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Abstract 47 

Context 48 

Advancing age is accompanied by accumulation of ill-health and shortening of chromosomal 49 

telomeres signifying biological ageing. Testosterone (T) is metabolised to 50 
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dihydrotestosterone (DHT) by 5α-reductase (SRD5A2) and to estradiol (E2) by aromatase 51 

(CYP19A1). Telomerase preserves telomeres, and T and E2 regulate telomerase expression 52 

and activity in vitro. 53 

Objectives 54 

To establish whether circulating T or its metabolites DHT or E2, and single nucleotide 55 

polymorphisms (SNPS) in SRD5A2 or CYP19A1 associate with leucocyte telomere length 56 

(LTL) in men. 57 

Participants and methods 58 

Early morning serum T, DHT and E2 were assayed using mass spectrometry, and SRD5A2 59 

and CYP19A1 snps and LTL analysed by PCR in 980 men from the Western Australian 60 

Busselton Health Survey. LTL was expressed as the T/S ratio.  61 

Results 62 

Men were aged (mean±SD) 53.7±15.6 years. LTL decreased linearly with age, from T/S ratio 63 

1.89±0.41 at <30 years to 1.50±0.49 at 70 to <80 years (r=-0.225, p<0.0001). After 64 

adjustment for age, DHT and E2 were positively correlated with LTL (DHT r=0.069, 65 

p=0.030; E2 r=0.068, p=0.034). The SRD5A2 rs9282858 polymorphism was associated with 66 

serum DHT but not with LTL. Three dominant alleles of CYP19A1 were each associated 67 

with lower serum E2 and shorter LTL: rs2899470 T (E2 59.3 vs 68.6 pmol/L, p<0.0001; T/S 68 

ratio 1.54 vs 1.62, p=0.045), rs10046 C (60.5 vs 68.1 pmol/L, p=0.0005, 1.54 vs 1.62, 69 

p=0.035) and rs700518 A (59.9 vs 68.9 pmol/L, p<0.0001, 1.54 vs 1.63, p=0.020). A single 70 

copy haplotype C/T/I/A/T rs10046/rs2899470/rs11575899/rs700518/rs17703883 (52% 71 

prevalence) was associated with both lower E2 and shorter LTL. 72 

Conclusions 73 

In men, serum DHT and E2 correlate with LTL independently of age. Aromatase gene 74 

polymorphisms include 3 dominant alleles which are associated with both lower serum E2 75 
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and shorter LTL. E2 influences telomere length in vivo thus warranting further studies to 76 

examine whether hormonal interventions might slow biological ageing in men.  77 

 78 

Introduction 79 

Telomeres are essential DNA-protein complexes at the free ends of chromosomes comprising 80 

TTAGGG repeats, which protect the ends from fusion and degradation [1]. Conventional 81 

DNA replicative enzymes cannot fully replicate telomere ends, thus their length is 82 

progressively shortened with each mitotic cell cycle. Attrition of telomeres has been thought 83 

to result in cellular senescence, characterised by alterations in gene expression, cell cycle 84 

arrest and ultimately loss of viability when telomere length declines to a critical value [2,3]. 85 

Of note, telomere homeostasis is a dynamic process with telomere shortening being 86 

countered by the activity of telomerase, the reverse transcriptase enzyme responsible for 87 

elongating telomeres by addition of telomeric repeats to chromosomal ends [1]. Life stress 88 

has been associated with shorter telomeres [4]; conversely comprehensive lifestyle changes 89 

can influence telomerase activity and not only preserve, but increase telomere length over 90 

time [5]. Cross sectional and longitudinal studies have reported consistent reductions in 91 

telomere length with increasing age (for review, see [6]). However, it remains unclear 92 

whether chronological age alone drives the shortening of telomeres, as opposed to reflecting 93 

the cumulative influence of adverse environmental or physiological factors, and 94 

cardiovascular or other diseases [7]. Thus telomere length represents a cellular marker for 95 

biological ageing, and factors which predict increased telomere length offer potential avenues 96 

for interventions to preserve health.  97 

 98 

A sexual dimorphism exists above fifty years of age when men have shorter telomeres (and 99 

life expectancy) compared with women [8]. Hormonal regulation of telomerase activity and 100 
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hence telomere length could be considered as a possible explanation. Testosterone (T) is the 101 

principal male sex hormone whose production is regulated by pituitary luteinising hormone 102 

