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Abstract

In 2007 African swine fever (ASF) arrived at a Black Sea harbour in Georgia and in 2014 the infection reached the

European Union (EU), where it still expands its territory. ASF is a fatal viral disease affecting domestic pigs and wild

boar of all ages with clinical presentations ranging from per-acute to chronic disease, including apparently

asymptomatic courses. Until the detection of the first case inside the EU, infections in the current epidemic were

mainly seen among pig farms with generally low biosecurity, and with incidental spill over to the wild boar

population. In the EU, however, the infection survived locally in the wild boar population independently from

outbreaks in domestic pigs, with a steady and low prevalence. Apart from the wild boar population and the habitat,

the current epidemic recognizes humans as the main responsible for both long distance transmission and virus

introduction in the domestic pig farms. This underlines the importance to include social science when planning

ASF-prevention, −control, or -eradication measures.

Based on experiences, knowledge and data gained from the current epidemic this review highlights some recent

developments in the epidemiological understanding of ASF, especially concerning the role of wild boar and their

habitats in ASF epidemiology. In this regard, the qualities of three epidemiological traits: contagiousity, tenacity, and

case fatality rate, and their impact on ASF persistence and transmission are especially discussed.
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Background
African swine fever (ASF) is a fatal viral disease of pigs, af-

fecting domestic pigs and wild boar of all ages without sex

predilections [1]. Depending on virus strain and immuno-

logical status of the animal, infection can lead to a wide

range of clinical presentations varying from per-acute to

chronic disease, including apparently asymptomatic

courses [2, 3]. Infection with virulent strains typically

causes per-acute to acute lethal ASF with signs including

sudden death, high fever, hemorrhages in the skin and in-

ternal organs. The animals usually die within three to ten

days after infection and the case fatality rate can reach

90% or more [4, 5].

In most cases, high titers of ASF virus (ASFV) can be

found in the blood of infected animals from the time

they develop clinical signs. Thus, transmission through

contact with infected animals mainly happens once

clinical disease is evident. Transmission can either occur

directly through close contact with infectious animals or

indirectly through ingestion of infected pork products or

contact with fomites, and possibly via mechanical vec-

tors [6]. In addition, the virus can be efficiently transmit-

ted through the biological soft tick vector, genus

Ornithodoros spp., where this is present. However, the

Ornithodoros spp.is not considered to play a role in the

epidemiology of ASF in the current epidemic in Central

and Eastern Europe [7]. In absence of the tick vector,

the most efficient way of virus transmission is via direct

contact with blood from infected animals [8].

The ASFV strain in the current epidemic is a highly

virulent strain belonging to the genotype II [9–13]. The

epidemic started in Georgia in 2007 [14], and most

probably originated from improper disposal of infected

pork from a ship at the Black Sea harbour of Poti [15].

From Georgia the virus spread throughout the Caucasus

and the Russian Federation (RF), where the disease sub-

sequently became endemic [16, 17]. In July 2012, ASF

was reported from Ukraine and in June 2013 it was
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notified by Belarus [5]. In January 2014 ASF reached the

eastern borders of the European Union (EU) when the

very first cases of infected wild boar were reported from

Lithuania. In February the same year Poland reported its

first cases, followed by Latvia in June and Estonia in

September [18]. In the three Baltic States and Poland

the disease has become endemic in the wild boar popu-

lations [19], whereas the sporadic outbreaks occurring in

domestic pigs have been efficiently controlled preventing

extensive secondary spread [20]. The latest countries af-

fected in Europe are Belgium, Bulgaria, Czech Republic,

Hungary, Moldova and Romania, all with cases in wild

boar or outbreaks in domestic pigs in 2017 or 2018 (see

Fig. 1). In the EU over 12.000 cases in wild boar and

over 1.300 outbreaks in domestic pigs have been notified

since 2014 (see Table 1). Regarding the wild boar cases it

can be assumed that the real number is much higher

since not all wild boar which succumb from the disease

are found, tested and reported. Furthermore, reporting

frequencies are also affected by different control mea-

sures and reporting incentives within the affected

countries, e.g. by paying or not paying for hunting wild

boar or reporting dead animals.

