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Comparing parasite genotypes to inform parasitic disease outbreak investigations involves computation of
genetic distances that are typically analyzed by hierarchical clustering to identify related isolates, indicating a
common source. A limitation of hierarchical clustering is that hierarchical clusters are not discrete; they are
nested. Consequently, small groups of similar isolates exist within larger groups that get progressively larger
as relationships become increasingly distant. Investigators must dissect hierarchical trees at a partition number
ensuring grouped isolates belong to the same strain; a process typically performed subjectively, introducing
bias into resultant groupings. We describe an unbiased, probabilistic framework for partition number selection
that ensures partitions comprise isolates that are statistically likely to belong to the same strain. We computed
distances and established a normalized distribution of background distances that we used to demarcate a
threshold below which the closeness of relationships is unlikely to be random. Distances are hierarchically
clustered and the dendrogram dissected at a partition number where most within-partition distances fall below
the threshold. We evaluated this framework by partitioning 1,137 clustered Cyclospora cayetanensis genotypes,
including 552 isolates epidemiologically linked to various outbreaks. The framework was 91% sensitive and 100%
specific in assigning epidemiologically linked isolates to the same partition.

dendrogram; framework; genetic distance; hierarchical clustering; outbreaks; partitioning; threshold; tree
dissection

Abbreviations: NPV, negative predictive value; PPV, positive predictive value.

Recent advances in genotyping techniques have intro-
duced novel tools for investigation of parasitic disease
outbreaks. Molecular epidemiology allows investigators
to compare genotypes to differentiate between concurrent
outbreaks and link related genotypes, facilitating iden-
tification of common sources (1). Originally applied to
outbreaks of bacterial foodborne disease (2, 3), genotyping
tools for use in epidemiologic settings have now been
developed for more complex infectious agents, such as
the apicomplexan parasite Cyclospora cayetanensis. C.
cayetanensis is the etiological agent of cyclosporiasis, a
food-borne illness characterized by watery diarrhea, nausea,
abdominal cramps, and weight loss (4, 5). C. cayetanensis
is responsible for annual outbreaks in the United States

and is currently reportable in 43 US states, the District of
Columbia, and New York City (6).

Linking isolates based on genotype to differentiate con-
current outbreaks is not trivial, especially for complex, sex-
ually reproducing organisms like C. cayetanensis. A data
set of N genotypes sequenced during an outbreak neces-
sitates comparison of N(N−1)/2 genotype pairs and deter-
mination of which of these N(N−1)/2 pairs are genetically
linked. Comparison of genotypes first requires computation
of genetic distances (�) between all possible pairs. A small
distance (i.e., � ≈ 0) is assigned to pairs possessing a close
genetic relationship, and a large distance (i.e., � ≈ 1) is
assigned to unrelated pairs. Most distances fall somewhere
between 0 and 1, reflecting varying degrees of similarity
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among isolates. These distances are then clustered using
a hierarchical clustering strategy to generate hierarchical
trees. In epidemiologic contexts, a close genetic relationship
revealed by hierarchical clustering is considered evidence
that isolates were derived from a common source, which
may inform downstream epidemiologic investigations when
viewed in association with other data (5).

Hierarchical clustering possesses a major limitation. Hier-
archical clusters are not discrete groups but instead are
nested, meaning that clusters comprising small numbers
of similar individuals exist within larger clusters that get
progressively larger as relationships among cluster mem-
bers become increasingly distant (Figure 1). Hierarchically
clustered data sets require partitioning to produce discrete
groups comprising isolates that cluster closely and are thus
genetically linked (7). Here, the onus is on the investigator
to decide what constitutes a sufficiently similar genetic
match and then select an appropriate partition number when
dissecting hierarchical trees to ensure that each partition
comprises a set of sufficiently similar isolates (7). A major
problem in the field is that tree dissection is often performed
arbitrarily, based on the investigators’ personal judgment
(8, 9).

