the single-node probabilities. They thus neglect
possibly important dynamical correlations between the state of
adjacent nodes. For this reason, while it is appropriate to say
that QMF approach improves over HMF, there is no guarantee
about the exactness of Eq. (2), whose accuracy needs to be
checked on a case-by-case basis.

In this paper, we tackle this task by performing large-scale
numerical simulations of the SIS model on various types of

4In annealed networks, the adjacency matrix takes a probabilistic
interpretation, being replaced by the probability that two vertices i

and j are connected. In degree uncorrelated networks, this annealed
network adjacency matrix takes the form [4]

Āki ,kj
= kikj

〈k〉N . (4)

From this expression we can easily see that vi = ki is an eigenvector
of Ā with eigenvalue 〈k2〉/〈k〉. We can also see that Tr(Ā) = 〈k2〉/〈k〉.
Since Ā is a positive semidefinite matrix, all its eigenvalues are
nonnegative, and since the trace is equal to the sum of the eigenvalues,
it follows that the largest eigenvalue of the adjacency matrix in
annealed networks is equal to 〈k2〉/〈k〉, all the rest of the eigenvalues
being equal to zero.

graphs, using the quasistationary method to study the phase-
transition in finite systems [25] and determining the effective
size-dependent threshold by analyzing the peak of the suscepti-
bility [26]. The accuracy of the method is checked by applying
it on heterogeneous annealed networks [24,27,28], in which
HMF is exact [24,29]. We then consider an example of homo-
geneous network, the random regular graph, and an instance of
strongly heterogeneous network, the star network. In the first
case, we observe that both HMF and QMF predict finite thresh-
olds, close to the numerical one, but not equal to it. In the sec-
ond case, QMF correctly predicts the scaling of the vanishing
threshold with network size, but the prefactor is not the right
one. Finally, we consider the key case of power-law degree
distributed networks. For γ < 5/2 both theories turn out to
give an asymptotically exact value for the threshold. For 5/2 <

γ < 3 we observe a vanishing threshold whose scaling with
N is correctly predicted by QMF, although with an incorrect
prefactor. For γ > 3 we numerically recover the presence of
two competing activation mechanisms discussed in Ref. [23]:
QMF prediction follows approximately the transition due to
the activation of the largest hub in the network, which vanishes
and dominates in the large size limit. The HMF threshold
remains finite and is close to the transition point due to the most
densely connected core of the network (maximum k core).

Our numerical results confirm that QMF is indeed an
improvement over HMF, providing a better estimate of the
threshold and capturing the vanishing threshold for power-law
distributed networks with any γ , a key fact missed by the
HMF approach. However, it is only the scaling of the threshold
with network size that is correctly given by QMF. Improved
analytical strategies, beyond quenched mean-field, are thus
needed in order to obtain more accurate threshold predictions
in cases of practical importance. After submission of this paper,
we became aware of a publication [30] in which a similar
numerical comparison is performed on much smaller network
sizes than those considered here.

II. NUMERICAL METHODS

We consider here the SIS model for epidemics in con-
tinuous time. The numerical algorithm is implemented as
follows: At each time step, we compute the number of
infected nodes, Ni , and links emanating from them, Nn.
With probability Ni/(Ni + λNn), one infected node, chosen
at random, becomes healthy. With complementary probability
λNn/(Ni + λNn), one of the links is selected uniformly at
random and the infection is transmitted through it from the
infected node corresponding to one of the ends of the edge,
toward the (possibly susceptible) node at the other end. The
numbers of infected nodes and related links are updated
accordingly, time is incremented by �t = 1/(Ni + λNn), and
the whole process is iterated.