This review aims to highlight some recent developments

in the epidemiological understanding of ASF, especially

concerning the role of wild boar and their habitats in ASF

epidemiology. The review is based on experiences, know-

ledge and data gained from the current epidemic in the

parts of Central and Eastern Europe where wild boar are

implicated.

Epidemiology
Until recently ASF epidemiology was described as com-

prising three independent epidemiologic cycles (sylvatic,

tick–pig, and domestic), involving soft Ornithodoros spp.

ticks, wild African pigs (mainly warthogs), domestic pigs,

and pig-derived products such as pork [21]. In the syl-

vatic cycle, ASFV circulates between the natural reser-

voirs of the virus (i.e., warthogs and soft ticks), without

causing disease in the vertebrate host [22]. This ancient

cycle is the origin of the tick–pig cycle and the domestic

cycle, and thus the origin of ASF as a disease. In the

Fig. 1 Notifications of cases in wild boar and outbreaks in domestic pigs in the European Union. Data extracted from the Animal Disease

Notification System from January 2017 until September 2018
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tick–pig cycle, the virus is mostly transmitted among do-

mestic pigs, with the ticks serving as a reservoir allowing

the virus to persist locally in the environment [23]. This

cycle has been described in parts of sub-Saharan Africa,

but also played an important role for the persistence of

the disease during the epidemic on the Iberian Peninsula

in the ‘60s and ‘70s of the past century [24]. In the do-

mestic cycle, which is the cycle involved in the vast ma-

jority of outbreaks of ASF globally [6], the virus is

transmitted among domestic pigs, or from pig products

to domestic pigs. This cycle does not involve the natural

reservoirs. The epidemiological pattern observed from

the current ASF epidemic in Central and Eastern

Europe, however, does not match any of the previously

described cycles. Rather it revealed an additional epi-

demiological cycle (see Fig. 2) including Eurasian wild

boar (Sus scrofa), the wild boar habitat and their car-

casses. This fourth cycle has been named the wild boar–

habitat cycle [25]. This cycle is characterized by both

direct transmission between wild boar, and indirect

transmission via the habitat. The habitat contamination

through ASFV infected wild boar carcasses offers possi-

bilities for new infections depending on landscape, time,

season and carcass decomposition [26]. Environmental

persistence of the virus is favored by cold and moist

climate.

Transmission
From the start of the current epidemic in 2007, until the

detection of the first case inside the EU in 2014, infections

were mainly seen among pig farms with generally low bio-

security, and with incidental spill over to the wild boar

population. At that point in time it was predicted that the

disease would spontaneously fade out from the local wild

boar population as soon as the disease was under control

in the domestic pig population, due to the high case fatal-

ity rate and the absence of long-time carriers [27]. How-

ever, in the ecological context which prevailed in Poland

and the Baltic states this epidemiological hypothesis

proved to be wrong. The infection survived locally in the

wild boar population independently from outbreaks in do-

mestic pigs, with a steady and low prevalence below 5%

and a local transmission speed of 2–5 km/month [28]. In

addition to the local transmission within the wild boar

population, long distance jumps responsible for disease in-

cursion into areas far from known infected regions oc-

curred. In the EU the most recent events of such long

distance ASF spread took place in the Czech Republic

(Zlin area), Poland (area of Warsaw), Hungary and

Belgium. These recently infected areas were each several

hundreds of kilometers away from previously known in-

fected regions. Likewise, in early March 2017 an ASF

Table 1 ASF notification in domestic pigs and wild boar in the

EU since January 2014 until September 2018

Year Domestic pig
holdings

Wild boar Countries

2014 40 264 LV, LT, EE, PL

2015 42 1639 LV, LT, EE, PL

2016 48 2300 LV, LT, EE, PL

2017 124 3855 LV, LT, EE, PL, CZ, RO

2018 1123 4024 LV, LT, EE, PL, CZ, RO,
HU, BG, BE

TOTAL 1377a 12,082

aOut of these outbreaks 954 occurred in Romania

Data extracted from the Animal Disease Notification System. Italy/Sardinia is

excluded and only cases and outbreaks caused by ASFV genotype II

are summarized

Fig. 2 The four transmission cycles of ASF with the main transmission agents depicted. The role of the bushpig in the sylvatic cycle remains

unclear. Illustration: Magdalena Hellström, photographs by Erika Chenais, Klaus Depner and Karl Ståhl. The figure was originally published in