The number of partitions selected has a profound impact
on the isolates that are perceived as being related or unre-
lated. Too few partitions can lead to wasted resources as
epidemiologists investigate “false leads” identified due to
grouping of isolates that are not sufficiently similar. Too
many partitions can lead to the separation of isolates that
are linked to a common source into distinct groupings.
Published statistical methods that predict partition number
for clustered data, including the elbow method, gap statistic,
and the silhouette method (8–10), could be used to eliminate
arbitrary decision making when dissecting hierarchical trees.
However, these methods were not designed specifically for
molecular epidemiologic applications, so systematic meth-
ods for partition number selection in epidemiologic contexts
are lacking. Consequently, this process has historically been
performed with an arbitrary cutoff selection that can be
biased by what investigators believe should be grouped (8,
9). Factors such as the genotyping markers selected, mixed-
strain infections, and heterozygosity may result in genotypes
that differ slightly among closely related pathogen isolates.
Consequently, selecting a partition number where isolates
in each partition are separated by a distance of � = 0
(i.e., requiring identical genotypes) is a poor choice; this
ignores that genotyping data sets from parasites like C.
cayetanensis and Plasmodium falciparum require a more
nuanced interpretation due to the factors listed above (4, 11).

A framework for statistically testing the relatedness P.
falciparum genotype pairs in the context of antimalarial
drug efficacy trials was recently described (11). For these
trials, P. falciparum parasites in the blood of an infected
patient are genotyped at day 0 (i.e., when the infection is
first identified and before treatment) and again if the patient
experiences a recurrent P. falciparum infection (11). The
pair of genotypes is compared to determine if the day 0
genotype is the same as the genotype observed at the time
of recurrence. In that study, comparison of only genotype
pairs was required, and that framework established a genetic

Figure 1. Problem definition: The impact of partition number selec-
tion on partition memberships. This figure displays a hierarchical
tree with 3 possible dissection heights, indicated by dashed lines.
Hierarchical clusters are nested, meaning that clusters comprising
small numbers of similar individuals exist within larger clusters that
get progressively larger as genetic relationships become increasingly
distant. Hierarchically clustered data sets therefore require partition-
ing by dissecting hierarchical trees at a level that results in groups
comprising isolates that probably belong to the same strain. The
level at which a hierarchical tree is dissected affects the perceived
genetic relationships among clustered isolates. Dissecting this tree
at a height of 5 arbitrary units results in 4 partitions, where A, B, C,
and D are separated. Alternatively, dissecting the tree at 7 arbitrary
units results in 3 partitions, where A and B are assigned to the same
partition while C and D remain separated. Dissecting this tree at 9
units results in 2 partitions, one containing A and B and the other
containing C and D. When genotyping for epidemiologic purposes,
partitions must comprise isolates that are sufficiently similar (i.e.,
separated by a distance below an appropriate � threshold) to warrant
epidemiologic follow-up. However, selecting an appropriate number
of partitions is not straightforward, is often performed empirically, and
may be subject to bias.

distance threshold for binary classification of pairs as being
“the same” or “different”.

Here, we adapt the framework previously used to classify
P. falciparum genotype pairs to facilitate the unbiased selec-
tion of an appropriate partition number (k) when dissecting
hierarchical trees. Briefly, a distance matrix is computed for
all genotypes using an appropriate genetic distance statistic.
This set of distances is then normalized to generate a com-
paratively unbiased distribution of distances. A threshold
distance is computed from the empirical distribution of
normalized distances by selecting the distance falling at the
empirical lower 5th percentile, to demarcate a threshold
distance (11). Finally, A hierarchical tree is generated and
dissected at the smallest number of partitions where at
least 99.5% of all within-partition distances fall below this
threshold.

We evaluated this procedure on 1,137 C. cayetanensis
genotypes, including 552 with epidemiologic links that were
identified during previous cyclosporiasis outbreak investi-
gations (5, 12–15). Genetic distances were calculated as
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previously described (4, 5), and a partition number was
selected using our framework. By comparing the partitions
identified here to available epidemiologic data, we assessed
the ability of this framework to detect epidemiologically
meaningful partitions. Our approach was highly sensitive
and specific at assigning epidemiologically linked isolates to
the same partition and therefore provides a robust, system-
atic method for selecting an appropriate number of partitions
from a set of hierarchically clustered genetic distances.

METHODS

Data collection

This study utilized publicly available C. cayetanensis
genotyping data generated by the US Centers for Disease
Control and Prevention (CDC), the Public Health Agency
of Canada, and participating US state public health
departments as part of genotyping performed during the US
cyclosporiasis peak periods of 2018, 2019, and 2020 (5, 12–
16). Cyclosporiasis outbreak clusters were defined using
epidemiologic methods described in those studies (5, 12–
15). These clusters are listed in Table 1. The use of clinical
specimens in those studies (5, 12–16) was reviewed by the
CDC and was conducted consistent with applicable federal
law and CDC policy (Center for Global Health Human
Research Protection Office determination number 2018–
123). Illumina (San Diego, California) sequence data for
all C. cayetanensis isolates is accessible under National
Center for Biotechnology Information BioProject Number
PRJNA578931. Genotypes were determined from this data
using methods previously described (5, 15, 16).