(LH), and which circulates bound to sex hormone-binding globulin (SHBG). T is metabolised 103 

by 5α-reductase (SRD5A2) to the more potent androgen dihydrotestosterone (DHT), and by 104 

aromatase (CYP19A1) to the most potent estrogen, estradiol (E2) [9]. T increased telomerase 105 

expression and activity in ovarian cancer cells [10], while both the synthetic androgen 106 

methyltrienolone and E2 increased telomerase activity in cultured peripheral blood 107 

lymphocytes [11]. In breast, prostate and liver cells, E2 increased telomerase expression and 108 

activity [12-14].  109 

 110 

Although the experimental data are suggestive, human data exploring the association of 111 

hormones with telomere length are limited. Peripheral blood is a convenient source of DNA 112 

in which to assess leucocyte telomere length (LTL) which correlates with telomere length in 113 

skin and other tissues [15-17]. In post-menopausal women use of hormone replacement 114 

therapy has been associated with preservation of LTL [18,19]. In a study of 110 men aged 71-115 

86 years, telomere length was inversely correlated with age, but not serum T or E2 measured 116 

with immunoassay, and shorter LTL was associated with bone loss [20]. However, 117 

immunoassays for sex steroid hormones such as T may exhibit non-specificity and method-118 

dependent bias thus a larger sample size and accurate measurement of sex hormones using 119 

mass spectrometry would be preferable.  120 

 121 

While both T and E2 have been identified as hormones increasing telomerase activity in cells, 122 

it remains uncertain whether either influences LTL in vivo in men. Furthermore, an 123 

association of DHT with LTL has not been explored. The question arises as to whether in 124 

men, lower levels of T or its biologically active metabolites, DHT and E2, might be related to 125 
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shorter telomere length; and if so whether shorter LTL could mediate associations of low T 126 

with ill-health. Functional polymorphisms of the CYP19A1 gene vary the activity of the 127 

enzyme in converting T to E2 [21]. This equates to a genetically determined exposure since 128 

birth, allowing an analysis of outcomes at a specific time-point to encompass a lifetime of 129 

exposure to risk. There are fewer recognised polymorphisms of the SRD5A2 gene which 130 

influence catalysis of T to DHT [22]. We tested the hypothesis that higher concentrations of 131 

sex hormones measured using mass spectrometry would be independently associated with 132 

longer LTL in men, then extended these findings by performing Mendelian randomisation 133 

studies to explore causality using CYP19A1 and SRD5A2 polymorphisms affecting 134 

circulating E2 and DHT respectively. 135 

 136 

Methods 137 

Study population 138 

The Busselton Health Study (BHS) is based in the coastal region of Busselton in Western 139 

Australia with a predominantly Anglo-Celtic population [23]. A series of cross-sectional 140 

surveys were conducted over 1966-1987 in this population. Surviving participants of these 141 

surveys were invited to participate in a follow up survey in 1994/95. On this occasion, 2,143 142 

men aged 17 to 97 years participated and provided blood and leucocyte DNA samples for 143 

analysis. The 1994/95 survey was approved by the Human Research Ethics Committee of the 144 

University of Western Australia (Ethics 05/05/004/B74) and all participating men provided 145 

written consent. 146 

 147 

Assessment of medical comorbidities 148 

Methods used in the Busselton Health Survey have previously been described [23]. A 149 

comprehensive health and lifestyle questionnaire and physical assessment were completed. 150 
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The questionnaire identified smoking history, alcohol consumption, minutes of modest- and 151 

vigorous- intensity leisure time physical activity per usual week, diabetes and medications. 152 

Alcohol consumption was labelled ‘light’ if consumption was ≤140g/week and ‘heavy’ if 153 

consumption was >140g/week. Blood pressure, height and weight were recorded. Body mass 154 

index (BMI) was defined as weight (kg) divided by height (m) squared. Further assessment of 155 

medical comorbidities was performed using the Western Australian Hospital Morbidity Data 156 

System, which records all hospital admissions to public and private hospitals in Western 157 

Australia [24]. Hypertension was defined based on self-reported use of antihypertensive 158 

medications at the survey or a history of hospital admissions with hypertension (ICD-9 codes 159 

401-405). Diabetes was based on self-reported doctor-diagnosed diabetes or use of glucose-160 

lowering treatment at the survey, or a history of hospital admissions with a diagnosis of 161 

diabetes (ICD-9 code 250). History of CVD was defined as having any hospital admission for 162 

CVD (ICD-9 codes 390-459) during the 15 years before the survey (i.e. 1980-1994). 163 

