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Abstract. We give a survey of results on global stability for deterministic compartmental epidemi-
ological models. Using Lyapunov techniques we revisit a classical result, and give a simple proof.
By the same methods we also give a new result on differential susceptibility and infectivity models
with mass action and an arbitrary number of compartments. These models encompass the so-called
differential infectivity and staged progression models. In the two cases we prove that if the basic
reproduction ratio R0 ≤ 1, then the disease free equilibrium is globally asymptotically stable. If
R0 > 1, there exists an unique endemic equilibrium which is asymptotically stable on the positive
orthant.
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1. Introduction
The primary objective of this paper is to give two results on global stability for some epidemiolog-
ical models using Lyapunov techniques. Using a new result for systems of the type ẋ = A(x) x,
we revisit a celebrated result of Lajmanovitch and Yorke [39] and give a simple proof. The second
result is for differential susceptibility and infectivity models with mass action. We generalize a
result of [28, 24]. But before we will give an overview of the literature concerning the problem of
stability in epidemiological models
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In [59] J.A. Jacquez says :

A major project in deterministic epidemiological modeling of heterogeneous popula-
tions is to find conditions for local and global stability of the equilibria and to work
out the relations among these stability conditions, the threshold of epidemic take-off,
and endemicity, and the basic reproduction.

We denote in this paper by R0 the basic reproduction number. The basic reproduction number, a
key concept in epidemiology, is defined as the expected number of new cases of infection caused
by a typical infected individual in a population of susceptibles only and is an ingredient in almost
all papers using mathematical modeling for infectious diseases. An abundant literature have been
devoted toR0 (see [8, 10, 67, 17, 18, 34, 59, 66] and the references therein) after the seminal paper
[9].

The citation before was written in 1982, at this time no too many results was known. What
is the situation 25 year later ? As early as 1976 the stability analysis for the classic SIR or SIRS
models was well known [20, 19]. The reason was that the study of stability for these models was
reduced to the study of 2-dimensional systems, hence phase methods could be used : Poincaré-
Bendixson theorem. Periodic orbits are ruled out using Dulac criteria or condition of Busenberg
and van den Driessche [7].

For many infectious diseases the transmission occurs in a heterogeneous population, so the
epidemiological model must divide the population into subpopulations or groups, in which the
members have similar characteristics. This division into groups can be based not only on mode of
transmission, contact patterns, latent period, infectious period, genetic susceptibility or resistance,
and amount of vaccination or chemotherapy, but also on social, cultural, economic, demographic,
or geographic factors. This is the rationale for the introduction of multi-group models. In the
epidemiological literature, the term “multi-group” usually refers to the division of a heterogeneous
population into several homogeneous groups based on individual behaviour. The interest in multi-
group endemic models origina lly stems from sexual transmitted diseases such as gonorrhea or
HIV/AIDS. The pioneering paper of Lajmanovitch and Yorke in 1976 [39] provides a complete
description of the dynamics of n groups of SIS systems for subpopulations of constant size. The
authors use Lyapunov techniques to prove that either all trajectories in Rn

+ tends to 0, or else there
is a unique endemic equilibrium x̄ in the positive orthant and trajectories in Rn

+\{0} tends to x̄.
Other types of high dimensional systems are the so-called differential infectivity (DI) and

staged progression (SP) models. The staged progression model [59, 29, 34] has a single unin-
fected compartment, and infected individuals progress through several stages of the disease with
changing infectivity. This model is applicable to disea se with changing infectivity during the in-
fectious period such that HIV or disease with asymptomatic carriers such that HBV or tuberculosis.
The differential infectivity model has been also introduced to take into account some specificity of
HIV/AIDS. In a DI model the infected population is subdivided into subgroups of different infec-
tivity. Upon infection, an individual enters some subgroup with a certain probability and stays in
this subgroup until becoming inactive in transmission.

For multigroup SEIRS models of constant size many results have demonstrated the global
stability of the disease free equilibrium when R0 < 1 and the local asymptotic stability of an
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unique endemic equilibrium when R0 > 1 [21, 64, 65]. The most difficult task is the global
stability of the endemic equilibrium when R0 > 1, when this is possible. Actually for general
multigroup models the uniqueness of the endemic equilibrium non longer holds and the disease
free equilibrium may be locally, but not globally, asymptotically stable [67, 34, 59].

