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The use of partially treated and untreated wastewater for irrigation is beneficial in

agriculture but may be associated with human health risks. Reports from different

locations globally have linked microbial outbreaks with agricultural reuse of wastewater.

This article reviews the epidemiological evidence and health risks associated with this

practice, aiming toward evidence-based conclusions. Exposure pathways that were

addressed in this review included those relevant to agricultural workers and their

families, consumers of crops, and residents close to areas irrigated with wastewater

(partially treated or untreated). A meta-analysis gave an overall odds ratio of 1.65

(95% CI: 1.31, 2.06) for diarrheal disease and 5.49 (95% CI: 2.49, 12.10) for helminth

infections for exposed agricultural workers and family members. The risks were higher

among children and immunocompromised individuals than in immunocompetent adults.

Predominantly skin and intestinal infections were prevalent among individuals infected

mainly via occupational exposure and ingestion. Food-borne outbreaks as a result

of crops (fruits and vegetables) irrigated with partially or untreated wastewater have

been widely reported. Contamination of crops with enteric viruses, fecal coliforms,

and bacterial pathogens, parasites including soil-transmitted helminthes (STHs), as well

as occurrence of antibiotic residues and antibiotic resistance genes (ARGs) have also

been evidenced. The antibiotic residues and ARGs may get internalized in crops along

with pathogens and may select for antibiotic resistance, exert ecotoxicity, and lead to

bioaccumulation in aquatic organisms with high risk quotient (RQ). Appropriate mitigation

lies in adhering to existing guidelines such as the World Health Organization wastewater

reuse guidelines and to Sanitation Safety Plans (SSPs). Additionally, improvement in

hygiene practices will also provide measures against adverse health impacts.
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INTRODUCTION

The reuse of partially treated or untreated wastewater for
irrigation has been linked to diarrheal and parasitic infections
(1–4) as well as skin disorder and other systemic infections
(5–8). An effective managing strategy of these health risks
is challenging and depend on water quality (e.g., the type
of wastewater: untreated, partially treated, or treated) as
well as societal and behavioral factors which will vary
between different settings (9–11). Health risks are not only
dependent on exposure to microbial hazards (i.e., infectious
pathogens) but also to chemicals or pharmaceuticals (12–
14).

Populations exposed to wastewater are most often categorized
into four main groups;

a) agricultural workers and their families;
b) crop merchants, handlers, and technical/operational staff;
c) consumers of farm produce, vegetables, meat, or milk

products;
d) residents of areas irrigated with wastewater, including

children, the elderly, and immunocompromised individuals,
who are at the highest risks in particular (15).

The first two groups (a and b) would mainly be exposed
occupationally, due to direct contact with the wastewater
during application and handling. Consumers (group c) are
directly exposed dependent on their diet. Residents (group d)
of areas close to sites irrigated with wastewater can also be
exposed through farm run-off, groundwater contamination and
aerosols.

Wastewater reuse has environmental sustainability benefits
when practiced safely (16, 17). Adverse health outcomes
associated with its reuse have been documented, both directly
through epidemiological studies (2, 5, 18–23), and indirectly
using quantitative risk assessments (10, 24–31). Despite these
reported health outcomes, the use of wastewater for irrigation
is a widespread practice, partly due to its year-round availability
and nutrient content (32). It will thereby contribute to the
urban food basket and the overall improvement of the urban
environment (33).

To protect public health and ensure that the full benefits
associated with the reuse are achieved, regional, national,
and international authorities have set guidelines for safe
wastewater use in agriculture [e.g., (34)]. However, it may
be questioned if wastewater use in agriculture still causes
adverse health effects, despite the existence of these guidelines
for safe use. The purpose of this review is to summarize the
evidence associated with the health impacts resulting from
exposure to pathogens in partially or untreated wastewater
used for agricultural purposes. Specifically, we report on the
relevant exposure pathways and summarize epidemiological
evidence of diarrheal, intestinal parasitic, and skin infections
associated with direct exposure as well as indirect through
produce from agriculture. The later refer to foodborne
outbreaks from irrigated produce. We review the estimated
health risks from partially treated and untreated wastewater
irrigation using quantitative microbial risk assessment, and

the risks associated with contaminants such as antibiotics and
antibiotic resistance genes. Finally, we conclude by presenting
approaches to mitigating the risks associated with the use in
agriculture.

METHODS

Search Criteria
This review was based on literature searches in Science, Science
Direct, PubMed, and Google Scholars till January, 2018. The
keywords and word strings used in reference to microbial
quality of wastewater intended for reuse were “wastewater OR
treated wastewater OR partially treated wastewater OR untreated
wastewater AND wastewater reuse AND microbial quality.”
The health outcomes due to the reuse of wastewater was
determined using the search string; “wastewater reuse AND
epidemiological evidence OR diarrheal infections OR intestinal
parasite infections OR infections OR microbial risk assessment
OR quantitative microbial risk assessment (QMRA).” The last
search string used in this review was; “wastewater reuse AND
antibiotic residues OR antibiotic resistant genes OR antibiotic
resistant bacteria.” The search results were reviewed by four
reviewers.

Inclusions and Exclusion Criteria
Selections were made without restriction on the study location or
year of publication, but only articles written in English language
were accounted for. Articles that address direct epidemiological
evidence, health risks, and those that estimated the health risks
indirectly through QMRA were collated. Others are those that
considered crop contamination associated with partially treated
and untreated wastewater use and resulting in human infection
or ecological impact. A number of studies quantifying antibiotics
and antibiotic resistance genes predicated by the wastewater
reuse were also included due their associated risks.

Extraction of Data
We specifically extracted and where appropriate tabulated
information within the following areas:

a. Epidemiological evidence
b. Human health risks
c. Exposure pathways
d. Risk awareness
e. Ecotoxicity
f. Risk quotients
g. Risk mitigation

Tables and illustrative figures were developed, in which the
relevant information were presented with geographical location
(in some cases) and relevant statistical information reported
where possible. The search yielded 1,223 articles, out of which
a total of 167 publications were relevant to this review based
on the inclusion criteria described in section Inclusions and
Exclusion Criteria. This number comprises 156 articles, 2 book
chapters, 5 relevant guidelines and four documents. Out of
these publications, 50 were focused on human health risks
from partially treated and untreated wastewater reuse, 19 linked
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reuse to specific infection and approximately 100 publications
indirectly assessed the health risks from wastewater reuse.
With wastewater reuse as written in the rest of the paper
we include partially treated as well as untreated wastewater,
if anything else is not stated. In the relevant sections the
type of wastewater is stated to give clarity and aid in
comparison.