 164 

Biochemical assessments 165 

Blood samples were collected in the early morning after an overnight fast and serum was 166 

subsequently stored at -70°C until time of analysis. Serum T, DHT and E2 were quantified 167 

within a single LC-MS run without derivatization using atmospheric pressure photo-168 

ionization for positive mode for androgens and negative mode for estrogens, from 200 μL 169 

samples as previously described [25]. Between-run imprecision was T 8.6% at 5.3 nmol/L 170 

and 7.9% at 26.9 nmol/L, DHT 11.3% at 1.3 nmol/L and 9.1% at 5.3 nmol/L, E2 14.5% at 73 171 

pmol/L and 9.9% at 279 pmol/L. Sex hormone binding globulin (SHBG) was assayed using a 172 

solid-phase, two-site enzyme immunometric assay with chemiluminescent substrate 173 

(Immulite 2000xPi; Siemens Healthcare, Bayswater, Victoria, Australia) with between-run 174 

imprecision of 3.4% at 39.4nmol/L. Luteinising hormone (LH) was assayed using a two-step 175 
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noncompetitive chemiluminometric immunoassay (Abbott Architect, Abbott Diagnostics, 176 

North Ryde, NSW, Australia) with between-run imprecision of 5.6% at 4.8 IU/L. Fasting 177 

serum cholesterol, high-density lipoprotein (HDL) and triglycerides (TG) were determined by 178 

standard enzymatic methods on a Hitachi 747 analyser (Roche Diagnostics, Castle Hill, 179 

NSW, Australia). 180 

 181 

Analysis of polymorphisms in the 5α-reductase (SRD5A2) and aromatase (CYP19A1) genes  182 

SRD5A2 and CYP19A1 SNPS were analysed using Taqman® SNP genotyping assays, 183 

designed and supplied by Applied Biosystems (ABI proprietary sequences). Taqman 184 

genotyping was performed in 384-well plates according to the manufacturer’s protocol. 185 

Following PCR amplification, an allelic discrimination plate read was performed using an 186 

Applied Biosystems 7900HT Fast System. Genotyping was successful >98% of samples. 187 

Haploview [26] was used to determine the linkage disequilibrium between the CYP19A1 188 

SNPS. Analysis was restricted to common haplotypes observed at a frequency >5%.  189 

 190 

Measurement of leucocyte telomere length (LTL)  191 

We optimised a PCR-based methodology for accurate measurement of LTL utilising the 192 

protocol described by Cawthon et al [27]. Briefly, telomere lengths of the leucocyte DNA 193 

samples were measured by a multiplex quantitative PCR method. Each sample was amplified 194 

for telomeric DNA and for beta-globin, a single-copy control gene, which was used as an 195 

internal control to normalize the starting amount of DNA. The K562 cell line was used as a 196 

standard [28]. Periodic reproducibility experiments were performed to confirm adequate 197 

normalization. All samples, standards, and controls were run in triplicate, and the median 198 

value used for the analyses. A standard curve derived from K562 cell line was used to 199 

transform the cycle threshold into ng of DNA. The amount of telomeric DNA (T) was 200 
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divided by the amount of single-copy control gene DNA (S), producing a relative 201 

measurement of the telomere length (T/S ratio). The coefficient of variation for the 202 

quantitative PCR across all batches was <10%. We measured LTL in a random sample of 203 

1,146 men of the 2,143 men in the 1994/95 survey. 204 

 205 

Statistical analysis  206 

SAS version 9.4 was used to analyse the data. Results were expressed as mean and standard 207 

deviation (SD) for continuous data, and percentages for categorical data. Correlation 208 

coefficients were calculated for associations of age and hormones with T/S ratio, and then 209 

hormone associations adjusted for age. There was no evidence of non-linearity. For the 210 

Mendelian randomisation and haplotype analyses linear regression models with T, DHT and 211 

E2 as the outcome, and also with T/S ratio as the outcome, were fitted and included the 212 

categorical SRD5A2 and CYP19A1 SNP variables. Models were adjusted for age, smoking, 213 

vigorous exercise, alcohol, BMI, SBP, diabetes, hypertension, use of lipid-lowering 214 

medication and cardiovascular disease, as factors influencing health status in older men. A p-215 

value of <0.05 was considered significant. 216 

 217 

Results 218 

Characteristics of the study population 219 

We measured LTL in a random sample of 1,146 of the 2,143 men who participated in the 220 

survey. After excluding men who were taking androgens and anti-androgens (n=7), men who 221 

had a history of orchidectomy or prostate cancer (n=22) and men missing key variables 222 