Emerg Infect Dis 24, 810
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outbreak was reported from the Irkutsk Region in the RF,

close to the Mongolian border, more than 4000 km away

from the nearest outbreaks in the European parts of the

RF [29], and more recently in August 2018 a first outbreak

was reported from the province of Liaoning in

north-eastern China [30]. The described long-distance

jumps are most probably attributable to human activities

(anthropogenic factors), e.g. transport of contaminated

meat or meat products ending up as waste or kitchen left-

overs either in pig stables or in natural environments

inhabited by wild boar [31–33]. These examples demon-

strate that due to the anthropogenic factors, ASF has a

huge capacity of transboundary and transcontinental

spread [34].

Human activities have been identified as main drivers

of disease transmission in the domestic epidemiological

cycle of ASF in other contexts [35]. Likewise, social and

economic factors such as poverty level, herd size and

gross income from the pig production have been associ-

ated with ASF outbreaks in the domestic cycle [36]. The

same authors also showed that smallholder farmers in

some contexts seem to have high levels of knowledge re-

garding ASF, but that other factors than knowledge will

guide decisions affecting disease transmission, such as

trade and slaughter. Livelihood circumstances often pre-

vent farmers from executing preventive actions they are

aware of, and may even force farmers to take actions

that promote disease transmission. In addition, the deci-

sionmaking process affecting disease dynamics and the

possibility to control disease spread is much more com-

plex than what scientists have previously acknowledged,

including not only economic aspects, but factors such as

cultural identity, tradition, peer pressure, quality of the

relationship with authorities and animal welfare aspects

[37, 38]. In the current epidemic, social as well as infra-

structure networks have been proved to affect trade

patterns [39, 40], and thus most probably, also disease

transmission. Further, control measures imposed by

governments, such as stamping out without sufficient

compensation and trade restrictions, might be counter-

active in many contexts [41]. Trade will not necessarily

cease after a quarantine has been put in place, but move

to uncontrolled markets, or more distant points of sales,

conceivably increasing disease transmission [42]. Such

trade and quarantine factors might have been the drivers

behind several transboundary outbreaks in the Caucasus

region, where pork prices dropped as outbreaks oc-

curred, increasing cross-border trade [43].

Contagiousity
In textbooks ASF is often described as a highly conta-

gious disease with high mortality [44, 45]. The case fatal-

ity rate (i.e. the proportion of infected individuals that

die from a disease within a certain time period) related

to highly virulent ASFV in affected populations of do-

mestic pigs and wild boar is indeed high, often reaching

90–100% [46]. When pigs show clinical sign of ASF they

have high viral loads in all body secretions, with particu-

larly high levels in blood [47, 48]. If pigs are not eutha-

nized before this stage, and especially if they are in an

environment allowing for close and frequent contacts

with other pigs, blood exposure and possibly cannibal-

ism, the potential for environmental contamination is

high [49]. In these specific situations, ASF shows pat-

terns of a highly contagious disease. On the other hand,

in a context where cases are detected early and disease

control measures (including depopulation) implemented

swiftly, the contagiousity will be low, as supported by

the analyses of the domestic pig outbreaks in the current

epidemic [20]. This is probably to some degree a mirror

of effective disease surveillance and control. As an ex-

ample, on several occasions during the current epidemic

only one or few diseased or dead animals were present

on affected farms at the time of suspicion [50, 51]. Like-

wise, on these occasions, animals which were in direct

contact with ASF-positive pigs tested negative although

they had been in the same stable for more than one

week [50, 51]. This observation indicates that under field

conditions, ASFV transmission between animals can be

a slow process.

Low contagiousity of ASF has also been demonstrated

under experimental conditions. Pietchmann et al. (2015)

conducted a study to assess the risk of chronic disease and

the establishment of carriers upon low-dose infection of pigs

and wild boar with ASFV genotype II. Although the study

was not primarily aiming at establishing the contagiousity of

ASF, meaningful findings regarding this matter were

obtained. The experimental animals were inoculated

oro-nasally with low doses of ASFV (10–100 haemadsorbing

units) and only the weakest animals (2 out of 12 wild boar)

became infected. However, during the course of the experi-

ment the initially non-infected animals picked up the infec-

tion by direct contact with the infected ones, after these had

succumbed to clinical disease. The authors concluded that

very low doses of virus are linked to moderate contagiousity

leading to a scattered onset of clinical signs [8].