RESULTS

Occurrence of Pathogens in Wastewater
Used for Irrigation
Health risks associated with partially treated and untreated
wastewater reuse are dependent of exposure combined with the
presence and concentrations of hazards (e.g., pathogens). The
excreted concentrations of pathogens (i.e., the hazards) vary
based on the pathogen type and strain, the affected individual,
and the phase of the infection cycle, and are thus dependent on
the health of the population and the resilience of the pathogens
to environmental stressors (35, 36). Figure 1 gives a general
background graphical representation of the concentration of
selected microbial indicators and pathogens reported in the
literature. Detailed data from publications is presented in
Table 1.

Exposure Pathways
Farmers and farm workers may be directly exposed to pathogens,
and consumers of the farm produce will be indirectly affected.
Additionally, the surrounding community can be further affected
through the contamination of groundwater and run-off to surface
water (59). Aerosols may also be formed in farms were sprinkler
irrigation is practiced, affecting nearby communities as well (60,
61).

Different exposure pathways have been implicated in the
spread of diseases associated with reuse of wastewater, especially
partially treated and untreated, with examples shown in Table 2.
The main route through direct contact could be termed as
an occupational exposure pathway. This has been implicated
in the spread of diarrhea (2, 4, 62, 64), parasitic infections
(63, 67, 68) and skin infections (5, 6, 22)]. The amount of
direct contact with wastewater during its application is largely
dependent on the type of irrigation practiced and individual
behavior. For example, the use of watering cans for the
collection of irrigation water from ponds, as is the case in
many developing countries where the practice of wastewater
irrigation is common, results in the greatest exposure (76).
This exposure leads to greater risk due to the non-use of
personal protective equipment like boots and nose masks.
Furrow or flood irrigation also increases the possibility of direct
contact with the wastewater, increasing risks of infections (18,
77).

The use of sprinkler irrigation may also lead to greater
exposure not only for farmers and other farm workers but for
the general community because of exposure to aerosols (78–
80). Communities living close to wastewater irrigation sites in
Israel where sprinkler irrigation was practiced had an IRR of
1.08 for diarrhea, although this risk of infection was lower

than the risk from direct exposure to partially treated and
untreated wastewater (IRR = 1.23). That study particularly
showed the impact of sprinkler irrigation on the health of a
larger population (60). Aerosols may be inhaled or may settle
on food (81). Aerosols from wastewater are also reported to
contain several different types of pathogens. Li et al. (82) showed
that the suspension of Actinomycetes (aetiological agent for
actinomycosis) and other pathogenic microbes in aerosols from
partially treated wastewater constitute health hazard in Xi’an,
China.

Consumption of produce, especially vegetables, from
wastewater irrigated farms poses an additional pathway for
transmission of pathogens from wastewater to the general
public. Agunwamba (83) demonstrated that consumers
of vegetables from wastewater irrigated fields leads to an
IRR of 1.75 for diarrhea. Section Food-Borne Outbreaks
(Human) Associated With the Consumption of Fresh Produce
Irrigated With Wastewater discusses this exposure pathway in
detail.

Food-Borne Outbreaks (Human) Associated With the

Consumption of Fresh Produce Irrigated With

Wastewater
Bacterial concentrations in wastewater and air quality around
the farmyard have been shown to closely relate. A study by
Teltsch and Katzenelson (84) detected aerosolized coliforms
with concentration ≥103 CFU/mL. The pathogens carried may
depend on their size and the force of the spray. Small sized
pathogens are more commonly transported during irrigation
(85, 86). Enteric viruses may occur in significant concentration
in aerosolized form, when compared with the varieties of
microorganisms found in wastewater (85). Their retention in
wastewater for irrigation is usually due to the inability of some
WWTPs to effectively achieve virus removal. It also depends
on high resistance to environmental stress by some of these
viruses. For aerosolized bacteria, relative humidity and solar
irradiation may affect their viability and subsequently their
concentration in the air. The aerosolized bacterial pathogens may
also be affected by UV, as there was reports of 10 times more
aerosolized bacteria measured during night irrigation than with
day irrigation (84).

The concentrations of pathogens that reach farmyard houses
and lead to exposure in consuming food and inhalation may
depend on the wind velocity (87). The probability of initiating
infection also depends on the infective dosage. For example,
low quantities of viruses (102 pfu), such as for noroviruses, are
enough to initiate infection through the respiratory pathway (85).
Depending on the irrigation methods (i.e., sprays or sprinklers),
farm workers and community members in the surrounding area
may be exposed to the aerosolized pathogens from the wastewater
(88, 89).

Aerosol spray may also facilitate deposition of contaminated
wastewater on the edible parts of the crop. Surface contamination
of these has been reported as a major means of transmission
of diseases through consumption (90–93). Additionally,
internalization of pathogens in different vegetables has
been documented (94–98), which could be another route
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FIGURE 1 | Visual representation of minimum and maximum concentration (Log10/L) of selected microorganisms in partially treated and untreated

wastewater intended for reuse. The numbers on the bars represents the individual references with these reported concentrations. These articles are referenced in

Table 1, where further information is provided. This is a brief introduction of the different concentrations reported in literature for the different categories of

microorganisms. Table 1 gives detailed information on the literature added in this figure.

of transmission of these pathogens to the consumers. The re-
growth of these pathogens on vegetables has also been reported
(99) and is partly influenced by factors such as, their adhesion
ability to the plant surfaces (100, 101) and the persistence of the
particular pathogen (102, 103).

