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Epidemiological and economic 
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This research measures the epidemiological and economic impact of COVID‑19 spread in the US under 
different mitigation scenarios, comprising of non‑pharmaceutical interventions. A detailed disease 
model of COVID‑19 is combined with a model of the US economy to estimate the direct impact of 
labor supply shock to each sector arising from morbidity, mortality, and lockdown, as well as the 
indirect impact caused by the interdependencies between sectors. During a lockdown, estimates of 
jobs that are workable from home in each sector are used to modify the shock to labor supply. Results 
show trade‑offs between economic losses, and lives saved and infections averted are non‑linear 
in compliance to social distancing and the duration of the lockdown. Sectors that are worst hit are 
not the labor‑intensive sectors such as the Agriculture sector and the Construction sector, but the 
ones with high valued jobs such as the Professional Services, even after the teleworkability of jobs is 
accounted for. Additionally, the findings show that a low compliance to interventions can be overcome 
by a longer shutdown period and vice versa to arrive at similar epidemiological impact but their net 
effect on economic loss depends on the interplay between the marginal gains from averting infections 
and deaths, versus the marginal loss from having healthy workers stay at home during the shutdown.

According to the Bureau of Labor Statistics, the US unemployment rate in October 2020 stood at 6.9% and the 
number of unemployed at 11.1 million. �is is likely an underestimated number since it does not include indi-
viduals who have stopped looking for  employment1 due to poor economic prospects. Even though both measures 
have declined for 6 months consecutively, the unemployment rate is still higher by  3.5% and the number of 
unemployed by 5.3 million, compared to pre COVID-19 levels in February 2020. �e US economy shrank by an 
annual rate of 4.8% in the �rst quarter of 2020 and by a shocking 32.9% in the second quarter, which has been 
the largest drop seen since 1945. �e number of COVID-19 cases have crossed 12 million and number of deaths 
over 258,000 in November  20202.

�is research builds a comprehensive system that combines the epidemiological model developed to study the 
spread of COVID-19 with a detailed model of the US economy to understand a sector wise economic impact from 
a shock to labor supply caused by the pandemic. Note that the focus of this paper is only on the shock encoun-
tered by the economic sectors from the supply side, and not on the demand side which has also dropped due to 
the high unemployment rate and a bleak economic outlook. We consider a number of counterfactual scenarios 
that comprise of various social distancing measures such as the stay-home order, voluntary home isolation of 
the symptomatic individuals, and school closure. We measure economic losses from the drop in labor supply 
in each sector due to the stay-home order, absenteeism due to illness and deaths, cascading loss to/from other 
sectors due to interdependencies between sectors, and the economic burden caused by the medical treatment 
of the infected. We vary compliance to interventions and duration of the stay-home order to determine their 
impact on economic and epidemiological outcomes and the trade-o�s between them.

�is research is an extension of the work done  in3 which only focused on estimating the medical cost of treat-
ment for COVID-19 cases under the same mitigation scenarios and the disease model. Here we calculate overall 
economic losses from a societal perspective which include the medical cost of illness, cost of intervention or 
social distancing i.e. healthy individuals unable to go to work, direct loss in productivity due to morbidity and 
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mortality of workers, and the indirect loss caused by the interdependencies between sectors. We also estimate 
the e�ect of intervention scenarios on cases and deaths averted in the US.

�is level of detailed analysis has not been done in the literature before for COVID-19, and can provide guid-
ance to public health o�cials for developing strategies to balance the emergence of infections and deaths with the 
economic costs of the social distancing strategies. A longer duration of stay-home order causes economic losses 
even a�er accounting for telework, but it also signi�cantly reduces infections and deaths, and losses caused by 
the medical treatment of the infected.

Related work
�ere have been several papers that study the economic impact of COVID-19. Eichenbaum et al.4 study the 
interaction between economic decisions and epidemic outcomes and �nd that the competitive equilibrium is 
not socially optimal because infected people do not fully internalize the e�ect of their economic decisions on 
the spread of the virus. �eir results show that an optimal containment strategy that starts early and ramps up 
with infections, can cause a large recession but save about half a million lives, assuming no treatment or vaccines 
are available. A counterfactual scenario analysis  in5 shows that a delay of 4 weeks in applying control measures 
would have slowed the decay of the epidemic by 49 days in China. Work  by6 shows that strict control measures 
in China led to a steep drop in the temporal e�ective reproduction number, a metric used for assessing the 
e�cacy of interventions.