A. The quasistationary state method

The standard numerical procedure to investigate the prop-
erties of absorbing phase transitions is based on the deter-
mination of the average of the order parameter (in this case
the density of infected nodes), restricted only to surviving
runs [8], i.e., runs which have not reached the absorbing state
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up to a given time t . Such a technique is quite wasteful, because
surviving configurations are very rare at long times close to the
threshold, and an exceedingly large number of realizations of
the process are needed in order to get substantial statistics.
An alternative technique is the quasistationary state (QS)
method [25,29], based on the idea of constraining the system
in an active state. This procedure is implemented by replacing
the absorbing state, every time the system tries to visit it, with
an active configuration randomly taken from the history of
the simulation. For this task, a list of M active configurations,
corresponding to states previously visited by the dynamics, is
stored and constantly updated. An update consists in randomly
choosing a configuration in the list and replacing it by the
present active configuration with a probability pr�t . After a
relaxation time tr , the QS quantities are determined during
an averaging time ta . The QS probability P̄n that n vertices
are infected is computed during the averaging interval, each
configuration with n active vertices contributing to the QS
distribution with a probability proportional to its lifespan �t .
From the particle distribution P̄n, the moments of the activity
distribution can be computed as〈

ρk
s

〉 = 1

N

∑
n�1

nkP̄n. (5)

The simulation procedure described above was recently used
to determine with high numerical accuracy the critical point
and exponents of the contact process [8] on annealed [29] and
quenched [31] networks with power law degree distributions.

The values of the QS parameters used in the present
simulations were M = 300 and pr = 0.02, while tr and ta
varied depending on N and λ.

B. Numerical determination of the epidemic threshold

In usual absorbing-state phase transitions, where the critical
point converges to a finite value in the thermodynamic limit,
the finite-size scaling method allows the precise numerical
determination of the critical point and the whole set of associ-
ated critical exponents [8]. It is based on the computation, for
increasing system sizes N , of ρs , the global activity density,
computed from surviving run averages or from QS simulations.
For values of the control parameter λ in the active phase, ρs

reaches a finite nonzero limit as N → ∞. For values of the
control parameter in the absorbing phase, ρs decays trivially as
ρs ∼ N−1, since there is essentially of the order of one active
vertex in the whole network. The critical point is distinguished
by a power-law decay ρs ∼ N−β/ν̄ , where β is the critical
exponent controlling the density ρs at a finite distance from the
critical point, while ν̄ is associated to the growth of correlations
close to criticality [8].

In networks with a diverging second moment for the degree
distribution, this approach can go awry if strong corrections
to scaling are present [29,31]. In the particular case of the
SIS model on networks with a power-law degree distribution,
this approach simply does not work, because the effective
threshold depends on N and it goes to zero as the system size
grows. Therefore, for any value of λ > 0, ρs will attain a finite
limit for a sufficiently large N , once the corresponding λc(N )
becomes smaller than λ. This shows that asymptotically the
threshold is zero [22], but it does not provide information on

the effective threshold for finite N . To overcome this problem,
we turn instead to another procedure to determine the critical
point, namely the study of the susceptibility [26], defined as

χ = N
〈ρ2〉 − 〈ρ〉2

〈ρ〉 . (6)

When plotted as a function of λ in a system of fixed size N ,
the susceptibility χ exhibits a maximum at a value λp(N ). In
systems with a finite critical point in the thermodynamic limit
λc(∞), the peak of the susceptibility at λp(N ) corresponds
to a transition rounded by finite size effects, that as N →
∞ tends to the critical point as λp(N ) − λc(∞) ∼ N−1/ν̄

[26]. Correspondingly, the height of the susceptibility at the
maximum scales with system size as χmax ∼ Nγ ′/ν̄ , where γ ′
is a new critical exponent.

We assume that the relation between λp and λc written
above holds also in the present case, where λc depends on N :
λp(N ) − λc(N ) ∼ N−1/ν̄ . This implies that the susceptibility
peak and the size-dependent threshold tend to coincide in
the large size limit. When the assumption can be explicitly
controlled, it turns out (see below) to be correct.

It is worth noticing that the susceptibility Eq. (6) is different
from the standard definition χN = N (〈ρ2〉 − 〈ρ〉2) [8]. We
adopt Eq. (6) because it leads to clearer numerical results (see
Sec. III), while preserving all the scaling properties of the usual
definition.