The global stability whenR0 > 1 of SEIR models with constant size has long been conjectured
but only proven in 1995 [43]. The proof relies heavily on the competitive structure of the system,
and the fact that 3 dimensional competitive systems satisfy the Poincaré-Bendixson theorem [22,
61, 60]. When the system is not competitive another approach consists to show that the system
satisfies a Bendixson criterion which is robust under C1 perturbation [44, 62, 41, 48].

Since these path-breaking papers numerous results of global stability for the endemic equilib-
rium have been obtained for low dimensional systems;

• For SEIRS systems, with fraction of classes (then the system reduces to a 3-dimensional
systems) for small or large temporary immunity [45],

• For SEIR model with vertical transmission [46]. The study of stability is reduced to a 3-
dimensional system. Since this system is not competitive the second approach is used,

• For SEIR model with varying population size [42] for the system of fraction of classes,

• For SIRV models (V for vaccinate class) with constant population size and mild parameters
constraints [2],

• For SVEIR models [14] with small mortality,

• For Staged progression models in dimension 3 and 4 [53],

• For SEI models with immigration of latent and infectious [54],

• A model of dengue which is reduced to a 3 dimensional competitive system [67],

• A 5 dimensional staged progression model [13], for which the asymptotic stability of the en-
demic equilibrium reduces to a 3 dimensional system permitting to apply the Li-Muldowney
technique [44].

For arbitrary dimensional system, the most promising method may be that of Lyapunov. The
systematic use of Lyapunov function in studying stability problems is relatively recent. The excep-
tion is the result of Lajmanovitch and Yorke evoked before. However, Lasalle-Lyapunov theory
has been used in [50, 57, 34, 59] to study the stability of classic SIRS models.

In 2004, Korobeinikov and Maini using a Lyapunov function [36] demonstrate simply the
result of Li and Muldowney for the endemic equilibrium. The Lyapunov function used is V =

n∑
i=1

ai(xi − x̄ ln xi). This function has a long history of application to Lotka-Volterra models

[5, 12, 16, 63] and was originally discovered by Volterra himself, although he did not use the
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vocabulary and the theory of Lyapunov functions. Since epidemic models are “Lotka-Volterra”
like models, the pertinence of this function is not surprising. This Volterra-Lyapunov function has
been used in epidemiological models at the end of the eighties.

Beretta and Capasso [4] use a skew-symmetry condition on the Jacobian of the matrix of the
system to give a necessary condition for the global stability of the endemic equilibrium.

For a SIRS multigroup model with constant subgroup sizes, Lin and So [49] show that the en-
demic equilibrium is globally asymptotically stable if the contact rate between subgroups is small.
These two results are actually perturbation results of the situation where the endemic equilibrium
is known to be globally stable.

Since the publication of the result of Korobeinikov and Maini the “Volterra-like” Lyapunov
functions has been used to address the stability of high-dimensional systems with mass action.
The difficulty is in choosing the coefficient and in proving that the derivative is nonnegative. The
global stability of DI model with mass action is demonstrated in [52]. The global stability of SP
model, eventually with latent classes, with mass action is proved in [15, 32]. Stability of intra-host
models with different strains [30] (which contained as a particular case, SE1 · · ·EkIR models
with multiple strains) is treated in [1, 30]. The stability of differential and staged progression
latent classes, with one infectious class is solved in [32]. Two models of tuberculosis are studied
in [55]. The stability of a model with complex graph interaction between latent classes and one
infectious class is addressed in [56].

We give a brief outline of the paper. In Section 2, we consider a system similar to the system
in [39]. We compute R0 and prove that if R0 ≤ 1, the DFE is globally asymptotically stable and
if R0 > 1, then a unique equilibrium exists which is globally asymptotically stable on Rn

+\{0}.
In Section 3, we present a system with different classes of susceptible individuals and staged
progression through latency and infectious classes. Using a “Volterra-like” Lyapunov function we
obtain results as before : if R0 ≤ 1 the DFE is globally asymptotically stable and if R0 > 1 then a
unique equilibrium exists which is globally asymptotically stable on the positive orthant.

2. A n groups SIS model
Throughout the paper we will use the following classical notations. We identify vectors of Rn with
n × 1 column vectors. The Euclidean inner product is denoted by 〈 | 〉, then ‖z‖2

2 = 〈z | z〉 is the
usual Euclidean norm. The family {e1, · · · , en} denotes the canonical basis of the vector space
Rn. We denote by 1 the vector with all components equal to 1, i.e. 1 = e1 + · · ·+ en.