Work  by7 shows that di�erential targeting of risk/age groups outperform uniform social distancing policies. 
Most of the economic gains in this study are realized from implementing stricter lockdown policies on the 
oldest age group. However a fully targeted policy can be challenging to implement and ethically questionable. 
Baker et al.8 characterize the uncertainty using stock market volatility measures, newspaper-based measures 
of uncertainty and survey-based perceptions of business level uncertainty; and �nd that more than half of the 
contraction in US economy is caused by COVID-induced uncertainty.

Toda (2020)9 uses an SIR model to study the impact of the epidemic on the stock market. Jones et al.10 use an 
SIR contagion model and a model for consumption and production to analyze optimal mitigation policies and 
interactions between economic activity and epidemic dynamics. �ey discuss congestion externality i.e. when 
hospital capacity is exceeded, the risk of death becomes higher but agents do not internalize the impact of their 
decisions on others and therefore behave in a socially sub-optimal way. Other papers that study the economic 
impact of COVID-19 and pandemics  are11–14.

�e ripple e�ects of pandemics across a regional economy are studied using an input–output model  in15,16. �e 
impacts of pandemic-induced workforce disruptions are assessed using economic losses as well as inoperability, 
which measures the extent to which sectors are unable to produce their ideal level of output.

�e novelty of our research lies in building a detailed integrated system that combines a network based 
population model with an epidemiological model and an economic model. �e disease spreads on the social 
network, as determined by the COVID-19 disease model; non-pharmaceutical interventions remove particular 
edges in the social network depending upon the type of interventions and compliance rate; the duration of the 
interventions determine the length of the time edges are removed for; the outcome of the spread is captured 
in terms of infections and deaths, which determine the shock to labor-supply in speci�c economic sectors, as 
determined by the occupation of individuals who are sick or dead, as well as those who are healthy but unable 
to work due to a lockdown. �ese shocks as well as the interdependencies between the sectors determine the 
sectoral and overall economic impact.

Data and methods
�is research integrates a variety of datasets to build a comprehensive model that includes individuals, their 
interactions, their health states over time as the disease spreads over the social contact network, their behaviors 
in terms of compliance with interventions and its e�ect on their health states, and the impact of their health 
outcomes on each economic sectors’ labor supply and hence sectors’ output. �ese datasets include, but are not 
limited to, demographics data from the US Census, daily activity data from American Time Use Survey, travel 
data from National Household Travel Survey, location data from Open Street Maps, disease model parameters 
from the US Centers for Disease Control and Prevention, medical costs from Kaiser Family Foundation, data on 
dependencies between industries from the US Bureau of Economic Analysis, and telecommunting data  from17. 
Further details on how these datasets and other data are used in our models are given in the subsections below. 
Figure 1 shows the overall systems level architecture of the modeling framework, its various components and 
how they are linked together. Below we describe the various models used in this framework and how they have 
been synthesized to build an integrated system.

Social contact networks. We use a synthetic social contact network generated using the methodology 
provided  in18–20 and used  in3,21–27 to study the spread of COVID-19. �e social contact network is constructed 
using a �rst-principles approach that integrates various commercial and open databases through the following 
4 steps. Step 1 constructs a synthetic population of the US by using datasetssuch as the US census block group 
level distribution data and Public Use Microdata Sample (PUMS) data. Step 2 assigns daily activities to individu-
als within each household using activity and time-use surveys (American Time Use Survey data and National 
Household Travel Survey Data). Step 3 assigns a geo-location to each activity that each person performs. �e 
geolocations are based on data from Dun and BradStreet, land-use, Open Street Maps etc. Step 4 constructs a 
dynamic social bipartite visitation network, when people visit locations for performing activities. A dynamic 
social contact network is obtained from the colocation of individuals, where nodes are individuals and edges 
are the contact times. �ese types of networks have been validated and used to study various infectious diseases, 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20451  | https://doi.org/10.1038/s41598-021-99712-z

www.nature.com/scientificreports/

interventions, and public health policy questions. For details on these studies and on the methodology to gener-
ate synthetic social contact networks,  see19–21,23,28–31.