III. NUMERICAL CHECK OF THE SUSCEPTIBILITY
METHOD: ANNEALED SCALE-FREE NETWORKS

A natural benchmark to check the accuracy of the suscep-
tibility peak as a measure of the position of the critical point
in the SIS model is given by annealed networks [24,27,28].
In annealed networks, all edges are rewired (preserving the
degree and the degree correlations of the involved nodes) after
each change of the state of any vertex. This procedure destroys
all dynamical correlations and thus renders exact the prediction
of HMF theory [4,24]. From a practical point of view, the
regeneration of the whole network every time a microscopic
dynamic step is performed can be effectively achieved in
uncorrelated networks by selecting at random, every time that
a nearest neighbor of a vertex is needed, a vertex of degree
k′, with probability k′P (k′)/〈k〉 [24]. In Fig. 1 we present
the results of susceptibility measurements for uncorrelated
annealed networks with degree exponent γ = 2.25 and 3.5.
Figure 1(a) depicts the susceptibility χ defined in Eq. (6) and
the usual susceptibility χN defined in the analysis of absorbing
phase transition [8], in networks with γ = 2.25 and different
sizes N . We observe that χ provides a more clear-cut definition
of the susceptibility peak. The same behavior is observed for
γ = 3.5 (data not shown). In Fig. 1(b) we plot the evolution
of the susceptibility peak λp(N ) as a function of network
size for fixed γ = 2.25 and γ = 3.5, and compare it with the
numerically evaluated HMF prediction. These results confirm
that λp provides an excellent approximation of the exact result
λHMF

c , both when the threshold goes to zero with N and when
it converges to a finite value. The differences observed might
be attributed to corrections to scaling, such as those presented
in systems with a finite threshold in the thermodynamic limit;
see Sec. II B. Therefore, in the rest of the paper we use the
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FIG. 1. (Color online) (a) Plot of χ = N (〈ρ2〉 − 〈ρ〉2)/〈ρ〉 and
χN = N (〈ρ2〉 − 〈ρ〉2) for the SIS process on annealed SF networks
with degree exponent γ = 2.25 and different network sizes. The
susceptibility χ is more efficient to determine the effective size-
dependent threshold. (b) Effective threshold from the susceptibility
peak λp(N ) as a function of N , for annealed SF networks with
γ = 2.25 and γ = 3.5, compared with HMF predictions. The
effective threshold shows a very good agreement with the numerically
evaluated threshold λHMF

c [Eq. (1)]. Inset: Differences between λp(N )
and the theoretical predictions λHMF

c (N ) for γ = 2.25 and γ = 3.5.

position of the peak of the susceptibility χ as the numerical
estimate of the position of the threshold.

IV. HOMOGENEOUS NETWORKS: THE RANDOM
REGULAR NETWORK

As a first nontrivial application of the technique of the
susceptibility peak to evaluate the SIS epidemic threshold
in homogeneous networks, we consider the case of random
regular networks (RRN), that is networks where all nodes
have exactly the same degree k, while links are randomly
distributed among them, avoiding self-connections and multi-
ple connections. In this case, HMF theory predicts trivially
a constant threshold λHMF

c = 1/k. The prediction of QMF
theory takes exactly the same value, as can be easily seen
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FIG. 2. (Color online) Susceptibility as a function of λ for RRN
of increasing size (from bottom to top) and degree k = 10. The
susceptibility peak is closer to the theoretical prediction of the pair
approximation than to the HMF and QMF results.

by applying Perron-Frobenius theorem.5 Figure 2 shows the
susceptibility χ as a function of λ for RRNs with increasing
N and degree k = 10. The numerical estimated threshold is
quite off from the theoretical value 1/k for HMF and QMF,
indicating that both theories are essentially incorrect, while the
susceptibility peak falls close (increasingly so for larger N ) to
the value λ

pair
c = 1/(k − 1), which is the prediction of the pair

approximation [33].
From this analysis we conclude that HMF and QMF

provide a reasonable approximation but not the exact po-
sition of the threshold. They fail just because they neglect
dynamical correlations among the state of neighbors, which
are instead better taken into account by pair approximation
approaches [12,13].

V. HETEROGENEOUS NETWORKS: THE STAR GRAPH

In this Section we focus on the simplest case of a
heterogeneous network with vanishing epidemic threshold,
namely the star network, which is composed by a hub
of degree kmax, to which kmax leaves of degree 1 are
attached. For this star graph, the largest eigenvalue of the
adjacency matrix can be easily shown6 to be

√
kmax. Therefore,

the QMF prediction from Eq. (2) is λQMF
c = 1/

√
kmax. On

the other hand, the HMF result from Eq. (1) takes in this
case the form λHMF

c = 2/(kmax + 1). Figure 3 shows the
susceptibility χ versus λ

√
kmax computed for star graphs with

a wide range of values of kmax. It clearly shows that the scaling
λc ∼ √

kmax is correct; however, the value of the prefactor

5It is easy to see that vi = 1 is an eigenvector of the adjacency
matrix A with eigenvalue k. Therefore, the result �N = k derives
directly from Perron-Frobenius theorem [32].