If x ∈ Rn we denote by xi the i-th component of x. Equivalently xi = 〈x | ei〉. For a matrix
A we denote by A(i, j) the entry in row i, column j. For matrices A,B we write A ≤ B if
A(i, j) ≤ B(i, j) for all i and j, A < B if A ≤ B and A 6= B, A ¿ B if A(i, j) < B(i, j) for all
i and j. The notation AT denotes the transpose of A. Then 〈v1 | v2〉 = vT

1 v2. The notation A−T

will denote the transpose of the inverse of A. If x ∈ Rn, we denote by diag(x) the diagonal matrix
whose diagonal elements are given by x.

A Metzler matrix A is a matrix such that A(i, j) ≥ 0 for any indices i 6= j [6, 33, 51]. These
matrices are also called quasipositive matrices [61]. Metzler matrices are the opposite of M -
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matrices [6, 67]. We prefer to use Metzler matrices since they appear naturally in compartmental
systems.

In this section we will consider the following system

ẋ =
[
D + B − diag(x) B

]
x. (2.1)

where D is a stable Metzler matrix and B ≥ 0 is a nonnegative irreducible matrix.
To motivate the consideration of such a system we consider n groups with constant population

size and a disease which confer no immunity after recovery. We model the contact by the mass
action law. If we denote by Si and Ii the respective number of susceptible and infectious individuals
in group i, Ni = Si + Ii, the system is, for i = 1, · · · , n





Ṡi = µi Ni − µi Si −
∑n

j=1 βi,j
Si

Ni
Ii + γi Ii

İ =
∑n

j=1 βi,j
Si

Ni
Ii − (γi + µi) Ii.

(2.2)

Since the population is constant, it is sufficient to know the Ii. If we set xi =
Ii

Ni

, β̃i,j = βi,j Nj

and αi = γi + µi we obtain a system of ODE

ẋi = (1− xi)
∑

β̃i,j xj − αi xi. (2.3)

that we can write in compact form

ẋ =
[
D + B − diag(x) B

]
x. (2.4)

with B =
(
β̃i,j

)
and D = −diag(αi). This system is the system considered in [39], where the

system addressed has the structure of (2.1). In this model, the matrix B describes the contact
interaction between groups. We recall the following definition [6, 61, 66].

Definition 2..1. A matrix A of size n× n, n ≥ 2 is called irreducible if for any proper subset I of
{1, · · · , n} there are i ∈ I and j 6∈ I such that A(i, j) 6= 0.

Epidemiogically speaking the irreducibility of B (or Q) means that no group is contact isolated in
and out from the remaining groups. It is now easy to interpret the meaning of the system (2.1). The
matrix D describes the transfer of individuals out of compartments and B − diag(x) B the disease
transmission. The model can also be written ẋ = [D + diag(1− x) B] x. It is clear that [0, 1]n is a
compact positively invariant absorbing set for this system.

2.1. The basic reproduction number
We denote by ρ(A) the spectral radius of a matrix A, which is defined, if Sp(A) denotes the
spectrum of A, by

ρ(A) = max{|λ| | λ ∈ (Sp(A)}
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and the stability modulus α(A)

α(A) = max{<(λ) | λ ∈ (Sp(A)}.
Using the framework of [67] the matrix−D−1B is the next generation matrix of (2.1) and the basic
reproduction number isR0 = ρ(−D−1B). We now will use a result of Varga [69, 68] (rewritten in
term of Metzler matrices)

Definition 2..2 (Regular splitting). : For a real Metzler matrix M, M = Λ + N is a regular
splitting if Λ is a Metzler stable matrix and N ≥ 0 is a nonnegative matrix.

Now we can give the following classical theorem.

Proposition 2..1 (Varga, 1962, Theorem 3.13, [69]). Let M = Λ + N be a regular splitting of M,
a real Metzler matrix. Then M is Metzler stable if and only if ρ(−NΛ−1) < 1.