(n=137), there were 980 men aged (mean±SD) 53.7±15.6 years who had hormones, SRD5A2 223 

and CYP19A1 snps, and LTL assayed. Baseline demographic, physical and biochemical data 224 
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are shown (Table 1). Mean BMI was in the overweight range, and the prevalences of diabetes 225 

and CVD were 7.7% and 20.0%, respectively. 226 

 227 

TABLE 1 228 

 229 

Inverse association of leucocyte telomere length with age 230 

There was a progressive decline in LTL with increasing age, from T/S ratio 1.89±0.41 at <30 231 

years to 1.50±0.49 at 70 to <80 years (Table 2). The estimated linear regression was: T/S 232 

ratio = 2.13 – 0.0081 age (p<0.0001). Thus for an increase of a decade in age, T/S ratio was 233 

lower by approximately 0.08. 234 

 235 

TABLE 2 236 

 237 

Associations of hormones with leucocyte telomere length 238 

Serum T and DHT were positively correlated with LTL (T r=0.098, p=0.002; DHT r=0.075, 239 

p=0.018) (Table 3). Of note, serum SHBG and LH were inversely correlated with age (SHBG 240 

r=-0.064, p=0.043; LH r=-0.079, p=0.013). After adjustment for age, serum DHT and E2 241 

remained positively correlated with LTL (DHT r=0.069, p=0.030; E2 r=0.068, p=0.034), but 242 

serum T, SHBG and LH did not.  243 

 244 

TABLE 3 245 

 246 

Associations of SRD5A2 and CYP19A1 polymorphisms with circulating hormones 247 

In regression models adjusting for age, smoking, exercise, alcohol, BMI, blood pressure, 248 

hypertension, diabetes and CVD, one SRD5A2 and six CYP19A1 polymorphisms were 249 
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identified which were associated with lower serum DHT or E2, respectively (Supplemental 250 

Table 1). In the case of the SRD5A2 rs9282858 polymorphism, two men with the AA allele 251 

were excluded from the analysis. The GA allele was associated with lower serum DHT 252 

compared with GG. In each of the CYP19A1 polymorphisms, the results fit a dominant 253 

model, with lower serum E2 in men with both the minor allele homozygote and the 254 

heterozygote genotypes, compared with the unexposed major allele homozygote genotype. 255 

For rs2470152 men with CT or TT had lower E2 concentrations compared with CC. 256 

Comparable results were seen for the other five polymorphisms: rs17703883 TC, CC vs TT, 257 

rs2899470 GT, TT vs GG, rs10046 CT, CC vs TT, rs700518 GA, AA vs GG and rs11575899 258 

ID, DD vs II. The dominant allele model was applied subsequently to the analysis of 259 

genotype associations with LTL. 260 

 261 

SUPPLEMENTAL TABLE 1 262 

 263 

Mendelian randomisation analyses of telomere length 264 

In regression models adjusting for age and other covariates, the SRD5A2 rs9282858 265 

polymorphism was not associated with any difference in LTL (Table 4). In the adjusted 266 

analysis three dominant alleles of CYP19A1 were associated with both lower serum E2 and 267 

shorter LTL: rs2899470 GT+TT vs GG (E2 59.3 vs 68.6 pmol/L, p<0.0001; LTL 1.54 vs 268 

1.62, p=0.045), rs10046 CT+CC vs TT (60.5 vs 68.1 pmol/L, p=0.0005, 1.54 vs 1.62, 269 

p=0.035) and rs700518 GA+AA vs GG (59.9 vs 68.9 pmol/L, p<0.0001, 1.54 vs 1.63, 270 

p=0.020). 271 

 272 

TABLE 4 273 

 274 
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Haplotype analyses of telomere length 275 

Deviations from Hardy-Weinberg equilibrium (HWE) at p=0.05 level were observed for the 276 

CYP19A1 SNPs (Supplemental Table 2). A linkage disequilibrium map shows that these 277 

SNPs are in high linkage equilibrium (Supplemental Figure 1). The four most common 278 

haplotypes with a frequency cut-off >5% were analysed in relation to circulating E2 and LTL 279 

(Table 5). There were two 2 copy haplotypes which were associated with differences in E2 280 

but not LTL. One 1 copy haplotype was associated with shorter LTL but no difference in E2 281 