Globally there have been different reported outbreaks, for
example 11 lettuce-related outbreaks of gastroenteritis with
a total of 260 reported cases were reported in Denmark
(104). Researchers emphasize that adhesion of pathogens to
surfaces and internalization of pathogens placed high demand
of responsibilities on consumers to avoid gastroenteritis (105).
Most outbreaks have been attributed to infection with different
strains of Salmonella (106–109), Enterohemorrhagic E. coli (110–
113), and viruses such as norovirus (114). Table 3 presents
examples of food-borne human outbreaks (microbial) associated
with the consumption of fresh produce irrigated with wastewater.
The type of irrigation practice plays a critical role in the
contamination of farm produce. A study by Makkaew et al.
(121) assessed the contamination of E. coli in lettuce grown
under four different methods of wastewater irrigation; open
spray, spray under plastic sheet cover, open drip, and drip under
plastic sheet cover. E. coli contaminations were detected in all the
lettuce samples with all types of spray beds. Submersed lettuce
irrigated with wastewater contained 1,300 E. coli MPN/100mL
and had equal levels of contamination as with the spray irrigation.
The scenario was similar in both laboratory and experimental
investigations (121). The study also showed that crops are
seriously imparted by wastewater irrigation, independent of
the irrigation schemes used (121). In a study on the use of
wastewater in agriculture, Antwi-Agyei (122) identified irrigation

with partially treated and untreated wastewater as a key risk
factor for the observed contamination of 80% of produce
samples. The study reported the median concentration ranging
from 0.64 to 3.84 log10 E. coli/g produce, and fresh salad having
as high as 4.23 log10 E. coli/g. In a similar study, Bouwknegt
et al. (123) estimated the following risks per serving of lettuce
based on the QMRA models: 3 × 10−4 (6 × 10−6

−5 × 10−3)
for NoV infection and 3 × 10−8 (7 × 10−10

−3 × 10−6)
for hepatitis A jaundice. In that study however, the risk of
wastewater irrigation was less than the effect of hand’s contact
(123).

Impact of Risk Awareness on Exposure
Risk awareness might also be a factor that includes handling of
the crops and vegetables irrigated with wastewater. Antwi-Agyei
et al. (105) reported that knowledge of the irrigation water source
and associated quality were associated with higher awareness
of health risks (OR = 4.6, p = 0.06). However, the outcome
was not impacted by demographic factors like age, education, or
gender (OR = 4.7, p = 0.12). A higher awareness of health risks
may change on-farm practices and also reduce the exposure of
farmers to the pathogens in the wastewater, as well as, reduce
the concentration of pathogens on the farm produce leading to
lesser adverse health impact on the both farmers and consumers.
Reuse of wastewater in aquaculture has also been linked with
adverse health effects (124). For instance, fish farmers without
understanding of health risk and protective clothing were found
to have a high exposure to the pathogens in the wastewater,
leading to skin infections (21).

Frontiers in Public Health | www.frontiersin.org 4 December 2018 | Volume 6 | Article 337

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Adegoke et al. Wastewater Reuse and Health Risks

TABLE 1 | Concentration of fecal indicator organisms and pathogens reported in selected literature from different types of wastewater used for irrigation.

References* Pathogen or fecal

indicator

Concentration (original values

transformed to Log10/L)

Type of Wastewater Country

(37) E. coli 1.8–2.8 (CFU) Secondary and tertiary

treated wastewater

Italy

Fecal coliforms 2.5–3.0 (CFU)

Fecal enterococci 2.1–2.2 (CFU)

(4) Fecal coliforms 7.89–8.15 (CFU) Untreated wastewater Mexico

Fecal enterococci 6.71–7.18 (CFU)

Cryptosporidium parvum 2.17–2.48 (Oocyst)

Giardia lamblia 2.43–2.69 (cyst)

E. coli 7.0–7.49 (CFU)

Klebsiella pneumoniae

(Carbapenemase resistant)

5.28–5.98 (CFU)

Vancomycin resistant

enterococci

4.0–5.77 (CFU)

(38) E. coli 2.1–5.0 (CFU) Wastewater contaminated

surface water

Spain

(39) E. coli 3.95–4.32 (MPN) Treated wastewater Italy

C. perfringens 5.69–5.81 (CFU)

Somatic coliphages 5.18–5.23 (PFU)

Giardia lamblia 1.46–1.56 (Cysts)

Cryptosporidium parvum 0–1.34 (Oocysts)

(40) Norovirus GII 3.5–4.0 (GC) Treated wastewater France

Norovirus GI 3. 5–4.2 (GC)

Rotavirus 4.0 (GC)

(41) human adenovirus (HAdV) 2.94–3.26 (GC) Treated wastewater Australia

human polyomavirus (HPyV) 2.11–2.65 (GC)

human torque teno virus

(HTtV)

2.85–3.38 (GC)

Microviridae 2.36–3.30 (GC)

(42) E. coli 0–4.0 (CFU) Treated wastewater China

(43) E. coli 0–5.89 (CFU) Treated wastewater Italy

Enterococci 0–5.44 (CFU)

Sulphite-reducing

Clostridium spores

1–5.49 (CFU)

(44) Fecal coliforms 3.96 (CFU) Treated wastewater Israel

E. coli 3.29 (CFU)

Enterococcus 3.51 (CFU)

(45) Cryptosporidiumparvum 0–1.09 (Oocysts) Treated wastewater China

Giardia lamblia 0–2.02 (Cysts)

(46) Fecal coliforms <1.30 (MPN) Treated wastewater Jordan

(47) E. coli 3.81–4.47 (CFU) Treated wastewater Italy

(48) E. coli 2.9–6.7 (CFU) Wastewater contaminated

surface water

Brazil

(49) Ascaris lumbricoides 1-1.78 (Eggs) Treated and untreated

wastewater

India

T. trichiura 0–0.30 (Eggs)

Hookworm 0–0.95 (Eggs)

(50) Cryptosporidium parvum 0–1.04 (Oocysts) Treated wastewater Spain

Giardia lamblia 0–0.78 (Cysts)

(51) Giardia lamblia <1.72–4.24 (Cysts) Treated wastewater Costa Rica

<0.76–3.95 (Cysts) Mexico

<1.26–3.26 (Cysts) Panama

(Continued)
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TABLE 1 | Continued

References* Pathogen or fecal

indicator

Concentration (original values

transformed to Log10/L)

Type of Wastewater Country

<0.89–1.60 (Cysts) USA

Cryptosporidium parvum <1.72–2.52 (Oocysts) Costa Rica

<0.76–3.19 (Oocysts) Mexico

<1.26–2.39 (Oocysts) Panama

<0.89–1.63 (Oocysts) USA

(52) Thermotolerant coliform 7.0–10.0 (MPN) Wastewater contaminated

surface water

Ghana

E. coli 5.2–8.5 (CFU)

Enterococci 4.3–8.1 (CFU)

Somatic coliphages 3.6–6.9 (PFU)

F+ coliphage 3.3–5.7 (PFU)

(53) Cryptosporidium parvum <1.23–2.30 (Oocysts) Surface water/wastewater Mexico

Giardia lamblia < 1.23–3.21 (Cysts)

(54) E. coli 0.5 (MPN) Type 2 reclaimed water USA

Total coliphage 2.1(PFU)

C. perfringens (total) 0.60(CFU)

Norovirus GII 2.4(GC)

Adenovirus A-F 2.7(GC)

(55) Fecal coliforms (100ml) 6.7 CFU Treated wastewater

(conventional activated

sludge)

Iran

(56) E. coli 6.2 CFU Treated wastewater South Africa

(57) E. coli 0 CFU Treated wastewater Spain

(58) Fecal Streptococci 1.7–2.6 CFU Treated wastewater Morocco

Helminths 0 Eggs/L

*Numbers before the reference refer to indication in Figure 1.