It is conceivable that similar scenarios take place in

field situations in wild boar populations or in domestic

pig herds. Due to the low contagiousity, which might be

due to a low dose exposure and/or oral transmission

route, the initial mortality within an epidemiological unit

is rather low regardless of the high case fatality rate.

From Latvia, Lamberga et al. (2018) reported how in a

large commercial farm with 5000 pigs affected by ASF,

the spread of the virus within the farm was slow [52].

Within the first weeks of infection, the ASF related mor-

tality did not exceed the usual farm mortality and it took

more than one month until ASF was suspected. Similar
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observations of slow virus spread within affected pig

farms have been made in Estonia [51, 53].

Virus survival in the environment
ASFV has been shown to persist in meat from infected

pigs when stored for several months at around 4 °C; in

skin fat for 300 days; in salted, dried meat for up to 120

days; and in ham in brine for up to 180 days [22, 54–57].

At 4 °C the virus persists for over a year in blood, several

months in boned meat and several years in frozen car-

casses [58, 59]. Given all this tenacity data, it is easy to

understand why and how virus contaminated meat and

meat products have played a crucial role in the transmis-

sion and epidemiology throughout the history of ASF. It

explains how the virus can travel from one country to

the other or from one continent to the next. Particularly

pigs in backyard systems where swill feeding is still com-

mon practice, are under major risk to become infected

via this route. All virus escapes from Africa to other

continents have been linked with transport of contami-

nated pork with airplanes or ships e.g. the first outbreaks

in Portugal and Spain in 1957 and 1960 [60] and the

more recent outbreak in Georgia in 2007 [14]. Further-

more, the virus also survives the process of putrefaction

[4, 6]. It has been shown that ASFV genomic material

can be detected with PCR as long as tissue samples can

be obtained from carcasses left in the field [61]. How-

ever, as PCR and not virus detection was used, no con-

clusions on the survival of the virus or its infectivity can

be drawn from that study. The ability to remain infective

after putrefaction is of particular importance for wild

boar carcasses that remain in the environment until total

decomposition. Probst et al. (2017) monitored the be-

havior of free ranging wild boar towards carcasses of

their own conspecifics. The direct contact with wild boar

carcasses consisted mostly in sniffing and poking on the

carcass, scavenging was not observed. It was concluded

that all these types of contact still represent a risk for in-

fection [26]. In this regard, the low contagiousity of

ASFV is contrasted by the high tenacity. Contaminated

wild boar carcasses might facilitate virus persistence for

months or even years within a region, significantly influ-

encing the course of an ASF epidemic. Even if the prob-

ability of infection for each contact is low, the long

infectious period will allow the virus circulation to be

maintained. Further complicating this process, in the

study by Probst et al. (2017) wild boars were more

interested in the soil underneath and surrounding the

carcass than in the wild boar carcasses themselves. Dur-

ing the process of carcass decomposition, potentially

ASFV-containing carcass material penetrates the soil

underneath and in the vicinity of the carcass. Soil sam-

ples taken from places, where ASF positive carcasses

had been found, were PCR-positive several days or

weeks after the carcass had been removed, although, no

viable virus could be isolated (unpublished data, Arvo

Viltrop). Therefore, soil from underneath the carcasses

contaminated with ASFV may also play a role in the epi-

demiology of ASF. In experimental studies it has been

shown that ASFV remains infectious in forest soil up to

112 days [57]. The same authors also showed experimen-

tally that the virus may remain infectious in water from

a lake up to 50 days during summer and 176 days during

winter and that the virus survived over two months on

wooden boards and three months on bricks buried into

the earth. It should be noted that these experiments

were based on parenteral inoculation of the test mate-

rials which requires much lower virus dose for infection

than the oral route, which is more likely to occur in na-

ture. As for direct contact, the probability that wild

boars acquire the infection via soil will mainly depend

on the susceptibility of the animals and the type,

frequency, and intensity of contacts. Due to the short

phase of clinical signs and associated virus excretion;

wild boar behavior, ecology and population density; and

the tenacity of ASFV in carcasses, the spread of ASFV

through carcasses is considered to be more important

than direct contact with live infectious animals for wild

boar [18, 62].