Each individual in the social network is endowed with a list of demographic attributes such as age, gender, 
income, occupation, family size, family income etc. consistent with the data provided by the US Census. A 
person’s occupation and the associated sector to which the occupation is linked, along with the health state 
(susceptible, infected or dead) of the person, are used to determine the sector level interruption in labor supply 
on any day that arises from sickness, mortality or stay-home order. �is is the critical piece that joins the disease 
model with the economic model.

Disease model. �e disease model is the best guess version of “COVID-19 Pandemic Planning Scenarios” 
prepared by the US Centers for Disease Control and Prevention (CDC) SARS-CoV-2 Modeling  Team32. It is an 
SEIR (Susceptible-Exposed-Infectious-Recovered/Dead) model where each individual at any given time is in 
one of these health states. Everyone starts in the susceptible health state except for the seed nodes who begin 
in the infected state. Once a susceptible person is exposed to the disease, s/he stays in the exposed state for the 
incubation period. A�er that, they move to infectious state. �e infected individuals are further divided into 
presymptomatic, asymptomatic, and symptomatic health states. Only the symptomatic individuals may seek 
medical care and some of them may become hospitalized while others recover. �e hospitalized individuals may 
further need to be on ventilators. �e �nal health state of the infected is either recovered or dead.

�e disease states and transition paths are shown in Fig. 2. �e �nal disease state can be reached through 
multiple paths. �e transition probabilities for each health state are shown in the Supplemental Information. 
�e model is also age strati�ed for the following categories i.e. preschool (0–4 years), students (5–17) adults 
(18–49), older adults (50–64) and seniors (65+) and calibrated for each of the age groups separately. We use the 
disease model parameters as given by the CDC and do not analyze the sensitivities of disease model parameters 
to infections and deaths since our focus here is on understanding the e�ect of interventions and the parameters 
associated with interventions. �e number of deaths simply depend on the number of infections. Age strati�ed 
probabilities of death are assigned to infected individuals at di�erent stages of their health state. More details 
on the disease model, its parameters, and the dynamic values of e�ective reproduction number under di�erent 
scenarios are available in the Supplemental Information.

Non‑pharmaceutical interventions. We apply a number of social distancing strategies to mitigate the 
spread of COVID-193. We assume there are no vaccines available and non-pharmaceutical interventions (NPI) 
are the only way to control the spread of COVID-19. We use the following NPI strategies: (i) Voluntary home 

Figure 1.  �is �gure shows the overall modeling framework, its various components and their linkages.

Figure 2.  Disease states and transition paths in the COVID-19 disease model.
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isolation (VHI)—symptomatic people choose to stay at home (non-home type contacts are disabled) for 14 days. 
(ii) School closure (SC)—schools and colleges are closed (school type contacts are disabled). (iii) Stay home 
(SH)—a lockdown order directs people to “stay-home” (non-home type contacts are disabled).

School closure and stay-home interventions start on di�erent days in di�erent states as stated  in33,34. Once 
closed, schools are assumed to remain closed until end of August. �e duration and compliance to social distanc-
ing measures vary across scenarios as shown in Table 1.

Stay-home durations are set at 0, 30, 45 to 60 days. Compliance to SH and VHI are set at 60%, 70%, 80% and 
90%. Table 1 lists all the scenarios including the unmitigated one. For each experimental cell, 25 simulation rep-
licates are run and results are shown based on the average values across these runs. Table 2 shows the parameters 
used in the experiments for easy reference.

Medical costs. Medical cost of treating COVID-19 patients under di�erent health states are taken  from3,35, 
which provide the average payment for treating pneumonia cases among “large employer health insurance” 
plans, and under di�erent severity levels. See Table 3. In the absence of COVID-19 treatment cost data, the 
pneumonia estimates have been used as a proxy. Note that each infected individual’s medical cost is counted only 
once. For example if a person is in ventilated state, a�er having gone through “medAttend” and “Hosp” state, 
costs are cumulative to the “vent”  state3.

To estimate the medical costs of COVID-19 for each scenario, we multiply the number of medically attended, 
hospitalized, and ventilated with the estimated treatment costs per person given in Table 3. �is is repeated for 
each replicate in the simulation and the average estimates are reported. Note that an earlier paper focuses entirely 
on the medical  costs3 and provides more details on medical costs to the interested reader.