The proof of Proposition 2..1 is in Varga (1960). It is also in Bermann and Plemmons [6]: the
condition N45 expressed in terms of M -matrices. We see from this proposition, by a continuity
argument, that for any regular splittings of a Metzler matrix M we have

α(M) < 0 ⇐⇒ ρ(−NΛ−1) < 1,

α(M) = 0 ⇐⇒ ρ(−NΛ−1) = 1.
(2.5)

Thus any regular splitting gives an equivalent threshold condition α(M) on the parameters. This
has a consequence for our system : D + B is a regular splitting and the stability of D + B is
completely related to R0 and its position relatively to 1. Since this equivalence is independent
from the splitting, we can replace the system (2.1) by the same system where we assume that D is
a diagonal matrix and incorporating the off-diagonal elements in B, this modification let the new
matrix B still irreducible. This does not change the generality of the conclusion. However only
the original ρ(−D−1B) has a biological meaning, the others are equivalent thresholds. From now
on we will assume that D is a diagonal matrix.

2.2. Existence and uniqueness of an endemic equilibrium
We will show that there exists a unique equilibrium x̄ À 0 if and only if R0 > 1. An equilibrium
such that x̄ À 0 is called a strongly endemic equilibrium. The method of proof is inspired by the
methods used by Thieme [21, 66, 64]. We show that if there exists an endemic equilibrium x̄ > 0
then R0 > 1. For the convenience of the reader we recall the following result on Metzler matrices
[6]

Theorem 2..1. Let A be an irreducible Metzler matrix

1. If there exists x > 0 such that Ax > λ x then α(A) > λ.
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2. If there exists x > 0 such that µx > A x then µ > α(A).

If A is only Metzler, the preceding relations hold with > replaced by ≥. If A is an irreducible
nonnegative matrix, we have analogous inequalities, obtained in replacing the stability modulus
α(A) by the spectral radius ρ(A) in the preceding inequalities.

If there exists an endemic equilibrium x̄ > 0 it satisfies

x̄ = −D−1B x̄ + diag(x̄) D−1B x̄.

Since D is a Metzler matrix, then −D−1 > 0 [61]. As B is irreducible and −D diagonal, with
positive diagonal terms, −D−1B is also irreducible. Therefore −D−1B x̄ À 0 and from the
preceding relation, we deduce x̄ À 0. A consequence is also diag(x̄) D−1B x̄ ¿ 0. Finally we
obtain

x̄ < −D−1B x̄.

which in turn implies using Theorem 2..1

R0 = ρ(−D−1B) > 1.

Conversely, we have to show that if R0 > 1, then there exists a unique strongly endemic equilib-
rium. An equilibrium satisfies

(D + B) x̄ = diag(x̄) B x̄,

equivalently,

x̄ + diag(x̄)
(−D−1B x̄

)
= x̄ + diag(−D−1B x̄) x̄ = −D−1B x̄,

which can be written [
I + diag

(−D−1B x̄
) ]

x̄ = −D−1B x̄.

Hence
x̄ =

[
diag

(
1−D−1B x̄

) ]−1 (−D−1B
)

x̄.

We are reduced to find a fixed point for the application H : [0, 1]n in [0, 1]n

H(x) =
[
diag

(
1−D−1B x

) ]−1 (−D−1B
)

x.

Let be A = D−1B the next generation matrix. Since R0 = ρ(−D−1B) and A = −D−1B is a
nonnegative irreducible matrix, from the Perron-Frobenius Theorem there exists v À 0 such that

Av = R0 v.

We choose ε sufficiently small such that for any index i

1 + εR0 vi ≤ R0.
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This is possible since R0 > 1. We deduce

1 ≤ R0

1 + εR0 vi

,

and

ε vi ≤ R0εvi

1 + εR0 vi

=
(Aε v)i

1 + (Aε v)i

.

We have proved that there exists ε > 0 such that ε v ≤ H(ε v). We also have ε > 1 and ε v ≤ v.

A similar argument shows that we can choose λ with 0 < λvi ≤ 1 and λ large enough such
that

R0

1 +R0 λ vi

≤ 1,

which is equivalent to
R0 − 1

R0

≤ λ vi. This implies H(λ v) ≤ λ v. Choosing ε ≤ λ we have

ε v ≤ H(ε v) and H(λ v) ≤ λ v ≤ 1. Since H is a monotone function, H maps the parallelepiped

K = {x | ε v ≤ x ≤ λ v} ⊂ ]0, 1[n,

into itself. By Brouwer fixed point Theorem we know that H has a fixed point ω in K. This is an
endemic equilibrium since 0 ¿ ε v ≤ ω.

It remains to show the uniqueness.