GC, Gene copies; MPN, Most Probable Number; CFU, Colony Forming Units; PFU, Plaque Forming Units.

Epidemiological Evidence of Human Health
Risks
The different types of infections reported for people exposed to
partially treated and untreated wastewater used in agriculture
are discussed in the following sections. Section Wastewater
Reuse, Diarrhea and intestinal infection summarizes the
epidemiological evidence of diarrheal and other intestinal
infections. Section Wastewater Reuse and Intestinal Parasitic
Infections summarizes the evidence of intestinal parasitic
infections and section Skin Infections the evidence of skin
infections.

Wastewater Reuse, Diarrhea, and Intestinal Infection
Partially treated and untreated wastewater reuse has been directly
linked with diarrheal diseases (Figure 2). Our meta-analysis gave
an overall odds ratio of 1.65 (95% CI: 1.31, 2.06) for diarrheal
diseases among agricultural workers and family members
exposed to wastewater for irrigation. Direct exposure by farm
workers to wastewater has been shown as the main transmission
route. However, farm workers may also be exposed to pathogens
based on their contact with soil that has been contaminated
by wastewater, especially partially treated and untreated. In
addition to the normal microflora, wastewater irrigated soils have

elevated pathogen concentrations. For example, Klutse (125)
reported higher concentrations of Enterobacteriaceae, Bacillus
spp., Staphylococcus spp., Pseudomonas spp., and Clostridium
spp. in irrigated soils. Antwi-Adyei et al. (126) identified soil as
the main risk pathway with factors such as working barefooted
(93% of farmers), hand contact with contaminated soil (86% of
the farmers), and contaminated hands to mouth (53% of the
farmers) as the main contributors. Additionally, the regrowth
of bacteria in the environment may contribute to the increased
incidence of diarrhea, as the high nutrient content of wastewater
can enhance bacterial regrowth (127, 128). Modeled risks
based only on pathogens contained in the liquid effluent from
wastewater treatment plants, without accounting for regrowth,
may lead to the underestimation of risks.

The majority of the epidemiological studies on reuse and
diarrheal diseases have focused on the direct exposure to the
wastewater especially by the farmers and farm workers. However,
Shuval et al. (60) demonstrated that aerosols could lead to a
diarrheal incidence rate ratio of 1.08 for people living close to
irrigation fields in Israel. Living in a household with someone
engaged in untreated wastewater reuse could also result in
higher risk of diarrhea (OR =2.69) (21). This relate to the
possibility of additional human to human transmission within
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TABLE 2 | Exposure used in the determination of diseases associated with wastewater irrigation from selected literature.

Location Health risks Route of exposure Type of wastewater Authors

Mezquital Valley,

Mexico

Diarrhea Occupational exposure, aerosols exposure to

resident, underground water contamination

Untreated wastewater (4)

Uppsala, Sweden Gastroenteritis (rotavirus-based) Direct ingestion of greywater during

maintenance

Treated greywater (62)

Vietnam Parasitic infection (Ascaris

lumbricoides and Trichuris

trichiura

Occupational exposure and consumption of

vegetable

Partially treated and untreated

wastewater

(63)

Brazil Gastrointestinal infection (E. coli

and rotavirus)

Consumption of salad crops Partially treated wastewater (64)

Bangkok, Thailand Diarrhea (Giardia lamblia and

Entamoeba histolytica)

Direct exposure Untreated wastewater (2)

Thailand and

Canada

Gastroenteritis Swimming, fishing, consuming canal

water-irrigated vegetables, and

ingesting/inhaling water or aerosols while

working in canal water-irrigated fields

Wastewater contaminated

Surface water

(65, 66)

Malamulele, South

Africa

Parasitic infections (hookworm

and G. lamblia)

Exposure via occupational consumption Partially treated wastewater (67)

Phnom Penh,

Cambodia

Skin infection Occupational exposure Partially treated wastewater (7)

Musi River, India Skin infection/irritation Exposure to infected source Partially treated wastewater (20)

Hyderabad, India Intestinal parasitic infection Occupational exposure Partially treated and untreated

wastewater

(68)

Vietnam Escherichia coli infection (risk) Occupational exposure Untreated wastewater (69)

Hanoi, Vietnam Skin infection Occupational exposure Partially treated wastewater (22)

Hanoi, Vietnam Diarrhea Children of occupationally exposed farmers Partially treated wastewater (70)

Faisalabad,

Pakistan

Giardiasis Occupational exposure Untreated wastewater (71)

Vietnam Helminthic infection Occupational exposure Untreated wastewater (72)

Nghe An Province,

Vietnam

Helminthic infection Occupational exposure Partially treated wastewater (73)

Marrakech,

Morocco

Infection of Ascaris, Trichuris Children resident in wastewater irrigated

farmhouse

Untreated wastewater (74)

Vietnam Intestinal parasitic infection Occupational exposure Unknown (75)

Occupational exposure refers essentially to farmers.

the home. This is important because domestic hygiene has
been implicated in the increase in diarrheal diseases within
the home setting for children (129, 130). Within the domestic
domain several other sources of contamination, like from food,
contaminated drinking water in the home (131) or direct
exposure to feces from humans and animals will superimpose on
the effects that is due to the irrigation with wastewater with linked
exposure.

Children and immunocompromised individuals have been
shown to have higher risks of diarrheal infections than
immunocompetent adults (132–135). Blumenthal et al. (77)
reported an increase in the risk of diarrhea (OR = 1.75) among
children aged <5 years. This diarrhea may be from the ingestion
of pathogenic microorganisms, such as Salmonella species and
Diarrheagenic Escherichia coli (2, 70, 77, 136) in either the soil
or wastewater.