Economic sectors and their interdependencies. We use the summary level input–output (I–O) tables 
for 2018 downloaded from the US Bureau of Economic Analysis (BEA)36, which quantify how industries depend 
on each other and interact with each other, to capture the cascading e�ect of labor supply shock across indus-
tries. �e entire economy is divided into 71 industries; the I–O data re�ects the structure of the US economy 
and the relative importance of each industry with respect to all other industries. We follow the NAICS (North 

Table 1.  Terminology of counterfactual scenarios: VHI and SH refer to “voluntary home isolation” and 
“stay-home” order respectively.  VHI and SH compliance rates can vary between 60 and 90% and the duration 
of SH order can be 30, 45 or 60 days. �e �rst two numbers in the scenario name indicate compliance rate 
and the last one indicates the duration of the stay-home order.sparabreakVHI and SH compliance rates can 
vary between 60 and 90% and the duration of SH order can be 30, 45 or 60 days. �e �rst two numbers in the 
scenario name indicate compliance rate and the last one indicates the duration of the stay-home order.

SH duration (in days)

VHI and SH compliance rates

60% 70% 80% 90%

0 None (unmitigated)

30 VHI_60_SH_60_30 VHI_70_SH_70_30 VHI_80_SH_80_30 VHI_90_SH_90_30

45 VHI_60_SH_60_45 VHI_70_SH_70_45 VHI_80_SH_80_45 VHI_90_SH_90_45

60 VHI_60_SH_60_60 VHI_70_SH_70_60 VHI_80_SH_80_60 VHI_90_SH_90_60

Table 2.  Variables used in the simulation experiments.

Variables Parameter values

Region simulated US

Number of replicates 25

Number of days simulated 365

Duration of stay-home (SH) order 0, 30, 45, 60 days

Stay-home (SH) compliance rate 60%, 70%, 80%, 90%

Voluntary home isolation (VHI) compliance rate 60%, 70%, 80%, 90%

Table 3.  Average cost of medical care under di�erent health  states35.

Health state Average medical treatment costs per person

Medically-attended $9763 (cost of treating pneumonia without complications)

Hospitalization $13,767 (cost of treating pneumonia with complications or comorbidity)

Ventilator $61,168 (cost of treating pneumonia with ventilator)
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American Industry Classi�cation System) codes to aggregate the I–O data to sector level (21 sectors). Figure 3 
shows the interdependencies between the 21 sectors. �e row sectors of Fig. 3 provide input to the column sec-
tors of the �gure.

Data on telework by sector. During the stay-home order, some individuals are able to work from home. 
However, the ability to work from home (WFH) and the productivity of WFH workers vary by the type of sector 
the individuals are employed in. Authors  in17,37 estimate the number of jobs that can be done from home in the 
US. Work  in17 combines the feasibility of working from home by occupation, with occupational employment 
counts, and determines that 37% of all jobs in the US can be done from home.

Although this is not uniform across all sectors and cities; sectors like computing, education, legal and �nancial 
can be largely operational from home but construction, farming and hospitality cannot  be17, provides the fraction 
of jobs that can be done from home by NAICS (North American Industry Classi�cation System) and by SOC 
(Standard Occupational Classi�cation) occupation. We use this fraction for each sector (as shown in Fig. 4) to 
determine the fraction of labor that can work from home. In  addition17, provides the fraction of teleworkable 
wages for each sector. Together, these fractions determine the level of productivity that can be maintained dur-
ing a lockdown by the healthy workforce in each sector. �e health of each individual is tracked by the disease 
model given in section 3.2.

Figure 3.  �is �gure shows interdependencies between sectors as given by the US Bureau of Economic 
Analysis. �e le� sector �ows are input to right sectors.

Figure 4.  �is �gure shows the fraction of jobs in each sector that can be done from home. While jobs in 
accommodation, agriculture, retail, construction, and transportation sectors are di�cult to be done from home, 
those in education, professional, management, �nance, and information sectors can be largely operational from 
home.
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Input–output model. We use the Dynamic Inoperability Input–Output Model (DIIM) stated  in16,38 to 
study the e�ect of labor supply shock arising from the morbidity and mortality caused by COVID-19, as well as 
the enforcement of the stay-home order, on national productivity. �e DIIM model uses the classic input–output 
(I–O) economic analysis of Leontief (1935)39 to account for the interdependencies between sectors.