Lemma 2..1. If ω À 0 is a strongly endemic equilibrium and if x̄ is another equilibrium then
x̄ ≤ ω.

Proof Let ξ = max
i=1,··· ,n

x̄1

ω1

. We have x̄ ≤ ξω and there exists an index i0 such that x̄i0 = ξ ωi0 .

Since A is nonnegative and x̄ a fixed point of H we have the following inequalities

x̄i0 =
(Ax̄)i0

1 + (Ax̄)i0

≤ (Aξ ω)i0

1 + (Aξ ω)i0

=
ξ (Aω)i0

1 + ξ (A ω)i0

.

By contradiction assume that ξ > 1. From the last inequality we have

x̄i0 <
ξ (Aω)i0

1 + (A ω)i0

.

But since ω̄ is a fixed point

x̄i0 <
ξ (Aω)i0

1 + (A ω)i0

= ξ ωi0 = x̄i0 .

Therefore we obtain a contradiction. 2

We need a second lemma to end the proof.
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Lemma 2..2. If ω > 0 is an endemic equilibrium and if A is irreducible then ω À 0.

Proof Since ω > 0 and A is irreducible, then we have Aω À 0. Since components of ω are
given by

ωj =
(Aω)j

1 + (A ω)j

> 0,

the assertion of the lemma is obtained. 2

The two lemmas prove that there exists an unique strongly endemic equilibrium.

2.3. A theorem on stability
To study the stability we need the following result which can be considered as a dual result to
LaSalle’s theorem [40].

Theorem 2..2. Let G be an open set, containing the origin, which is positively invariant for the
system ẋ = A(x).x, where A(x) is a Metzler matrix, depending continuously on x. We assume
that there exists cT À 0 such that cT A(x) ¿ 0 for any x ∈ G, x 6= 0. Then the origin is globally
asymptotically stable on G.

Proof Let us consider on G the Lyapunov function

V (x) =
n∑

i=1

ci | xi | .

We define εz = sign(z), i.e. |xi| = εxi
xi. This function is locally Lipschitz. The Dini derivative

can be defined [40]. We have

V̇ =
n∑

i=1

ci εxi
ẋi

=
n∑

i=1

ci εxi

n∑
j=1

aij xj

=
n∑

i=1

n∑
j=1

ci εxi
aij xj

=
n∑

j=1

εxj
xj

n∑
i=1

ci εxj
εxi

aij

=
n∑

j=1

εxj
xj

[
cj ajj +

∑

i 6=j

ci εxj
εxi

aij

]

≤
n∑

j=1

εxj
xj

[
cj ajj +

∑

i6=j

ci aij

]
=

n∑
j=1

|xj| (cT A)j ≤ 0.
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Since cT A(x) ¿ 0 on G, then the function V̇ is negative definite. This ends the proof by the
Lyapunov theorem.

2

2.4. Global stability of the DFE
We have the following result.

Theorem 2..3. The DFE of the system (2.1), which is the origin, is globally asymptotically stable
if and only if R0 ≤ 1.

Proof Assume that R0 = ρ(−D−1B) ≤ 1. We have seen from Proposition 2..1 that this is
equivalent to the stability of the matrix D + N . From the Perron-Frobenius theorem, since D + B
is irreducible, it follows that there exists an eigenvector c À 0 such that (D+B)T c = α(D+B) c.
We choose the Lyapunov function

V (x) = 〈c | x〉,
positive definite on Rn

+ and we have

V̇ (x) = 〈(D + B)T c | x〉 − 〈diag(x)Bx | c〉 ≤ 0.

If D + B is stable, i.e. α(D + B) < 0, the proof is finished, since this quantity is negative definite.
It remains to study the case where α(D + B) = 0, or equivalently R0 = 1.

We apply Lasalle’s invariance principle. We consider the largest invariant set contained in

E = {x | diag(x)Bx = 0}.

The irreducibility of B implies L = {0}. Indeed if x ∈ L ⊂ E we have for all (i, j),

xi

∑
j

βij xj = 0.

The quantities are positive, this implies that for any couple of indices βij xi xj = 0. By contradic-
tion assume that i0 is such that xi0 6= 0. There exists an index i1 such that βi1,i0 6= 0, from the
irreducibility of B. It follows xi1 = 0. The trajectory x(t) from x, satisfies for a small positive
time x(t)i0 6= 0. Hence x(t)i1 = 0. By invariance of L we must have

ẋi1 = −
∑

j

βi1,j xj = 0.