Distance calculation and framework for partition
number selection

A pairwise distance matrix (M1) was computed from
the genotypes after their conversion to haplotype data
sheet (HDS) format (Web Table 1, available at https://
doi.org/10.1093/aje/kwad006) using Barratt’s heuristic
definition of genetic distance, which has been applied
previously to genotypes of C. cayetanensis (4, 5, 15, 16), P.
falciparum (11), and nematodes of the genus Strongyloides
(17). M1 was hierarchically clustered using Ward’s method
(5, 15). The resulting hierarchical tree was dissected at the
maximum number of partitions resulting in all partitions
containing more than 1 isolate. Next, the number of isolates
within the partition containing the smallest number of
isolates (n) was identified. Subsequently, n isolates were
randomly selected from every partition, producing a set
(L) of isolates. A second pairwise distance matrix (M2)
was generated containing the distance between every
combination of isolate pairs in the set L by extracting
the distances for the same pairs from M1 and inserting
these values into M2. Matrix M2 therefore comprised a
distribution of distances where each strain was represented
n times. A threshold distance was computed from the
empirical distribution of the distances in M2 by selecting
the distance falling at the empirical lower 5th percentile

(�0.05), as previously described (11), after exclusion of
self-to-self distances. Selecting a genetic distance threshold
at the empirical lower 5th percentile is based on the
assumption that the distribution of distances in M2 resembles
a unimodal, normal probability distribution. Grounded in
this logic, for specimens separated by a genetic distance
below the �0.05 threshold, the likelihood that this level of
genetic similarity is random (i.e., is not due to recent genetic
kinship) would be less than 5%, corresponding to a statistical
test with a false positive rate (α) of 5%.

Given the stochasticity introduced when randomly select-
ing isolates in set L, this step (generating sets of L and selec-
tion of �0.05) was repeated 1,000 times and an average of the
1,000 values of �0.05 was taken to demarcate a threshold
distance (�0.05). Finally, M1 was clustered using Ward’s
method, and the resulting hierarchical tree was dissected at
the smallest partition number (k) where at least 99.5% of
all within-partition distances fell below �0.05. This involved
generation of 199 hierarchical trees from M1 using Ward’s
method and dissecting each tree at a single value of k ranging
from 2 to 200. For each dissected tree, the genetic distances
between isolates assigned to the same partition was extracted
from M1, producing a single list of within-partition distances
for each value of k. Starting at the list of distances obtained
for k = 2 and moving up, each list was examined to identify
the smallest value of k where at least 99.5% of distances
fell below �0.05. This value of k was considered optimal,
and isolates assigned to each partition for this k-value were
noted.

Assessment of framework performance by comparison
to epidemiologic data

We calculated performance metrics including sensitiv-
ity, specificity, positive predictive value (PPV), negative
predictive value (NPV), and accuracy using epidemiologic
links as a reference for expected clustering outcomes, as
previously described (5, 15). This data set included 552
isolates linked to one of 18 epidemiologic clusters identified
during US cyclosporiasis peak periods of 2018, 2019, and
2020 (Table 1). Each metric was weighted by the ratio of
the number of isolates in an epidemiologic cluster to the
total number possessing epidemiologic links (n = 552), so
that epidemiologic clusters with more genotyped specimens
provided a greater contribution to the metric. We calculated
the discriminatory power of our framework using Simpson’s
index of diversity (D) as described elsewhere (2). The value
of D was determined by:

D = 1 −
(

1

N (N − 1)
×

S∑
J=1

nj
(
nj − 1

))
,

where N is the number of isolates (n = 1,137), S is the number
of partitions, and nj represents the number of isolates within
the jth partition. Simpson’s index assesses a method’s ability
to distinguish between unrelated strains sampled randomly
from a given species (2), where values of D between 0.9
and 1.0 generally indicate good discriminatory power. We
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therefore considered this an indicator of whether the pre-
dicted k-values provide useful strain discrimination.