(T/G/I/G/T rs10046/rs2899470/rs11575899/rs700518/rs17703883: T/S ratio 1.51 vs 1.62, 282 

p=0.013). The remaining three 1 copy haplotypes were associated with lower circulating E2. 283 

Of these, one that was present in 52% of the study population was associated with both lower 284 

E2 and shorter LTL (C/T/I/A/T rs10046/rs2899470/rs11575899/rs700518/rs17703883: T/S 285 

ratio 1.53 vs 1.61, p=0.024).  286 

 287 

Supplemental Table 2 288 

Supplemental Figure 1 289 

Table 5 290 

 291 

Discussion 292 

In community-dwelling men serum DHT and E2 correlate with LTL independently of 293 

chronological age, while some polymorphisms in the aromatase gene which reduce 294 

circulating E2 are associated with shorter LTL. These findings implicate exposure to DHT, 295 

and more particularly E2 as potential determinants of biological ageing in men. 296 

 297 

Our results contrast with the previous study of 110 men aged 71-86 years by Bekaert et al 298 

which measured serum T and E2 using immunoassay, and LTL using telomere restriction 299 
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fragment length analysis [20]. In that study, while age was inversely correlated, neither serum 300 

T nor E2 were associated with LTL. In our study age was inversely correlated with LTL, an 301 

apparent correlation of serum T with LTL was not robust after adjustment for age, while 302 

higher serum DHT and E2 remained associated with longer LTL independent of age. Our 303 

cohort was larger, and we measured T, DHT and E2 using mass spectrometry thus 304 

minimising the risk that immunoassay-related non-specificity or bias might have obscured an 305 

underlying association. The inverse associations of SHBG and LH with LTL were also 306 

nullified by adjustment for age, indicating the importance of the respective hormones, DHT 307 

and E2. 308 

 309 

In older men, the circulating androgens T and DHT can exhibit parallel associations with 310 

specific health outcomes, for example both low T and low DHT are independent predictors of 311 

incident stroke [29]. However, their predictive utility for poorer health outcomes can also 312 

diverge, with higher DHT but not T being independently associated with reduced mortality 313 

from ischaemic heart disease in older men [30]. Our results demonstrate an association of 314 

circulating DHT, rather than T, with LTL. The Mendelian randomisation analysis did not 315 

show any effect of the SRD5A2 rs9282858 AG vs GG on LTL, despite its association with 316 

lower serum DHT. However, the proportion of men carrying the AG allele was relatively 317 

small (7.2% of the cohort). 318 

 319 

The age-independent association of E2 with LTL in our cohort of men also is novel and the 320 

Mendelian randomisation analyses involving CYP19A1 polymorphisms offer some support 321 

for the concept of causality: that genetically determined differences in exposure to higher E2 322 

may result in better preservation of LTL. These findings in vivo are consistent with cellular 323 

studies demonstrating actions of E2 on telomerase expression and activity [12-14]. In other 324 
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cell models, androgens increase telomerase expression [10,11], in part via aromatisation to 325 

estrogen [11]. Three of the CYP19A1 polymorphisms we examined rs2470152, rs17703883 326 

and rs11575899 were associated with serum E2, but not with LTL. Of the three CYP19A1 327 

polymorphisms associated with both serum E2 and LTL, rs2899470 correlated with 328 

rs2470152 which has been associated with E2 in younger and older men [31], rs10046 has 329 

been associated with blood pressure in women [32] and rs700518 with E2 and bone density 330 

in men [33,34]. Our findings extend the recognised role of aromatase and E2 to regulate bone 331 

density in men [34], prompting consideration of a potential role for E2 in a broader context of 332 

biological ageing involving multiple tissues where telomere length mirrors LTL such as skin 333 

and synovium [15], vasculature [16] and muscle [17]. For the three CYP19A1 334 

polymorphisms influencing LTL, the dominant alleles were associated lower serum E2 335 

approximating 10 pmol/L and a shorter T/S ratio at around 0.08. Thus a modest reduction in 336 

circulating E2 was associated with a difference in LTL corresponding to an increase of a 337 

decade of chronological age. 338 

 339 

These findings need to be interpreted with care, as the relevant aromatase snps rs10046 and 340 

rs700518, and rs2899470 and rs10046, were in linkage disequilibrium with each other. The 341 

haplotype analysis identified one commonly expressed haplotype which was associated with 342 

both lower E2 and shorter LTL. However the overall results were not entirely consistent. Not 343 

all haplotypes associated with lower E2 were associated with shorter LTL, and one haplotype 344 

associated with shorter LTL was not associated with lower circulating E2. One possible 345 

explanation would be that circulating E2 and LTL are affected by common variables 346 

including age and BMI [6,25], and other unmeasured factors including life stress and lifestyle 347 

behaviours in the case of LTL [4,5]. Replication of these results in other large prospective 348 

cohorts would be important. We cannot fully discount the possibility that the results are 349 
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chance or coincidental findings, nevertheless the conjunction of age-adjusted associations 350 

between circulating hormones with LTL, and suggestive findings from some of the 351 