Which in turn implies xi2 = 0 for any βi1,i2 6= 0. In the other words, if the node i2 is connected
by an oriented path to the node i1, then xi2 = 0. By a finite induction we deduce that we have
xi = 0 for any node connected to the node i1. Since by irreducibility [6] the graph associated to B
is strongly connected, we have xi0 = 0. This gives a contradiction.

2
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2.5. Global stability of the endemic equilibrium
Theorem 2..4. The endemic equilibrium of the system (2.1) is globally asymptotically stable on
Rn \ {0} if and only if R0 > 1.

Proof Since R0 > 1, then there exists an unique equilibrium ω À 0. We write (2.4) under new
coordinates x + X + ω. Using the definition of ω : (D + B) ω − diag(x)Bx = 0, we get

Ẋ =
[
D + diag(1−X − ω) B − diag(B ω)

]
X. (2.6)

Since ω is in ]0, 1[n which is an absorbing set, it is sufficient to consider (2.1) on this set, or
equivalently, when x ≤ 1. In this case diag(1−X − ω) = diag(1− x) and the matrix

A(X) = D + diag(1−X − ω) B − diag(B ω)

is Metzler. X is in the compact set −ω + [0, 1]n.
We apply (2..2). We know that for any irreducible B ≥ 0, for any Metzler stable D such that

ρ(−D−1B) > 1 there exists ω À 0 such that

(D − diag(B ω) + B) ω = 0.

In other words A(−ω) satisfies A(−ω) ω = 0. From Proposition (2..1) we deduce α(A(−ω)) = 0.
Since this matrix is irreducible, and transposing, we know that there exists c À 0 such that

cT A(−ω) = cT (D − diag(B ω) + B) = 0.

Then for X + ω À 0 (i.e. x À 0, we have

cT A(X) = −cT (X + ω) B ¿ 0.

This proves the stability on ]0, 1[n. Since the vector field is strictly entrant, this ends the proof on
Rn \ {0}.

2

3. A differential susceptibility and infectivity model
We consider the following model





Ṡ = Λ− µS − diag(B I) S

İ = 〈B I | S〉 e1 + AI,

(3.1)

where S ∈ Rn
+ is the state of susceptible individuals and I ∈ Rk

+ is the state of infectious. The
matrix B ≥ 0 represents the coefficients of infectivity, actually B(i, j) is the contact and infectivity
of Ij in the group Si. As usual, e1 is the first vector of the canonical basis of Rk. Finally, A is
a stable Metzler matrix and represents the evolution through the infectious stages. This model
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encompass known models of DI, SP, or differential susceptibility models . We generalize the
results obtained in [28, 24].

It is straightforward to check that the nonnegative orthant is positively invariant by this system,
that there exists a compact positively invariant absorbing set. The DFE is given by (S∗, 0) ∈
Rn

+ × Rk
+ where S∗ = 1

µ
Λ.

3.1. Basic reproduction ratio
We can give a simple elegant formula for the R0 (compare with [28, 24]). To obtain R0 we can
use the techniques developed in [67]. We claim that

R0 = 〈B(−A−1) e1 | S∗〉. (3.2)

We use the expression (−A−1) to put the emphasis on the fact that (−A−1) > 0 because A is
Metzler stable. Using the framework of [67], we denote by Fi(S, I) the rate of appearance of
new infections in compartment i, and by Vi(S, I) the rate of transfer of individuals in and out the
compartment i by all other means. The matrix V is the “mass” balance of the compartments. Note
that our V is the opposite of the same used in [67]. Then

F(S, I) =

[
0

〈B I | S〉 e1

]
,

and

V(S, I) =

[
Λ− µS − diag(B I) S

A I

]
.

The Jacobian matrices are

DF(x, y) =

[
0 0

e1 (BI)T e1 ST B

]
, DV(x, y) =

[−µ I − diag(BI) −diag(S) B
0 A

]

Noting that we have sorted the variables in the reverse order in comparison with [67], we set
F = x∗ b βT and V = A. It is proved in [67] that the basic reproduction number is the spectral
radius of the next generation matrix for the model, namely −FV −1 computed at the DFE (the
minus sign comes from Metzler matrices used in place of M -matrices),

R0 = ρ(−FV −1) = ρ(e1 S∗T B (−A−1)).