Application of other partitioning methods to the present
data set

We applied R (R Foundation for Statistical Computing,
Vienna, Austria) implementations of the gap statistic (clus-
Gap function), elbow method (fviz_nbclust function), and
the silhouette method (fviz_nbclust function) to M1 to com-
pare the results obtained using those methods to results
obtained using our framework. Briefly, M1 was clustered
using Ward’s method and the resulting hierarchical tree was
dissected at k-values ranging from 2 to 100, where each
method was applied to the resultant partition memberships
to identify the optimal k-value. For the clusGap function 500
bootstrap replicates were applied.

RESULTS

Partition number selection using our framework

Matrix M1 was calculated from the 1,137 genotypes
(Web Table 2). The empirical distribution of distances
in M1 (excluding self-to-self distances) was multimodal,
displaying several peaks including a major peak at � ≈ 0
(Figure 2A). Alternatively, iterations of M2 more closely
resembled a normal probability distribution without a major
density peak near � ≈ 0, as observed in M1 (Figure 2B).
A value of 0.19 was computed for �0.05 resulting in an
optimal partition number of k = 46 (Figure 3), representing
the number of partitions where at least 99.5% of all within-
partition distances fell below �0.05. At 46 partitions, 99.62%
of within-partition distances fell below �0.05 where 49,497
within-partition distances (excluding self-to-self distances)
were observed, and 189 (0.38%) of these were outlying
distances greater than or equal to 0.19 (Figure 4). We
investigated the impact of manually selecting a partition
number of 45, and observed that 99.44% of within-partition
distances fell below �0.05. At k = 44, 99.42% of within-
partition distances fell below �0.05. We next investigated
the impact of the �0.05 threshold on k by manually selecting
numerous �0.05 values and dissecting the clustered matrix
M1 at a partition number where at least 99.5% of within-
partition distances fell below each one. We plotted the result,
revealing a long-tailed distribution (Figure 5).

Performance of approach based on comparison to
epidemiologic data

After partitioning the clustered matrix M1 using a k-
value of 46, the 552 isolates possessing epidemiologic links
were classified as either a true positive, true negative, false
positive, or false negative, as per the definitions in Table 1.
Weighted metrics calculated for sensitivity, specificity, PPV,
NPV, and accuracy, based on these definitions, were 90.8%,
99.9%, 99.4%, 98.3%, and 98.5%, respectively (Table 1).
The discriminatory power (Simpson’s index) calculated for

46 partitions was 0.92. The partition memberships used to
compute these values can be found in Web Table 3.

Application of other partitioning methods to the present
data set

The elbow method supported k-values ranging from 6 to
9, while the silhouette method and gap statistic supported
11 and 100 partitions, respectively. We clustered M1 using
Ward’s method and dissected the tree into 9, 11, and 100
partitions for examination of the resultant partition member-
ships (Web Tables 4–6). For values of k = 11 and k = 9,
isolates linked to unrelated outbreaks were inappropriately
grouped. For k = 100, numerous epidemiologically linked
isolates were inappropriately separated among several parti-
tions.

DISCUSSION

Our results support the idea that the principles previously
used to classify P. falciparum genotype pairs as belonging
to the same strain or different strains (11) are applicable in
the context of selecting a number of partitions in a hier-
archical tree. The original framework for classifying pairs
(11) and the modified framework described here each aim to
establish a genetic distance threshold for identifying isolates
possessing a high likelihood of belonging to the same strain.
However, computation of this threshold in the context of
hierarchically clustered data sets requires additional steps
that control for bias and overcome obstacles associated with
identifying genetically similar groups as opposed to pairs.