I–O models have proven useful in accounting for the �ows of goods and services across producing and con-
suming sectors of the economy. In the US, the Bureau of Economic Analysis is responsible for publishing I–O 
tables, gross domestic product, and other economic multipliers that are useful for conducting impact analysis 
of disasters. Each sector requires inputs from other sectors, and in turn produces outputs that are either used 
as intermediate inputs by other sectors or �nished goods or services to satisfy exogenous �nal demands. Aside 
from the intermediate inputs, the so-called “value added” is a category of production inputs that are considered 
exogenous to the interdependent sectors. Within the “value added” is labor, which is the focus of this paper since 
it is the factor of production that is rendered “inoperable” by the pandemic. �e DIIM quanti�es the initial sector 
inoperability parameters by determining the extent to which labor is impacted in each sector.

Additionally, it allows modeling of resiliency parameters within the I–O model to signify sector wise recovery 
rates. Of particular relevance to this paper are resilience strategies, such as teleworking, that a sector can imple-
ment in order to reduce the impact of labor availability on its production of goods and services. We use the DIIM 
model to estimate the direct e�ect of drop in labor supply to each sector due to sickness, deaths and lockdown, 
as well as the indirect e�ect to sectors that arise due to interdependencies between sectors.

Depending upon the scenario considered in the simulation, appropriate interventions are applied to the 
social network. �e interventions result in removal of edges on a temporal basis in the social contact network. 
For example, a stay-home order results in removal of all non-home edges of the compliant individuals for the 
duration of the order. �e COVID-19 disease model is seeded and run on this time-varying social contact net-
work over a period of one year. Everyone in the population is assumed to be susceptible at the beginning of the 
simulations except the seed nodes or the index cases, which are assumed to be infected. As the disease spreads 
through the network, the simulation generates a time series of daily infections. �e infected individuals are 
further divided into medically attended, hospitalized, ventilated and dead, based on the probabilities assumed 
in the disease model.

To calculate the labor supply shock to each sector and its impact on productivity, we estimate (i) the number 
of infected and dead each day in each sector (using occupation and NAICS codes) and calculate the fraction of 
labor that is unable to work; (ii) the healthy individuals who comply with the stay-home order and do not go to 
work, and also cannot work from home given their occupation-type, as determined by telecommuting data for 
each  sector17; and (iii) healthy individuals who can work from home but their productivity is reduced as sug-
gested in the teleworkable wages for each sector  in17.

Results and discussion
We calculate the economic losses under the unmitigated scenario and the mitigation scenarios. Mitigation e�orts 
help control the spread of the disease and hence reduce the total number of infections but they also increase the 
economic losses due to social distancing measures like the stay-home order. �e compliance to NPIs and the 
length of the NPIs determine the extent of the loss, which can be weighed against the bene�ts measured in terms 
of reduced number of infections and deaths.

Economic losses due to inoperability and NPIs. Figure 5 shows the economic losses due to the inop-
erability of sectors under di�erent NPIs and the infections caused by the pandemic. �e le� sub�gure does not 
include the economic burden imposed by the treatment and medical services given to the infected individuals.

Lockdown and other social distancing measures reduce the labor supply to sectors but these measures do not 
uniformly a�ect each sector’s output. Depending upon how labor-intensive a sector is, how many jobs can be 
done from home, and how much value each job generates in a sector, the lockdown has a di�erential impact on 
each sector. For example, Education, Professional services, and Management sectors are teleworkable at 80% or 
higher levels whereas Accommodation (includes hospitality and food services) is at 3% and Agriculture is at 7%.

Inability to work from home in Construction and Agriculture sectors should imply more losses in these 
sectors. However we �nd that the losses are higher in Education, Professional services and Management sectors 
because jobs in these sectors pay more on average than the jobs in Construction and Agriculture sectors. Hence 
even a 20% loss in work in the former sectors can result in a higher total loss in value compared to a 90% loss 
in work in the latter sectors.