Biosecurity, the most effective tool for controlling
ASF
Farm biosecurity

Good farm biosecurity is considered to be the most im-

portant tool for preventing ASF introduction on a hold-

ing [63]. Many ASF field studies report on biosecurity

shortcomings, and mention this inadequacy as a critical

factor for virus introduction via links to infected wild

boar and swill feeding [50, 64]. Roughly, farm biosecurity

can be split into two components; (i) biosecurity hard-

ware, envisaging the quality of buildings, fences, equip-

ment, roads, gates, etc. and (ii) biosecurity software,

which can be seen as a mindset, dealing with the man-

agerial procedures related to human activities, hygiene

regime, education of personnel, participatory develop-

ment of biosecurity to suit the local conditions on site

etc. For example, a pig farm with excellent biosecurity

hardware (proper buildings, fences, hygiene barriers,

personal equipment for visitors) can still become

ASF-infected if people do not follow the stipulated pro-

cedures, and vice versa. The backyard pig sector repre-

sents a huge challenge in this regard, in particular due

to its heterogeneity, and special efforts should be made

to improve implementation of biosecurity and raising

awareness to promote early detection of ASF. Neverthe-

less, in Estonia the larger herds had significantly higher

risk of experiencing an ASF outbreak compared to

smallholders [65]. This could be the result of somewhat
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specific situation in Estonia, where swill feeding and ani-

mal movements, otherwise tending to be the main risk

factors for back yard holdings, did not play any signifi-

cant role in spread of the infection. In a situation where

environmental contamination is suspected to be the

major cause of disease introduction via contaminated ve-

hicles and people, the frequency and intensity of con-

tacts between surrounding environment and the farm

premises are likely more important, and large farms be-

come more vulnerable.

Incursion of ASF into the domestic pig population is

often of anthropogenic nature, happening as spillover

from affected wild boar populations in the immediate

farm neighborhood, or through the unintentional intro-

duction of contaminated material onto the farm premises

[65]. Having said that, seasonal peaks of cases in wild boar

occur bi-annually around June–July and November–De-

cember, and for outbreaks in domestic pigs annually from

June to August (see Figs. 3 and 4). Seasonal variations in

wild boar demography and ecology, farming and recre-

ational activities in farm land and forests, temperatures

and other climate factors, as well as in the activity and

abundance of potential mechanical vectors have been

brought forward as explanations for this pattern, which

until now remains unexplained [65–67].

The vast majority of outbreaks that have been reported

from the Baltic states and Poland have been classified as

primary outbreaks with only very few secondary

outbreaks [20]. Due to the absence of vaccines and drugs

for prophylactic measures and treatment, implementing

biosecurity measures at farm level remain the key com-

ponent of ASF prevention and control [63]. As pig pro-

duction systems are heterogeneous not only in size and

degree of specialization, but also regarding the level of

professionalization of the farm staff, realistic options for

implementing biosecurity measures are diverse [68, 69].

However, observational data [70] as well as modelling

approaches [71, 72] show that, despite this diversity, the

implementation of basic biosecurity measures has sub-

stantial influence in reducing the persistence and spread

of ASF in domestic pig production systems. Despite this,

ASF continuous to occur in areas where the disease is

known to all stakeholders. To understand this paradox,

we need to look at biosecurity not only from the angle

of hardware biosecurity, meaning infrastructure and

identified procedures, but also from the software biose-

curity perspective. Acknowledging a mindset or philoso-

phy component as part of the definition of biosecurity

allows enforcing authorities to better comprehend the

importance of promoting measures that match farming

realities of a diversified group of production systems.