6The adjacency matrix of the star graph can be represented by
A1,j = Aj,1 = 1 for j � 2 and Ai,j = 0, otherwise. Therefore, if vi

is an eigenvector of A, we have: (i)
∑N

j=1 A1,j vj = ∑N

j=2 vj = �v1

and (ii)
∑N

j=1 Ai,j vj = v1 = �vi for i > 1. Replacing vi = v1/� in
equation (i) and using N = kmax + 1 we found the result � = √

kmax.
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FIG. 3. (Color online) Susceptibility χ as a function of λ
√
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computed in star graphs with different values of kmax (increasing from
bottom to top).

is around 1.5, rather than 1, in agreement with the rigorous
bound λc � 1/

√
kmax derived by Ganesh et al. [34]. The star

graph constitutes thus the simplest example of a network
for which HMF theory does not work. This failure of HMF
is altogether not surprising, since this particular network is
strongly correlated at the degree level and therefore fails to
fulfill one necessary condition for the validity of the HMF
result Eq. (1). QMF theory instead provides the correct scaling
of the threshold with network size, although the prefactor is
not exact.

VI. HETEROGENEOUS NETWORKS: POWER-LAW
DEGREE DISTRIBUTED GRAPHS

We now consider the SIS model on networks with power-
law degree distributions, P (k) ∼ k−γ , built using the uncorre-
lated configuration model (UCM) [35]. This procedure is equal

10
3

10
4

10
5

10
6

10
7

N

10
-3

10
-2

10
-1

th
re

sh
ol

d

λ
p
(N)

λ
c

QMF

λ
c

HMF

10
-3

10
-2

10
-1

λ

10
0

10
1

10
2

10
3

χ N=10
3

N=10
4

N=10
5

N=10
6

N=10
7

FIG. 4. (Color online) Effective threshold λp(N ) from the sus-
ceptibility peak as a function of network size N for uncorrelated
SF networks with γ = 2.25, compared with the HMF and QMF
predictions. Inset: Susceptibility χ as a function of λ for different
network sizes (increasing from right to left).

to the standard Molloy-Reed configuration model [36] with the
additional constraint that the degree values are strictly bounded
by kmax ∼ N1/2. This bound guarantees that no topological
correlations are present in the network [37] and therefore
fulfills the requirement needed for the applicability of the HMF
result Eq. (1).

We analyze three values of γ , representative of three
regimes characterized by different expressions for the theo-
retical estimates.

A. γ < 5/2

In Fig. 4 we show the shape of the susceptibility χ versus
λ (inset) and the numerical threshold λp as a function of the
network size N (main plot) for γ = 2.25, compared with the
predictions of the two theoretical approaches. It turns out that
the numerical results from the susceptibility peak agree with
good accuracy with both HMF and QMF theories, which in
their turn tend to coincide. While it was expected that the
theoretical formulas scaled in the same way with N , see Eq. (3),
the fact that they tend to coincide indicates that the prefactor c2
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FIG. 5. (Color online) (a) Numerical values of ρs , χ , and χN as
a function of N evaluated at the susceptibility peak in SF networks
with γ = 2.25. (b) Stationary density of infected nodes as a function
of the distance from the threshold λp in SF networks with γ = 2.25
and N = 107. Lower points represent the subcritical phase.
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in Eq. (3) is 1. Figure 4 shows that HMF and QMF predictions
are apparently exact in the limit of large systems for γ < 5/2.