Establishing an appropriate background distance distri-
bution is required for demarcation of the empirical lower
5th percentile (i.e., �0.05), and our threshold demarcation
approach assumes this distribution resembles a normal dis-
tribution. Naturally, genetic distances computed from iso-
lates causing large outbreaks will be biased toward � = 0 and
toward distances between highly represented strains. These
biased outbreak data sets are unlikely to produce a normal
distribution and may not be appropriate for derivation of
�0.05 because they do not represent what is expected when
sampling naturally occurring populations in a randomized,
representative way. Indeed, 645,816 distances were com-
puted for 1,137 genotypes, and 21,212 (3.3%) of these
represent isolate pairs linked to the same outbreak that likely
belong to the same strain. Most of these 21,212 distances
account for the sharp peak near zero in the M1 density
distribution, reflecting biased sampling toward same-strain
isolates. Generally, random sampling of naturally occurring
populations would be unlikely to yield such a large number
of same-strain isolates, so a distance distribution resembling
the normalized M2 distribution is more likely. Consequently,
the M2 distribution is more appropriate for computing �0.05
as it reflects what would more likely be encountered ran-
domly in nature. In the context of P. falciparum therapeutic
efficacy trials, sampling bias is a smaller issue as the isolates
encountered more likely represent the diversity of strains
circulating within the geographic vicinity of the study area
(11). To overcome sampling bias here, we subsampled M1
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Figure 2. Density plot of the empirical distribution of distances in M1 (A) and of the empirical distribution of distances identified for a single
iteration of M2 (B). A) The plot represents the distribution of distances observed for matrix M1, with the threshold of �0.05 = 0.19 indicated with
a dashed line. The frequency of each strain/type in the data set used to compute M1 is biased toward those causing large outbreaks. Therefore,
a large peak in density is observed near zero—at approximately � = 0.04 in this case—ref lecting the large number of distances computed for
isolate pairs that belong to the same strain (i.e., bias toward � ≈ 0). As a consequence of this bias toward � ≈ 0, the distance observed at
the empirical lower 5th percentile of matrix M1 is approximately the same distance observed at the first high-density peak in the distribution.
For this reason, it is inappropriate to compute a threshold distance from M1. Instead, a threshold is computed from 1,000 iterations of the
subsampled matrix M2 where each iteration comprises a relatively unbiased distribution of background distances that are representative of the
study population. Using the empirical distribution of each of 1,000 iterations of subsampled matrix M2, a value of �0.05 = 0.19 was computed.
B) The plot represents the empirical distance distribution of a single iteration of M2 with the threshold of 0.19 indicated with a dashed line.
This distribution is almost unimodal and almost symmetrical, resembling a normal probability distribution, with a markedly reduced bias toward
distances approaching zero relative to M1. Isolates separated by a distance below �0.05 = 0.19 are likely to belong to the same strain (i.e.,
possess recent genetic kinship) because the likelihood of randomly observing a genetic distance below this threshold for a pair of unrelated
isolates is low, corresponding to a statistical test with a false positive rate (α) of 5%.

to generate 1,000 iterations of M2 wherein each strain was
effectively represented at an equal frequency. We then used
M2—possessing a distance distribution resembling a normal
distribution—to derive �0.05. This eliminated some inherent
sampling bias by demonstrably reducing bias toward � = 0
at the empirical lower 5th percentile, providing a distance
distribution that might have been encountered if a random-
ized sampling strategy had been employed.

A large genetically diverse study population will help
ensure that iterations of M2 possess a distance distribu-
tion resembling a normal distribution. This will depend
on marker variation and the number of isolates sampled.
Generally, an ideal data set will include multiple markers
with some possessing several haplotypes. Defining a set of
criteria to describe an ideal data set is difficult, although
investigators should use their best judgment. Examining
the distance distribution for multiple iterations of M2 is
recommended to establish whether they resemble a normal,
unimodal probability distribution. This represents an indica-
tor of whether a data set is amenable to this analysis, under-
standing that biological data are variable and may never
yield a perfectly symmetrical distribution. The assumption
that the distance distributions in iterations of M2 resemble a
normal distribution should be met, or �0.05 may be biased
toward zero. In this study, M2 did not yield a perfectly sym-
metrical distribution, but it resembled a normal distribution.
We acknowledge however, that this may not always hold

true. Consider a genotyping data set comprising isolates
from 2 related species sequenced at several loci. Some
loci may possess alleles shared between the species while
others may possess species-specific alleles. The species-
specific alleles would divide the population, resulting in
a bimodal distance distribution; the leftmost peak would
represent distances between strains of the same species,
while the rightmost peak would include distances between
strains of different species. Our framework could still be
applied to such a data set, although only distances within
the leftmost peak should be used to establish a distribution
for threshold demarcation.

Two apicomplexan isolates of the same strain do not nec-
essarily possess identical genotypes due to factors including
mixed-strain infections and heterozygosity. While geno-
types derived from the same strain could be identical (sep-
arated by � = 0), they are more appropriately defined as
being separated by a distance approaching or equal to zero.
Consequently, a threshold distance of zero is a poor choice.
Indeed, when a manually selected threshold of �0.05 = 0.04
was evaluated in this study, 363 partitions resulted. Our
framework selected a threshold representing a good trade-
off between the high discriminatory power afforded at lower
�0.05 values versus the cost of setting �0.05 too low, which
may inappropriately separate isolates of the same strain.