Putting regulations in place that request farms to imple-

ment biosecurity according to their level of production

(e.g. in the European Union as part of a regional ASF

strategy [73]), has been a useful step working on the

hardware component of biosecurity. However, in

Fig. 3 Number of notifications of cases in wild boar and outbreaks in domestic pigs in the European Union and Ukraine, excluding data from

Romania from 1st January 2014 until 25th September 2018. Data extracted from the Animal Disease Notification System. Blue bars are cases in

wild boar and red bars are outbreaks in domestic pigs
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particular in backyard production systems where risky

production practices such as swill feeding remain, the

software component appears to require additional efforts

to become a sustainable component of ASF prevention.

Biosecurity during hunting and carcass removal

During the last 40 years the geographical range of wild

boar has expanded and population densities increased

[74]. This has happened despite hunting. Hunting man-

agement might even have contributed to these trends

through sustaining winter-feeding, avoidance of shooting

adult females, and hunting bags well below the natural

recruitment rate of the species [75]. Currently thousands

of infected wild boar are found dead or are hunted each

year in the more than 200.000 km2 that are under re-

striction due to ASF within the EU. Recent experiences

show that carcass detection is the most important tool

to detect geographical spread in wild boar, and that

carcass removal (including sampling and safe destruc-

tion) seem essential to reduce transmission in infected

areas [67]. Due to the characteristics of the virus, there

is a risk of local ASF-persistence through carcasses and

offal, as well as for indirect transmission through con-

taminated tools and cars used during hunting [21].

Therefore, a model for management of infected areas

including core and buffer areas with no hunting and

continuous carcass removal surrounded by an area with

intensive, restricted hunting, has now been proposed

[75]. In this model, hunting in the surrounding areas is

permitted only for hunters trained on sampling and bio-

security measures. Some examples of measures to im-

prove biosecurity during hunting are using leak proof

vessels (e.g plastic troughs) to carry/drag carcasses out

of the woods; limiting the use of private cars in infected

areas, including a ban on transporting hunted animals in

private cars; organization of a dressing area that limits

the blood contamination of hunting tools and vehicles;

washing and disinfecting all tools used to dress wild boar

after use and leaving these in the infected area; and stor-

ing offal in biosafe containers [75]. Individual identifica-

tion of hunted wild boar before storing and testing,

keeping hunted wild boar in the area until tested

negative for ASF, veterinary supervised disposal of all

stored carcasses and cleaning and disinfection of the

dressing area in case of a positive test outcome are

other measures necessary for biosafe hunting in in-

fected areas [75].

Conclusions
The qualities of the three epidemiological traits conta-

giousity, tenacity, and case fatality rate make ASFV effi-

cient in both persistence and transmission. The high

tenacity ensures long term persistence in the environ-

ment, high case fatality rate makes the virus largely

available, and the relatively low contagiousity prevents

the complete depletion of the host population. The

Fig. 4 Number of notifications of cases in wild boar and outbreaks in domestic pigs in the European Union and Ukraine, excluding data from

Romania from 1st January 2014 until 25th September 2018, aggregated per month. Data extracted from the Animal Disease Notification System.

Blue bars are cases in wild boar and red bars are outbreaks in domestic pigs
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interaction of these three parameters maximize both

local persistence and geographical spread of the virus

making its eradication a challenge. The disease does not

show a typical epidemic pattern with either self-limiting

localized epidemics or wider spread through an epidemic

wave [76]. Both these patterns would probably require

higher contagiousity. The patterns usually observed in

endemic settings, with a constant circulation or presence

of pathogens in the target population [76], is also not

observed. With a high case fatality rate and the probable

absence of a long-lasting carrier status, ASFV cannot be

maintained independently in an active circulation over a

longer time despite the high reproductive capacity of

wild boar. This leaves us the epidemiological scenario of

a reservoir-facilitated perpetuation leading to an en-

demic state. With the absence of the reservoir hosts, Af-

rican wild suids or Ornithodoros spp. ticks, the habitat

as such, including the contaminated carcasses have to be

considered as pathogen reservoir leading to the observed

endemic setting with extended transmission intervals.

Apart from the wild boar population and the habitat, the

current epidemic recognizes humans as the main re-

sponsible for both long distance transmission and virus

introduction in the domestic pig farms. Thus it becomes

crucial to include social science when planning preven-

tion-, control-, or eradication measures. By considering

only the biological particularities of the disease, conta-

giousity, tenacity and case fatality rate, but ignoring the

human aspects, the epidemic will not be controlled.
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