In this particular range of γ , since the transition can be
identified with high accuracy, it is possible to extract additional
information about the epidemic phase transition. We consider
thus the scaling of the quantities ρs , χ , and χN with N at
the transition point. According to standard notation [8], the
expected scaling with system size should be (see Sec. II B):

ρs ∼ N−β/ν̄ , χN ∼ Nγ ′/ν̄ , χ ∼ N (γ ′+β)/ν̄ . (7)

In Fig. 5(a) we plot the values of ρs , χ , and χN , evaluated
at the susceptibility peak, as a function of N in SF networks
with γ = 2.25. Fitting the curves in Fig. 5(a) to a power law
form, we find the exponents:

β/ν̄ = 0.65, γ ′/ν̄ = −0.28, (γ ′ + β)/ν̄ = 0.37. (8)

These exponents explain why χ is the best choice to determine
the threshold. The maximum of the standard susceptibility χN

scales with a negative exponent γ ′, and thus, in the limit of
large N , the transition is characterized by a discontinuity. The
value γ ′ + β > 0 instead ensures a clearly defined maximum
for the susceptibility χ diverging as N → ∞.

By plotting the order parameter ρs as a function of the
distance from the effective threshold, we can attempt to deter-
mine the exponent β, which is defined by ρ ∼ [λ − λc(N )]β .
In Fig. 5(b) we show such a plot, for a SF network with
γ = 2.25 and size N = 107. According to HMF theory [9], the
β exponent is expected to take the value β = 1/(3 − γ ) = 4/3,
while the QMF approach of Van Mieghem [38] predicts β = 1.
The numerical results presented in Fig. 5(b) yield an effective
exponent lying between the theoretical predictions, so that the
validity of none of them can be excluded.

B. 5/2 < γ < 3

In this interval of γ , Eq. (3) predicts that a different regime
sets in, with the threshold set by the inverse of the square-root
of kmax, i.e., λCL

c ∼ k
−1/2
max = N−1/4, while HMF theory predicts

λHMF
c ∼ k

−(3−γ )
max = N−(3−γ )/2 up to γ = 3. For the values of
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FIG. 6. (Color online) Effective threshold λp(N ) as a function of
network size N for uncorrelated SF networks with γ = 2.75, com-
pared with the HMF and QMF predictions. Inset: Susceptibility χ as a
function of λ for different network sizes (increasing from right to left).

N that can be simulated numerically, the two theoretical
predictions are quite close but do not coincide.

Figure 6 shows the results of the susceptibility analysis for
SF networks with γ = 2.75. From this plot, we conclude that
the numerical results do not conform to the HMF behavior, the
more so for large system size. The numerical threshold λp(N )
scales instead as the inverse of the largest eigenvalue, but with
a prefactor different from unity. The QMF threshold provides
hence an approximation to the numerical threshold, scaling in
the same way, but with an accuracy of the order of 30%.

C. γ > 3

For γ > 3, HMF theory yields a finite value of the
threshold, which instead still vanishes according to QMF.
Since sample-to-sample fluctuations of the value of kmax are
quite large in this regime, we consider for each value of N

only networks with kmax equal to the mean value 〈kmax〉 [22].
In Fig. 7(a) we plot the susceptibility as a function of λ

in networks with γ = 3.5. The behavior of the susceptibility
in this regime is remarkably different from the one observed in
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present) susceptibility peak as a function of network size N for
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FIG. 8. (Color online) Quasistationary distribution of the number
of active nodes Pn for an uncorrelated network of size N = 3 × 106

and γ = 3.5. Different curves are for decreasing values of λ (bottom
to top).

the case γ < 3. As we can see, while for small network sizes
a well-defined and unique peak is present for relatively large
values of λ, at a position quite compatible with the prediction
of HMF, as N grows another feature emerges for smaller values
of λ, giving rise to a secondary peak for the largest considered
sizes.

The evidence presented in Fig. 7(a) can be better understood
with the help of the QS distribution P̄n of the order parameter
(number of active nodes n = ρsN ) depicted in Fig. 8. For
large values of λ, the distribution has a single peak (apart
from the one in n = 1.). As λ is reduced, a secondary peak
starts to appear at smaller values of n and rapidly takes over.
Further decreasing λ leads to the disappearance of the all peaks
for finite n, which signals the transition into the absorbing
state.