Our requirement that 99.5% of within-partition distances
fall below �0.05 is noteworthy, and was introduced to
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Figure 3. Hierarchical cluster dendrogram generated from 1,137
Cyclospora genotypes. This figure shows a hierarchical cluster den-
drogram (a tree), generated from matrix M1, that was computed
from 1,137 C. cayetanensis genotypes. Matrix M1 was clustered
using Ward’s method to produce the tree shown. The tree has been
dissected into 46 partitions; the partition number where at least
99.5% of all within-partition distances fell below �0.05 = 0.19. Each
of the 46 partitions is shaded in a unique color; colors differentiate
the boundary between partitions and have no other meaning.

account for outlying distances. Suppose an unusual isolate
is separated from other isolates within the same partition by
a genetic distance slightly above �0.05, yet is also separated
from additional isolates in this partition by distances below
�0.05. Assuming all isolates within this partition (excluding
the unusual one) are separated by distances below �0.05,
the hierarchical clustering technique will have made an
appropriate decision in placing the unusual isolate at
a position in the tree culminating in its assignment to
this partition. It may be impossible to select a �0.05
threshold that excludes “unusual” outlying isolates while
avoiding separation of appropriately grouped isolates. To
accommodate such anomalies, requiring that close to 100%
(e.g., 99.5%) of within-partition distances fall below �0.05
is an appropriate trade-off. Specificity may be increased
slightly by increasing this “stringency” setting to above
99.5% (e.g., to 99.7%) while keeping it less than 100%, and
investigators may experiment with a setting that maximizes
the k-value without affecting sensitivity too greatly.

We evaluated performance using epidemiologic data to
assign labels to isolates that represent expected outcomes.
Values calculated for sensitivity, specificity, PPV, NPV, and
accuracy were 90.8%, 99.9%, 99.4%, 98.4%, and 98.5%,
respectively. For 11 of 18 epidemiologic clusters, scores of
100% were obtained for every metric. A score below 80% for
any metric was observed only for “Distributor A, type 18,”
where 64.3% sensitivity was observed. Simpson’s Index of
Diversity produced a value of D = 0.92, supporting the idea

Figure 4. Frequency histogram of within-partition distances deter-
mined for matrix M1 using a partition number (k) of 46. Frequency
histogram showing distances between Cyclospora cayetanensis
genotypes assigned to the same genetic partition at k = 46. At
46 partitions, 49,497 within-partition distances (excluding self-to-self
distances) were observed. Of these, 49,308 (99.62%) fell below the
�0.05 threshold of 0.19, indicated by a dashed line, and 189 of these
distances (0.38%) were greater than or equal to 0.19. The within-
partition distances in this histogram are divided into 8 bins with the
highest frequency observed for distances between � = 0.0 and � =
0.05. All within-partition distances fell below � = 0.4. The number
of distances represented by each bin, from left to right is as follows:
37,768, 9,219, 1,944, 409, 121, 25, 10, and 1.

that 46 partitions provide good discriminatory power. The
lower sensitivity observed for “Distributor A, type 18” arose
because isolates possessing this linkage were assigned to
3 partitions: 9 of 14 isolates to partition 29, 1 to partition
20, and 4 to partition 2. Examining the genotype of these
14 isolates (Web Table 1) showed that some were unchar-
acteristically mixed, possessing 3–4 haplotypes at markers
where 1 or 2 are typically observed. This suggests exposure
to multiple C. cayetanensis strains. Notably, epidemiologic
labels may be imperfect as they rely on case-patient accounts
of what they ate weeks to months prior to illness, making it
difficult to identify mixed exposures. Regardless, sensitiv-
ity was generally high and experience from real outbreak
scenarios has shown that our framework can support epi-
demiologic investigations as outbreaks emerge, in addition
to detecting re-emergent strains. For instance, the C. cayeta-
nensis strain represented by partition 4 caused unrelated
outbreaks in 3 consecutive years: Supplier X in 2018 (5),
Restaurant A in 2019 (15), and prepackaged salad 002 in
2020 (16) (Table 1).