Wastewater Reuse and Intestinal Parasitic Infections
Intestinal parasitic infections, especially soil-transmitted
helminths, are reported as the major health concern associated

with wastewater reuse (34). This is partly due to their high
persistence in the environment. In line with this concern,
epidemiological studies have shown an increase in parasitic
infections from the use of wastewater (Figure 3). The main
exposure route accounted for in these studies has been direct
contact for farmers and other farm workers, where increased
risks with ORs 0.58–3 have been reported (3, 19, 137, 138). In
a study conducted in urban and peri-urban transition zones in
Hanoi, Vietnam, Fuhrimann et al. (139) reported that peri-urban
farmers had the highest adjusted odds of acquiring intestinal
parasitic infection among various groups considered (OR 5.3,
95% CI: 2.1–13.7). However, Trang et al. (72) established that
wastewater reuse did not pose significant risks for helminth
infections among rice farmers using wastewater in Vietnam,
although untreated wastewater is used. Our meta-analysis gave
an overall odds ratio of 5.49 (95% CI: 2.49, 12.10) for helminth
infections in agricultural workers and family members exposed
to wastewater for irrigation (Figure 3).

The infection risks may differ between the types of parasitic
pathogens found in wastewater due to variations in concentration
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TABLE 3 | Examples of food-borne outbreaks (human) associated with the consumption of fresh produce irrigated with wastewater from selected literature (Only the

reports with year of outbreak, food implicated and number of cases were considered).

References Country Pathogens Outbreak year Food implicated* No of cases

(115) China Salmonella paratyphi A 2010–2011 Consumption of raw vegetables 600

(106) Unspecified Salmonella saintpaul 2008 Jalapeño peppers, serrano peppers,

tomatoes

1,442

(116) Sweden Enterohemorrhagic E. coli 2013 Fresh salad 19

(104) Denmark Noroviruses and

enterotoxigenic Escherichia

coli

2010 Lettuce of the lollo bionda type 260

(117) Norway Salmonella species 2004; 2006; 2007 Rucola Lettuce 21

(112) Sweden E. coli 0157 2005 Iceberg lettuce 135

(114) Denmark Norovirus 2005 Raspberries >1,000

(118) Canada Cyclospora cayetanensis 2011 Basil 17

(119) Germany Cyclospora cayetanensis 2000 Green vegetables 34

(120) Saudi Arabia Hepatitis A virus 1996 Food (unspecified); specified not

linked

94

*Grown with contaminated (fecal) water.

and the mode of exposure to the irrigation water. There is
however similarities in the consistency of found values. For
instance, in Ghana risks of infection with Ascaris and hookworm
was found among the farmers and family member exposed
to irrigation water (surface water contaminated with untreated
wastewater) to be similar with ORs of 3.9 (95% CI, 1.15–13.86)
and 3.07 (95% CI, 0.87–10.82), respectively (3). Pham-Duc (19)
reported Ascaris infection OR of 2.1 (95% CI 1.4–3.2) vs. an OR
of 1.5 (95% CI 1.0–2.3) for Trichuris trichiura. A cross-sectional
survey of children exposed to wastewater irrigation in Morocco
showed a 20.5% higher prevalence of Ascaris infection compared
to 3.8% for unexposed children (18). From the same study in
Morocco the difference in Trichuris infection among the exposed
(0.4%) and unexposed (0.3%) children was reported to be non-
significant. Furthermore, approximately 45% of farmers using
wastewater effluents for irrigation in Asmara villages, Eritrea
were infected with giardiasis, with consumers of their vegetables
7%more likely to be infected with giardiasis than a control group
(140).

These differences and similarities in infection prevalence
from the exposure could be attributed to (1) the difference
in the concentration of the infectious eggs in the wastewater,
which is dependent on the type of wastewater treatment, (2)
differences in their persistence in soil or on crops, or (3)
the efficiency with which they are transferred from irrigation
water to soil/crops. For example, Verbyla et al. (10, 141)
reported higher ratios of helminth egg and parasitic (oo)cyst
(Giardia and Cryptosporidium) concentrations on irrigated soil
and crops relative to their concentrations in wastewater used
for irrigation, with lower corresponding ratios for coliphages
and for the viral fecal indicator pepper mild mottle virus. The
parasite eggs and (oo)cysts may be more efficiently transferred
from irrigation water to crops/soil than some viruses, and/or
it supports previous findings that the parasites persist longer
on crops or in soil than viruses (142). Additionally, pathogen
concentrations in wastewater are also a reflection of the infection

levels in the populations. Hookworms in particular remain a
major cause of morbidity in developing countries, which are
accompanied by gastrointestinal symptoms and chronic anemia
(143). This epidemiological evidence therefore shows a linkage
or interconnectedness of infection and pathogen concentration
in wastewater.

The risk of parasitic infections from either direct or indirect
exposure to wastewater also will vary depending on factors,
such as age, gender, frequency of exposure etc. For instance,
Blumenthal et al. (77) reported a close association between
direct exposure to untreated wastewater and an excess risk of A.
lumbricoides infection in children aged <5 years (OR = 18.0).
Also, a cross-sectional survey of people aged≥ 18 years at risk to
wastewater exposure showed a 30% point-prevalence of intestinal
parasitic infections (139).

Skin Infections
Exposure to wastewater could result in different types of skin
infections, such as, dermatitis, urticarial, fungal infections of
toe- or fingernails (23). Trang et al. (5, 6) suggested that the
skin diseases may be deep systemic dermatitis and other fungal
infections. Studies conducted in Musi River, India; Phnom Penh,
Cambodia, and Hanoi, Vietnam showed skin infection and
irritation as the major effect of the exposure (7, 22). However,
only a few studies have focused on an epidemiological link. For
example, a cross-sectional survey in Vietnam involving over 235
farmers using wastewater for irrigation or aquaculture reported
an OR for dermatitis of 3.0 (95% CI: 1.1–7.7) (22). A similar
study from the same country reported a lower OR of 2.7 (95%
CI: 1.3–5.8) for direct contact with wastewater (6). In addition
to direct contact, living in a household with someone involved
in wastewater reuse increased the risks of skin infections (5).
Frequency of exposure, immunological status, occupation and
the lack of protective coverings were identified as the determining
factor predisposing individuals to this effect of wastewater (5,
144).
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Estimation of Health Risks Associated
With Wastewater Reuse Using Quantitative
Microbial Risk Assessment (QMRA)
Quantitative Microbial Risk Assessment (QMRA) is a modeling
process that estimates the potential human health risks from
exposure to different pathogens (e.g., human pathogenic viruses,
protozoa, and bacteria) (145) especially through food and/or
water (146). This is a structured approach that integrates
information and data with mathematical models to examine
exposure and spread of microbial pathogens and in the process
characterize the human health risks (147, 148). QMRA has been
used extensively in the risk estimation of infections for different
exposed groups related to wastewater reuse (25, 29, 31, 149,
150). The risk estimates from these studies vary, mainly due to
difference in the concentration, for example by viable STH eggs
ingested by exposed populations. QMRA has been used by the
WHO (34, 151) and the Australian government (152, 153) to
determine pathogen reductions needed to achieve a health target
of 10−6 DALYs per person per year (ppy) (154).