Figures 7(a) and 8 reflect the existence of two competing
thresholds, associated to two different mechanisms triggering
the transition [23]. The secondary peak for small λ, whose
position scales with network size as predicted by QMF
formula, see Fig. 7(b), is associated to the presence of the
star-subgraph centered around the largest hub, which for
λ � 1/�N is able to sustain alone the active state [22,23].
This kind of transition starts from a localized region [39] and
then propagates the infection to the rest of the network. Its
position is set by kmax and does not change depending on the
quenched network realization. Notice also the rounded shape
of the susceptibility peak, reminiscent of the what is found for
star graphs (see Fig. 3). The peak for large λ, which occurs
not far the value predicted by HMF and is much narrower, is
associated to the set of most densely connected nodes in the
network (maximum k core) collectively turning into the active
state. The location of this transition fluctuates a lot depending
on the realization.

It is clear that for asymptotically large N the first mech-
anism dominates. In this limit one expects the picture to be
analogous to the case 5/2 < γ < 3 presented above: a single
peak moving toward zero as N increases, as predicted by
Eq. (2) (but with a different prefactor). However, the crossover
to this stage is very slow and values of N much larger than those

attainable with our computational resources would be needed
to check in detail the accuracy of Eq. (2) in this regime.

VII. CONCLUSIONS

In this paper we have presented a large scale numerical
analysis of the SIS model on networks. Our approach presents
two improvements over previous numerical studies of the
SIS. First, we have implemented the quasistationary state
(QS) method, which allows us to overcome the problems
associated to simulations based on surviving averages, yielding
far better statistics with much smaller uncertainties. Second,
to overcome the problems that traditional finite-size scaling
analysis face in front of a vanishing critical point, we have
instead considered the susceptibility χ , whose maximum
value provides a numerical estimate λp of the threshold. The
combination of the QS and susceptibility peak methods leads to
numerically accurate threshold estimates, as we have checked
in the case of annealed networks, in which the exact value of
the SIS threshold is known. The accuracy of our results allows
us to discuss in detail the relative performance of two candidate
theoretical solutions to the SIS model on networks, namely the
heterogeneous mean-field (HMF) and the quenched mean-field
(QMF) theories.

By considering the very simple case of the random regular
graph, our analysis shows that even for homogeneous net-
works, which have a finite threshold for large sizes, both HMF
and QMF theories may provide inaccurate results. This occurs
because dynamical correlations play a role in determining the
threshold value, but they are disregarded by the theoretical
approaches.

In the case of strongly heterogeneous networks (the star
graph), QMF theory is sufficient to yield the correct scaling
but errs in the associated prefactor, again due to dynamical
correlations.

Turning to the more interesting case of random uncorrelated
scale-free networks, our numerical results indicate that both
HMF and QMF provide asymptotically exact expressions for
the epidemic threshold in the case γ < 5/2. In the region
5/2 < γ < 3, both theories are quite close for the investigated
sizes, but QMF is able to reproduce the scaling of the threshold
with network size, erring only in the numerical prefactor. The
analysis of the more complex case γ > 3 leads to a picture
in agreement with the presence of two epidemic activating
mechanisms discussed in Ref. [23]. Here, the susceptibility
presents for small network sizes a peak at large λ, close to
the HMF prediction, which tends to a finite limit but largely
fluctuates from sample to sample. This peak is associated to the
activation of the epidemics in the network by the set of most
densely connected nodes in the network (maximum k core).
For large sizes, a secondary incipient peak appears at small
λ, which is described by QMF and asymptotically overcomes
the other peak at sufficiently large N . The secondary peak is
associated to the epidemic activation from the most connected
node in the network which, as center of a star graph of size
kmax + 1, is able, all alone, to sustain activity in the whole
network.

From our numerical assessment of the validity of HMF and
QMF theories we can conclude that, while QMF represents a
notable improvement over the HMF approach, it is still unable
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to yield a precise determination of thresholds, apart from the
special case γ < 5/2. This calls thus for improved analytical
approximations, which should include in an explicit manner
the effects of dynamical correlations between neighboring
nodes. Progress has been done recently along this path
[12,13,33], but these methods are easily applicable only to
small networks, so that the precise theoretical determination
of the SIS epidemic threshold for large networks remains
essentially an open problem.
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[34] A. Ganesh, L. Massoulié, and D. Towsley, in Proceedings of

the 24th Annual Joint Conference of the IEEE Computer and
Communications Societies (IEEE, Piscataway, NJ, 2005), Vol. 2,
pp. 1455–1466.
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