Other methods for partition number selection over- or
underestimated the number of partitions, which might have
confounded epidemiologic investigations had they been used
in practice. For k = 100 (gap statistic) many linked isolates
were separated, while k = 9 (elbow) and k = 11 (silhouette)
assigned unrelated outbreak isolates to the same partition.
Partition 3 defined using k = 11 (Web Table 4) contained 2
strains detected in 2020, one linked to prepackaged salads
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Figure 5. Impact of distance threshold on the number of partitions. This figure shows a line graph plotting a series of manually selected genetic
distance threshold values (y-axis) against the number of partitions that result from those manually selected values (x-axis) and highlights how
genetic distance threshold values above and below �0.05 = 0.19 (horizontal small-dashed line) affect the number of partitions predicted. Brief ly,
matrix M1 was clustered using Ward’s method and the resulting hierarchical tree was dissected at a partition number where at least 99.5% of
within-partition distances fell below each of a range of manually selected threshold demarcation values (y-axis) (values from � = 0.04 to � =
0.40). The predicted partition number (x-axis) obtained for each manually selected distance threshold value was plotted, resulting in a long-tailed
distribution. Each point is labeled with the partition number (the x coordinate) and the percentage of within-partition distances falling below the
respective distance threshold for this value of x (in brackets). A large-dashed trendline with the equation y = 2.4232x∧(–0.687) is also shown.

and the other to cilantro served at Mexican-style restau-
rants. Our framework (k = 46) correctly assigned isolates
linked to these outbreaks to different partitions. Importantly,
these other statistical methods were not specifically designed
for molecular epidemiologic purposes while our framework
was, which likely accounts for its greater efficacy here.

The genetic distance statistic employed may also affect
our frameworks’ efficacy. While the framework is nonpara-
metric and could be used in conjunction with any distance
statistic, investigators should consider the advantages and
disadvantages of available distance statistics before making
a selection. For example, Barratt’s heuristic accommodates
isolates where sequence data are absent for some markers
by attempting to impute missing values (5, 15). This is an
advantage on one hand, as discarding specimens with data
available for most markers (but not all) can be avoided.

However, the imputation step becomes increasingly inac-
curate as the number of missing markers increases for an
isolate (17). Another limitation of Barratt’s heuristic is that
haplotypes are defined across a span of nucleotide bases (15,
17). Therefore, distances are not calculated by considering
each variant base, meaning that Barratt’s heuristic may lack
resolution compared to phylogenetic substitution models. As
with the choice of distance statistic, efficacy may depend on
the hierarchical clustering method employed. Several hier-
archical clustering methods exist, and investigators should
evaluate each before making a selection.

Our framework was efficacious when applied to the
present data set. However, we strongly suggest that inves-
tigators wishing to apply it to data sets involving different
marker combinations, or data sets from other organisms,
evaluate its performance by comparing resultant partition
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memberships to expected outcomes based on externally
validated metadata (i.e., epidemiologic, geographic, host
data, or other metadata that support expected outcomes).
Adjusting the stringency setting (e.g., reducing it to 99%)
to produce partitions that better support expected outcomes
(i.e., framework calibration) may be employed to maximize
performance. For example, if we wished to apply our
framework to genotypes of human immunodeficiency virus
(HIV)—which has an extremely high mutation rate (18)—a
lower stringency setting (e.g., 95% or 97%) might be appro-
priate as additional outliers could be expected. To calibrate
this setting for HIV, genotyping of numerous isolates should
be performed, including a subset collected from among close
contacts such as sexual partners or people who share needles
during intravenous drug use (19). The framework could
then be applied to genetic distances computed for this data
set, across a range of possible stringency values, where the
optimal value would be the one that most frequently resulted
in isolates sharing close contacts being assigned to the same
partition. Our framework has the advantage that it can be
calibrated for different applications, or to fit the biology
of specific pathogens. Once properly calibrated, one can
reasonably expect it to perform similarly when applied to
data sets possessing unknown links, assuming calibration
was performed on data from the same species and using the
same markers.

To conclude, we describe a framework for selecting an
appropriate number of partitions in an unbiased way when
dissecting hierarchical trees, and we apply it to an extant
C. cayetanensis genotyping data set. By examining the epi-
demiologic linkage of C. cayetanensis isolates assigned to
each partition, we establish that our framework is highly
sensitive and specific. While this evaluation was performed
on a C. cayetanensis genotyping data set, we expect our
framework will be broadly applicable to other pathogens.
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