The use of QMRA allows for the quantification of infection
risks for different populations that has ingested or been exposed
to different concentrations of pathogen. The exposure could be
either from intentional or accidental ingestion of wastewater,
consumption of farm produce or ingestion of groundwater from
irrigation fields etc. Assuming ingestion of wastewater and soil,
Seidu et al. (31) showed that two farmers out a hundred using
wastewater for irrigation were likely to be infected with Ascaris
due to accidental ingestion of the irrigation water. However,
accidental ingestion of the farm soil may result in infection
of all exposed farmers, possibly due to accumulation of the
parasitic eggs in the soil. Considering risks from inhalation of
aerosols, Courault et al. (40) estimated norovirus infection risks
of >10−4. Carlander et al. (88) reported high risks of rotavirus
infections in Culmore, Northern Ireland [P(inf) 8× 10(−1)] and
Kvidinge, Sweden [P(inf) 7 × 10(−1)] when wastewater is used
for irrigation. Estimation of infection risks from aerosols using
QMRA, generally takes into account the wind speed and distance
of the exposed population.

QMRA estimation of infection risks could also account for
different crops. This is important especially in relation to the
amount of irrigation water that could possibly remain on the
crops by the time of harvest and subsequent consumption.
While considering different wastewater-irrigated vegetables, Mok
et al. (155) observed that consumption of lettuce posed the
greatest health risks as compared to cucumber and broccoli. The
researchers reported that the median annual norovirus disease
burden across the different vegetables ranged from 7.95 × 10−5

to 2.34× 10−3 DALY/person/year (155).
Risk estimates produced by QMRA are dependent on the

input dose or concentration of pathogen used among other
factors such the dose response model used and frequency of
exposure. The concentration of the pathogen could be either
determined in the laboratory or assumed. Some researchers
use fecal indicator microorganisms to estimate pathogen
concentrations in wastewater and thereafter determine the
infection risks. This is mainly due to the ease of detection

of these microorganisms, however the survival and even
removal/inactivation of these in the environment differs greatly
from many pathogenic microorganisms. It was observed by
Owusu-Ansah et al. (156) that the use of fecal indicator
conversion ratio model to estimate health risks results in the
underestimation of the risks involved. Using improved methods
of detection, Cutolo et al. (25) reported average densities of
1 cysts L−1 and 6 eggs L−1 for Entamoeba coli and Ascaris
spp., respectively. The reported annual risks of Ascaris infection
resulting from accidental ingestion of wastewater irrigation were
therefore reported to be 7.5 × 10−2 in 208 days and 8.7 × 10−2

in 240 days (25).

Emerging Contaminants
Antibiotics and Antibiotic Resistance Genes (ARGs)

in Wastewater for Reuse
Antibiotic residues and antibiotic resistant genes ARGs have
been reported in wastewater released from wastewater treatment
plants (157–162). The presence of these in wastewater has
been identified as a possible source of antibiotic resistance
microorganisms (13, 163). This resistance could be developed
through induction, selection or horizontal gene transfer of
ARGs (162, 164). Varying antibiotic removal efficiencies from
wastewater for reuse has been reported (165–167).

These studies show that most treatment plants have antibiotics
in their effluents which when reused may impact and accumulate
in soil and be taken up by the crops. Reported concentration of
antibiotics and antibiotic resistance genes identified in treated
wastewater are exemplified in Table 4. Negreanu (185) assessed
the presence of antibiotic-resistant bacteria and antibiotic
resistant genes in agricultural soils irrigated with wastewater and
Broszat et al. (186) concluded that wastewater irrigation increases
abundance of potentially harmful Gamma-proteobacteria with
antibiotic resistance genes in soils fromMezquital Valley,Mexico.
These studies suggest the emergence of antibiotic resistance as
future potential concern for reuse of wastewater.

The concentration of antibiotics will be reduced during
treatment and the efficiency of removal is dependent on the
treatment technology (187, 188) and the physical state of the
antibiotic compound (189). Varying removal efficiencies of
different antibiotics have been reported in the USA and China
(165, 172, 190–192). All studies reported that residual antibiotics
persist in treated wastewater and sludge in most cases and can be
conveyed along the reuse pathways.

Fate of Antibiotics and Antibiotic Resistance Genes

(ARGs) in Wastewater
Some antibiotics remain intact in wastewater after excretion,
while others may form complexes or change the parental
configuration. Thismay however be reconverted into their parent
compounds by deconjugation during biological treatment (193).
Due to their hydrophobicity some of the antibiotics may also
be sorbed to particles. Based on the removal of particles during
wastewater treatment, the aqueous concentration of antibiotics
will change but they will be transferred to sludge. Some may also
be desorbed with intact configuration and appear in the final
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FIGURE 2 | Odds ratio for exposure to partially treated and untreated wastewater and diarrheal disease incidence from selected literature.

FIGURE 3 | Odds ratio for exposure to partially treated/untreated wastewater and helminth infections from selected literature.

effluents together with hydrophilic ones (194). Norfloxacin and
tetracycline exemplifies sorption to particulate matters, which
can be highly variable.

When the wastewater is used for irrigation on farmland the
residual antibiotics and ARGs may impact the normal microflora
of the soil (157–162, 164). Their persistence in soil depends
on factors that includes sorption to soil particles that also
influences leaching potential to groundwater and their biotic
and abiotic degradation. The most essential abiotic reactions
are photochemical and chemical mediated transformations,
which may include hydrolysis, oxidation and reduction, which
would occur in upper soil layers (195). One research report
by Pan and Chu (196) postulate that tetracycline possesses a
higher sorption affinity in agricultural soil when compared with
quinolones, macrolides, chloramphenicol, and sulphonamides
and sulphonamides were reported to have high leaching potential
to the groundwater (197).