Overall economic losses from inoperability also depend on the level of dependency each sector has on others. 
Agriculture and Construction sectors have a higher level of dependency on other sectors compared to Educa-
tion, Professional and Management sectors as shown in Fig. 3. �e lack of self-reliance increases the potential 
for losses caused by the cascading e�ect from other sectors.

�e results in le� Fig. 5 show that as the duration of SH order increases, the economic losses increase for a 
given compliance rate. �is is because a longer SH order implies that healthy individuals are not able to work. 
A longer SH order also reduces the number of infections and deaths and hence improves labor supply and 
productivity. �ere is less absenteeism due to sickness and death, and less cascading e�ect on other sectors. �e 
overall drop in productivity from a longer SH order shows that the gain in productivity from fewer infections 
and deaths is less than the loss from a longer shutdown. However SH order saves tens of thousands of lives and 
millions of infections as described in Section 4.4.

In the unmitigated base case, the economic loss is low but the loss due to morbidity and mortality is high. �e 
healthy individuals are assumed to be working in the unmitigated scenario since no NPIs are in e�ect. �e drop 
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in productivity is caused only by the drop in labor supply due to illness and deaths since there is no lockdown in 
place. However, in the unmitigated case, more than 117,000 lives are lost and over 116 million infections occur.

Economic losses due to inoperability, NPIs and medical treatments. In Fig. 5, the right sub�gure 
shows the losses that are included in the le� Fig. 5 plus the economic burden caused by the medical treatment of 
the ill. Note that the total loss in the unmitigated case without medical costs is $0.38 trillion in le� Fig. 5 whereas 
with medical costs, this loss increases to $1.15 trillion as shown in the right Fig. 5. �e extra $0.8 trillion is solely 
due to the medical costs of treating infections in the unmitigated case. Note that for a given compliance level, a 
longer SH always results in a higher loss. However for a given SH duration, a higher compliance may result in a 
lower or higher loss. �is would depend upon the relative gain from reduced infections versus the losses from 
SH of healthy individuals.

For example, in right Fig. 5 when the SH duration is set at 60 days, increasing compliance from 60 to 70% 
decreases the economic loss but increasing compliance from 70 to 80% increases the economic loss. �is is 
because compliance has a non-linear e�ect on losses. At low levels of compliance, the marginal e�ect of a small 
increase in compliance is high because it helps get the pandemic under control which implies less absentee-
ism due to illness and lower medical costs. An increase in compliance from 70 to 80% does not have the same 
incremental e�ect on infections because 70% compliance is already quite e�ective, but has a large e�ect on the 
inoperability of sectors because a larger critical mass of workers are staying home.

Trade‑offs between compliance and duration of lockdown. Both sub�gures in Fig.  5 show that 
there are tradeo�s between compliance and the length of the SH order. Low compliance can be compensated by 
a longer SH order and a shorter SH order can be combined with a higher compliance level to reach the same level 
of total loss. For example, in le� Fig. 5, a 60% compliance rate combined with a 60 days of SH results in similar 
total loss as a 90% compliance rate combined with a 45 days of SH.

�e best outcome is reached when the lockdown is for 30 days and the compliance rate is at least 80%, as 
shown in the right Fig. 5. It is clear that a lengthy SH order is harmful to the economy so a short SH order com-
bined with a high level of compliance is ideal. Note that these tradeo�s and losses do not include the long term 
e�ect of deaths, i.e. the permanent loss in productivity, and only consider loss in labor supply for the duration of 
the simulation. �e number of deaths depend on the duration and compliance to NPIs and are an important met-
ric in measuring the outcomes. Later plots show the number of infections and deaths averted under each scenario.

Infections and deaths averted versus economic loss. Figures 6 and 7 show the trade-o� between the 
number of infections-averted and economic losses, as well as the number of deaths-averted vs. economic losses 
respectively, under each of the intervention scenarios. Several important observations can be made from these 
plots: (i) �e base case, where no NPIs are in place has the least loss but results in over 100 million infections and 
over 100,000 deaths. (ii) �e trend for both morbidity and mortality is the same under di�erent scenarios. (iii) 
Losses rise with longer durations of SH order. (iv) A SH order of 45 days results in same economic loss whether 
the compliance is at 70% or 80%. However the numbers of infections and deaths averted are much higher at 80% 
compliance. (v) Similarly, once 90% compliance is reached, an increase in SH duration from 45 to 60 days does 
not reduce infections and deaths but adds more than one trillion in economic losses. (vi) A longer lockdown 