Mendelian randomisation studies, would allow us to postulate an underlying relationship 352 

between the two. 353 

 354 

Strengths of our study include the study of a large cohort of community-dwelling men, 355 

availability of early morning serum T, DHT and E2 measured by mass spectrometry, and 356 

SRD5A2 and CYP19A1 polymorphism data in addition to LTL results. Genetic assays were 357 

performed rigorously including the use of triplicates for LTL assay samples. We were able to 358 

undertake correlative analyses of hormone concentrations with LTL, and Mendelian 359 

randomisation analyses using SRD5A2 and CYP19A1 polymorphisms and LTL. Limitations 360 

of our study include the use of a single blood sample, albeit taken early in the morning to 361 

minimise effects of circadian variation on hormone concentrations, and the lack of additional 362 

informative SRD5A2 polymorphisms with only the rs9282858 polymorphism demonstrating 363 

differences in serum DHT. Several aromatase polymorphisms were in linkage disequilibrium, 364 

and not all the results of the genetic analyses were informative. We did not have serial blood 365 

samples to determine longitudinal changes in either hormone concentrations or LTL. Our 366 

study population is predominantly Caucasian and therefore our findings may not apply to 367 

other populations comprising other ethnicities or to women. 368 

 369 

Cellular senescence has been postulated as a consequence of telomere shortening below a 370 

critical threshold [2,3]. Even before telomere shortening reaches this stage, inactivation of 371 

telomerase results in accelerated ageing [35]. Consistent with a biomarker or a possible 372 

contributing factor for biological ageing, shorter LTL predicts age-related poorer health 373 

outcomes such as dementia and to an extent, with mortality [36,37]. Telomere length is 374 
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heritable, and loci affecting LTL are also associated with increased risk of coronary artery 375 

disease [38]. In that genome-wide meta-analysis, no CYP19A1 polymorphisms were 376 

identified as being associated with LTL [38]. Our results raise the question of whether 377 

interventions which increase circulating E2 would favour longer LTL, and thereby slow the 378 

process of biological ageing in men. Notably in this context, as an estrogen-response element 379 

is present in the promoter of the catalytic subunit of the telomerase enzyme, estrogen acting 380 

transcriptionally could stimulate telomerase activity [39]. In addition, whilst telomerase 381 

activity is repressed in many somatic tissues during extra-uterine life, it is present in highly 382 

proliferative tissues such as the haematopoietic system, testis and skin [40], thus potentially 383 

linking telomerase induction by estrogen with greater circulating LTL.  384 

 385 

Observational studies of men who were castrated have suggested an association with 386 

extended lifespan [41,42]. However, the studies were limited by potential selection biases, 387 

behavioural confounders and use of grouped controls [41,42]. Of note, individual case-388 

control studies of European castrati singers have shown no difference in life expectancy 389 

[43,44]. By contrast men with Klinefelter Syndrome exhibit increased mortality risk and 390 

reduced survival [45]. Our results warrant confirmatory studies in other populations, and 391 

provide a rationale for randomised placebo-controlled clinical trials to determine whether 392 

interventions which raise concentrations of T and its metabolites DHT or E2 could slow 393 

biological ageing and improve health outcomes in men. 394 

 395 

Conclusions 396 

In men, serum DHT and E2 correlate with LTL independently of age. Aromatase gene 397 

polymorphisms include 3 dominant alleles which are associated with both lower serum E2 398 

and shorter LTL. Haplotype analysis demonstrated one common haplotype which was 399 
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associated with lower serum E2 and LTL. While replication in other cohorts and further 400 

investigation of the effects of DHT are required, these results suggest a putative role for 401 

circulating E2 in the regulation of telomere length in vivo. Further studies are warranted to 402 

examine whether interventions involving T supplementation via its metabolism to DHT and 403 

E2 might slow biological ageing and thereby preserve health in men. 404 
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