Uptake and Internalization of Antibiotics and ARGs

by Edible Crops
The antibiotics in wastewater for irrigation will impact the soil
directly and may result in eco-toxicological effects (198). The
effects of wastewater irrigation on the occurrence of ARGs
were reported by Jechalke et al. (199) over a period of 100
years of irrigation. Because the nutrients in the wastewater
support regrowth of some bacterial pathogens the presence of
sub-inhibitory concentration of the antibiotics can bring about
resistance by induction and/or expression of ARGs taken up.

Christou et al. (178) reported an uptake of sulfamethoxazole
and trimethoprim by tomato crop plants with fruit bio-
accumulating 5.26 µg kg−1 of sulfamethoxazole and 3.40 µg
kg−1 of trimethoprim. The antibiotics, ARGs and the antibiotic
resistant pathogens (ARP) may be taken up (like nutrients).
The ARP may pass through the natural root apertures into the
xylem or phloem of the plants, be translocated and internalized
in edible part of the crop (200–203). By this they may impact
the consumers (204) especially when the crops involved are
to be eaten raw (200, 204). For these categories of uncooked
crops, certain bacterial species like Stenotrophomonas maltophilia
and Acinetobacter species usually found in wastewater and root
rhizosphere can be a threat if allowed to contaminate the crop
(14, 205). This is because they are also known for being reservoirs
of wide range of ARGs, extreme drug resistance and as etiological
agent of life threatening infections (14, 206, 207).

These ARP might be difficult to treat due to their antibiotic
resistance status. Carey et al. (208) detected total enterococci
and vancomycin resistant Enterococci in 71% (34/48) and 4%
(2/48) of reclaimed water samples, respectively with Enterococcus
faecalis as the most prominent species. These Enterococci in
the reclaimed water exhibited high antibiotic resistance at the
point of water use as measured using their minimum inhibitory
concentrations (MICs). Contaminated water used for irrigation
may initiate common source epidemics as in the outbreak of
food borne pathogen in some countries in Europe as reviewed
by Okoh et al. (209).

Apart from ARP, antibiotics in the wastewater cause
phytotoxicity. A screening for the level of phytotoxicity by
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TABLE 4 | Reported concentration (from selected literature) of antibiotic residues and antibiotic resistance genes in partially treated and untreated wastewater for reuse

and the irrigated soil.

References Country Antibiotics/ARGs Excretion rate (% of the

administered dose

excreted)

Concentration (ng/L) of

residual antibiotics

(168) China Clarithromycin 30.0–40.0 (25.0*) 0.3–115.0

Azithromycin 6.0–12.0 1.9–287.5

Erythromycin-H2O 2.0–15.0 13.2–338.7

(169) Poland Sulfamethoxazole >50.0 (30.0*) 857–1,149

1,021–1,431

Trimethoprim >60.0 (80.0*) 340–398

234–332

Erythromycin 2.0–15.0 14–18

15–19

(170) Portugal Sulfonamides >50.0 400–800

2,600–2,800

(171) China Cefalexin ?80.0 170–5,070

Amoxicillin 60.0 64–1,670

(172) China Cefalexin 80.0 240–1,800

Erythromycin 2.0–15.0 470–810

Tetracycline >60.0 96–1,300

(173) Australia Amoxicillin 60.0 6,940

(174) Hong Kong Ciprofloxacin 50.0–70.0 (20.0*) 720

(175) Italy Ofloxacin 65.0–80.0 600

(176) Germany Erythromycin 2.0–15.0 2,500–6,000

(177) Brazil Penicillin G 60.0–90.0 (parenteral) 434,460

UA (Enteral)

SOIL (S)/GROUNDWATER (GW) IMPARTED BY WASTEWATER IRRIGATION S or GW (NG/KG FOR SOIL)

(178) Cyprus Sulfamethoxazole S 980

Trimethoprim 620

(179) China Tetracycline S 69.3–234.0

Sulfamethoxazole 4.0–58.2

(180) USA Trimethoprim GW 1,000

(181) USA Ofloxacin GW 19.3–604.9

Nalidixic acid, Erythromycin,

Clarithromycin and

Azithromycin

26.9–453.2

ANTIBIOTIC RESISTANCE GENES (ARGs) GENE COPIES/ML

(157) Romania sulI 5.33 × 102-1.94 × 101

qacE11 1.94 × 102-4.89 × 102

blaSHV 1.69 × 103-4.39 × 103

mefA 1.47 × 103-1.67 × 103

catA1 6.83 × 105-2.63 × 103

#(182) India blaTEM 1.3 × 10–1.02 × 104

(158) China tetG 2.30 × 107

floR 4.37 × 107

sul2 1.60 × 108

(183) Saudi Arabia tetO 2.5 × 102

tetQ 1.6 × 102

tetW 4.4 × 102

tetH 1.6 × 101

tetZ 5.5 × 103

sulI gene codes for resistance against sulphonamides; qacE11 gene codes for resistance against quaternary ammonium compounds; mefA gene codes for resistance against

Macrolide-lincosamide-streptogramin B antibiotics; catA1 gene confers resistance to chloramphenicol. UA = unavailable; *Verlicchi et al. (184); #Measurement was in gene copies

per 100mL.
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antibiotics internalized into seedlings and plants was done using
seed germination experiment by Hillis et al. (210) and Pan and
Chu (196) as well as plant growth tests (211). The results showed
varying toxic effects of antibiotics on the cultivars. Pan and Chu
(196) showed that the antibiotics were taken up and it inhibited
root elongation significantly (p < 0.05). Tetracycline was noted
to have the highest level of toxicity among the antibiotics while
lettuce crop was found to be the most affected by larger number
of the veterinary antibiotics (212).

Risk Assessment of Antibiotics in Reused

Wastewater
Residual antibiotics and ARGs remain two major concerns in
integrated human health risk assessment associated with the
use of wastewater (213–215). The risk associated with reuse
of wastewater containing antibiotics or any pharmaceutical is
generally expressed as risk quotient (RQ) or hazard quotient
(HQ). The risk quotient (RQ) for antibiotic in reused wastewater
reflects the extent of associated ecological risks (216). RQ,
which is a calculated index, constitutes a vital analytical
tool for assessing ecotoxicological risks (217, 218). It varies
proportionally with the detected concentration of the antibiotics
in the wastewater. It is the ratio of measured concentration
(MEC) in wastewater to the predicted no effect concentration
where no effect concentration (PNEC) as follows:

RQ = MEC/PNEC (1)

In Equation (1), RQ < 0.1 means low risk, < RQ < 1 means
medium risk and, RQ > 1 means high ecological risk (219, 220).