Figure 5.  �e le� sub�gure shows I–O economic losses (without medical costs) due to NPI measures and 
infections for each of the scenarios. �e percentages show compliance to NPIs and “d” is for the duration of the 
Stay-home order. �ese losses arise from the drop in labor supply to sectors, caused by the lockdown, illness 
and mortality, and from interdependencies between sectors. It does not include the economic burden imposed 
by the treatment and medical services provided to the infected individuals, whereas the right sub�gure includes 
this medical burden.
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can compensate for the lack of compliance and a higher compliance can reduce the duration of the lockdown 
in order to achieve similar number of infections and deaths but these trade-o�s are non-linear. �ese kinds of 
analytics are useful in informing public health policy.

An intuitive display of di�erences in medical loss, total loss, infections averted and deaths averted, by sce-
narios, is shown through the heat maps in the Supplemental Information.

Sector level economic losses. We calculate sector level losses to understand how each sector will be 
impacted under di�erent intervention scenarios. Figure 8 shows the daily loss across all sectors for each of the 
scenarios, including the unmitigated one. �e percentages show compliance to VHI and SH and “d” re�ects 
the duration of SH order. On the top the curves are clustered by the duration of SH order. �e longer the SH 
order, the wider the top is; re�ecting a more sustained loss at peak level during the lockdown period. Note that a 
second peak occurs only in scenarios where the compliance is low or compliance and duration both are low. As 
expected, the economic loss is higher in all intervention scenarios compared to the unmitigated scenario, since 
NPIs keep healthy people from going to work. However, as shown in Figs. 6 and 7 , these NPIs are able to avert 
over 100 million infections and over 100,000 deaths.

Figure 6.  Trade-o� between the number of infections averted and economic losses under each scenario. �e 
vertical and horizontal bars show the inter-quartile range.

Figure 7.  Trade-o� between the number of deaths averted and economic losses under each scenario. �e 
vertical and horizontal bars show the inter-quartile range.
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Figure 9 shows total loss for each sector and for each scenario, across time. �e unmitigated case, marked in 
black, shows the least amount of economic loss since there are no NPIs in place. For comparative analysis, we 
select a medium level scenario, VHI_70_SH_70_45 , and discuss in more detail. �is is highlighted and marked 
in orange. In most of the cases, the sectors that encounter biggest losses are Government, Durables, Health and 
Non-durables.

Figure 10 shows a detailed comparison of sectoral loss for the unmitigated and a mitigated scenario over time. 
�ese do not include any medical costs. �e le� sub�gure shows that without any mitigation, the highest losses 
occur in Government, Professional, Durables, Health and Finance sectors. Note that these losses are caused by 
loss in labor force due to sickness and deaths. �ere are no NPIs in e�ect in the unmitigated case. Even though 
inoperability is higher in sectors like Agriculture, Construction and Accommodation which tend to be more 
labor intensive, the value generated by the same proportional loss in labor is higher in Government, Professional, 
Durables, Health and Finance sectors due to their higher per capita productivity.

Detailed analysis of an intervention scenario. Here we provide a detailed sector level analysis of one of the 12 
mitigation scenarios. We pick VHI_70_SH_70_45 as an example case since it represents a mid-level scenario. 
�e right sub�gure in Fig. 10 shows daily losses in each of the sectors under this scenario and relative rankings of 
sectors when NPIs are in e�ect. �e top 5 sectors in terms of biggest economic losses are Government, Durables, 
Non-durables, Health and Retail.

Figure 8.  Daily I–O loss across all sectors for each scenario. �e unmitigated base case is shown by the black 
curve where no NPIs are in place. Percentages are compliance to NPIs and “d” is the duration of SH order.

Figure 9.  Sector level total loss for each scenario. �e black and orange markers are highlighted to show the 
unmitigated and mitigated case VHI_70_SH_70_45 respectively. Percentages are compliance to NPIs and “d” is 
the duration of SH order.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20451  | https://doi.org/10.1038/s41598-021-99712-z

www.nature.com/scientificreports/

Even though the inoperability in these sectors is not that high due to NPIs, these sectors have higher wages 
and represent higher values compared to sectors which are more labor intensive. Top 5 sectors that have the high-
est inoperability due to labor supply shock from mitigation are Accommodation, Retail, Agriculture, Transporta-
tion and Construction but their losses are relatively low because of the low wages in these sectors. Other major 
factors that a�ect the losses in each sector are the extent to which the employment and wages are teleworkable. 
For example, in the unmitigated case, the worst performers include Finance because even a small shock to labor 
supply in this sector causes a big loss in value compared to a similar shock to sectors like Agriculture; but in the 
mitigated case, Finance sector performs relatively better because 76% of its jobs and 85% of the wages in Finance 
are teleworkable, whereas in Agriculture it is only 7% and 13% respectively.

Even in the mitigated case the Government sector has the highest loss, partly because it is also the largest 
sector in the economy and partly because it has a very high dependency on Durables, Non-durables and Profes-
sional which themselves are hit hard. Additionally in the Government sector, only 41% of the jobs and 46% of 
the wages are teleworkable.

Best mitigation scenario. �e best mitigation scenario in terms of lives saved and infections averted is 
when the compliance is at 90% and SH duration is 45 days. See Figs. 6 and 7 . �is scenario results in a total 
economic loss of about $3.4 trillion dollars. However, it also saves more than 110,000 lives and 115 million 
infections compared to the unmitigated case. Assuming US federal government’s estimate of value of life which 
is $10 million per  person40,41, lowering the number of deaths would save $1.1 trillion and lowering number of 
infections would save medical costs equivalent to $0.8 trillion, resulting in a gain of about $1.9 trillion from the 
mitigation e�orts and a net economic loss of $1.5 trillion. �is kind of simulation based analysis can help prior-
itize epidemiological and economic goals, understand their trade-o�s, and guide public health policy.

Limitations
�is study does not consider the demand side shock to the economy that results in drop in demand for goods 
and services due to lower employment, lost wages, and uncertain economic conditions. Unlike the general 
equilibrium model where demand and supply shock result in price adjustment, the input–output model does 
not capture the price dynamics that arise from changes in demand and supply. �e treatment costs are average 
costs for treating pneumonia patients as available  from35 which do not vary by age, but only by severity of the 
case and these are used as proxies for COVID-19 medical costs.

Summary and conclusions
�is study estimates the epidemiological and economic impact of several counterfactual intervention scenarios 
to contain the spread of COVID-19. Results show that any intervention involving a stay-home order will result 
in signi�cant economic losses. However, the epidemiological impact of these interventions is dramatic. We �nd 
that interventions scenarios involving 45 days of SH order and a high compliance to NPIs can save more than 
110,000 lives and 115 million infections compared to the unmitigated case.

We perform a sector level impact analysis and �nd that losses depend on the level of labor supply shock, the 
ability of employees to work from home, the productivity of workers who work from home and the depend-
ency between sectors. �e sectors that are more labor intensive such as Agriculture and Construction are not 

Figure 10.  Sector level daily losses caused by the inoperability of each sector and its cascading impact on other 
sectors due to interdependencies between sectors. �e le� sub�gure shows losses for the unmitigated case. �e 
right sub�gure shows losses for the mitigated scenario VHI_70_SH_70_45. �e ordering of sectors in the legend 
is ranked by the height of the curve. Note that the scale of loss (y-axis) in the right sub�gure is ten times of the 
le� sub�gure.
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the worst performers because the per capita value generated is lower in these sectors compared to sectors like 
Government and Health.

Our results also show trade-o�s between the economic losses and the number of deaths and infections averted. 
A longer lockdown and/or a high compliance to NPIs result in higher economic losses but save lives and reduce 
the number of COVID-19 infections. �ere is also a trade-o� between duration of the lockdown and the rate of 
compliance to NPIs. If people are non-compliant to NPIs, public health policy-makers can increase the duration 
of the lockdown to get the same level of results in terms of infections and deaths averted.

Data availability
All the output data reported in the paper is available upon request, but restrictions apply on the commercially 
available data used in the construction of the social contact network and hence the availability of the social 
network data itself.

Code availability
Code developed to analyze the results and support the �ndings in this paper is available upon request, from the 
corresponding author.
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