Also in this equation, PNEC equals the LC50/1000where LC50

is the chemical concentration that results in death to 50% of the
studied population.

Instead of the three levels of risks of antibiotics (as well as
other pharmaceuticals) shown above, the following four levels of
risks (ecotoxicity) have been proposed by FASS (221): RQ ≤ 0.1
for insignificant risks, 0.1 ≤ RQ ≤ 1 for low risks, 1 ≤ RQ ≤ 10
for moderate risks and, RQ > 10 for high risk.

Many research studies report high risk quotients of partially
treated and untreated wastewater reuse associated with the
presence of erythromycin (222–224), clarithromycin (222), and
ciprofloxacin (225). The risk quotients in these instances were
mostly >1, suggesting high ecological risk (219, 220). This also
shows the potential environmental impact of antibiotic residues
that may enter surface water from reclaimed water used for
irrigation. Chlortetracycline and oxytetracycline, were reportedly
the most prevalent antibiotics found in livestock wastewater
treatment plants (226) with enhanced hazard to ecosystems in
Korea. Following a study on long-term wastewater irrigation,
Christou et al. (178) concluded that the estimated threshold
of toxicity concern (TTC) and high hazard quotients (HQ)
values of pharmaceuticals observed, revealed that wastewater
irrigation has an impact on human health, because the
pharmaceutical gets internalized and bioaccumulated in tissues
causing toxicity.

MITIGATING THE RISKS ASSOCIATED
WITH WASTEWATER REUSE

There are several approaches to consider mitigating the risks
associated with the reuse of wastewater. These approaches
have been captured in the World Health Organization (WHO)
wastewater reuse guidelines (34, 151) and in sanitation safety
plans (227). One approach that has proven to show positive
results is the cessation of irrigation before harvesting (36,
228). The main risk reduction factor associated with cessation
of irrigation is the decay of pathogens with time. Keraita et
al. (228) studied the reduction of microbial contamination
on wastewater-irrigated lettuce due to cessation of irrigation
before harvesting and obtained a risk reduction of 0.65 log10
units for thermotolerant coliforms and 0.4 log10 helminth eggs
per 100 g of lettuce. In addition, Sjölander (36) reported a
decay rate of 0.4 day−1 for Ascaris suum on lettuce following
cessation of irrigation before harvesting. The need to employ
an optimum model to determine the appropriate time of die-
off is thus imperative, particularly for interventions associated
with health risk reduction (229). When accuracy in the actual
prediction of the potential risk is involved, Oron et al.
(230) recommended that research should incorporate definite
acceptable risk criteria, more accurate dose-response modeling
information including survival time of pathogen in treated
wastewater. Information on uptake of pathogens by irrigated
plants as well as the eating habits of the populations would
provide a more pertinent impact (230). In relevance to these
criteria such as plant uptake or eating habits of exposed
population, and analytical tools’ harmonization, Beaudequin et
al. (231) proposed the use of a Bayesian network as a useful
tool in situations where empirical data necessary for QMRA
calculation requirements are insufficiently available. This may
be integrated into other models to predict effectiveness of
appropriate cessation period before harvest. The cessation may
be used with other treatment technologies for wastewater before
reuse (232).

In handling some viruses, Kobayashi et al. (232) have
optimized a down-flow hanging sponge (DHS) reactor treating
municipal wastewater. The optimization depicts that in DHS
effluent for agricultural irrigation for 95% human population,
a log10 reduction of 2.6 and 3.7 for norovirus GII in the DHS
is attainable. This would, respectively, retain ≤10−4 and 10−6

DALYs loss per person per year (232). The impacts of using
wastewater for irrigation on the one hand and post-harvest
handling and storage contamination on the other, needs to
be further addressed. The specific situation with the potential
impact of internalization and uptake of pathogens as compared
to deposition on outer surfaces need much more attention and
documentation, before long-term handling and management
practices can be issued and related to modes of application.

In addition, the specific situation with regards to chemical
contaminants (e.g., uptake of antibiotics and other organic
compounds) as well as the impact of use of these in livestock and
among humans and the further fate in agricultural fields need
to be addressed. Chen and Zhang (233) noted that constructed
wetlands are effective for removing antibiotics and ARGs
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and compares favorably with mechanical wastewater treatment
processes (p > 0.05). Modern processes involving ozonation,
advanced oxidation, activated carbon, nano-filtration and reverse
osmosis have also been recommended as treatment technologies
(234).

Onsite filtration of the wastewater for irrigation during
application may reduce the extent of farmland contamination.
This may be considered in relation to riverbank filtration (RBF)
proposed by Verbyla et al. (10). RBF may be accompanied with
UV device for additional treatment before use (235). Toscano et
al. (235) reported a significant (p < 0.05) average reduction of
pathogen concentration of reclaimed water from 0.35 to 1.23 log
units by using the UV system.

The guidelines by WHO on the reuse of wastewater in
Agriculture (236) has provided a path to safeguard human
health. If adequate care is taken, it is possible to achieve a
better crop yield with wastewater effluents without constituting
hazards (237, 238). Multiple barrier approach recommended in
the guidelines is to protect the farmer and farm household with
contacts to the wastewater being reused. It is also meant for
protecting the food chain at critical control or entry points,
especially in arid and semi-arid countries where reuse of treated
or untreated wastewater is rampant (236). Sometimes, there can
be the need for necessary steps and considerations of social
marketing, incentive systems, awareness creation or education
and local regulations (239). This would encompass a framework
to protect both the farmers and the consumers.

CONCLUSION

The reuse of partially treated or untreated wastewater for
agricultural irrigation is widespread due to its availability and
high nutrient content. The agricultural reuse of wastewater
contributes to poverty alleviation especially in resource-
constraint regions. Despite the many benefits associated with the

practice serious health concerns still exist as presented in this
review. The health impact is dependent on the concentration
of the contaminants which varies, as shown in Table 1. The
concentration of the contaminants is dependent on the type of
wastewater, either treated, partially treated or untreated. The
WHO wastewater reuse guidelines as well as the Sanitation
Safety plans has been shown to protect public health, however
the evidence presented in this review indicates a shortcoming
in the implementation. This calls for a more concerted effort
in adapting these guidelines/plans into local frameworks. The
planning and implementation of these local frameworks should
involve all stakeholders, such as policy makers, farmers, health
professionals and the general public.
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