It is clear that e1 S∗T B (−A−1) is a rank one matrix, the only nonzero eigenvalue is given by
S∗T B (−A−1) e1, which is exactly our claim.

3.2. Global stability of the DFE
We have the following theorem.
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Theorem 3..1. If R0 ≤ 1 then the DFE is globally asymptotically stable on the nonnegative
orthant. If R0 > 1 the DFE is unstable.

Proof We will introduce some notation to simplify the exposition of the proof. Actually these
notations are used in MATLAB and SCILAB. For two matrices M and N of same size we denote
by D = M./N the matrix which is defined by D(i, j) = M(i, j)/N(i, j). In the same spirit
L = ln M will denote the matrix defined by L(i, j) = ln(M(i, j)). We can now define the
Lyapunov-LaSalle function on Rn

+ × Rk
+ \ {S∗} × Rk

+:

VDFE(S, I) = R0 〈1 | S − S∗〉 − R0 〈S∗ | ln S − ln S∗〉+ 〈B(−A−1) I | S∗〉.
We have, using the fact that Λ = µS∗:

V̇DFE = µR0 〈1 | S∗〉 − R0 〈1 | diag(BI) S〉 − µR0 〈1 | S〉
− µR0 〈S∗./S | S∗〉+ R0 〈diag(BI)1 | S∗〉+ µR0 〈1 | S∗〉

+ 〈BI | S〉 〈B(−A−1) e1 | S∗〉 − 〈BI | S∗〉. (3.3)

Taking into account the formula (3.2) on R0 with the relations

〈1 | diag(BI) S〉 = 〈BI | S〉, 〈diag(BI)1 | S∗〉 = 〈BI | S∗〉
and 〈1 | S〉 = 〈S∗ | S./S∗〉 the preceding equation becomes

V̇DFE = µR0 〈2− S∗./S − S./S∗ | S∗〉+ (R0 − 1) 〈BI | S∗〉.
The inequality between the arithmetic and the geometric means andR0 ≤ 1 imply V̇DFE ≤ 0. The
largest invariant set contained in the set {(S, I) | V̇DFE(S, I) = 0} satisfies the relation S = S∗.
Since A is a stable Metzler matrix, by Lasalle’s invariance principle [40] the DFE is globally
asymptotically stable. This ends the proof

2

3.3. Endemic equilibrium
Theorem 3..2. There exists a unique endemic equilibrium in the nonnegative orthant if and only if
R0 > 1.

Proof. We look for an equilibrium (S̄, Ī) with Ī > 0. From the relations




0 = Λ− µ S̄ − diag(B̄ Ī) S̄,

0 = 〈B̄ Ī | S̄〉 e1 + A Ī
(3.4)

we deduce, since A is Metzler stable, that Ī = 〈B̄ Ī | S̄〉 (−A−1) e1. From the second relation of
(3.4) and taking the inner product with e1 we obtain 〈B̄ Ī | S̄〉 = −〈A Ī | e1〉. Finally
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Ī = −〈A Ī | e1〉 (−A−1) e1. (3.5)

Then to compute Ī it is sufficient to find −〈A Ī | e1〉.
Again with the expression Ī = 〈B̄ Ī | S̄〉 (−A−1) e1, we get

〈B̄ Ī | S̄〉 = 〈B̄ Ī | S̄〉 〈B(−A−1)e1 | S̄〉.
If 〈B̄ Ī | S̄〉 6= 0 then we have

〈B(−A−1)e1 | S̄〉 = 1. (3.6)

From the first equation in (3.4) we have

S̄ =
[
diag(µ1 + BĪ)

]−1
Λ =

[
diag(1 +

1

µ
BĪ)

]−1
S∗. (3.7)

Using this value of S̄ and of BĪ in (3.6) gives
〈

B(−A−1)e1


[
diag(1− 〈A Ī | e1〉

µ
B(−A−1)e1)

]−1
S∗

〉
= 1.

In other words −〈A Ī | e1〉 is a solution of H(x) = 1 with

H(x) =

〈
B(−A−1)e1


[
diag(1 +

x

µ
B(−A−1)e1)

]−1
S∗

〉
.

It is clear that H(x) is a strictly decreasing function satisfying limx→+∞ H(x) = 0 . Then a unique
positive solution exists if and only if H(0) > 1. Since H(0) = R0 we have a positive solution.
Since, from (3.7) we have S̄ À 0 and from (3.5), with−〈A Ī | e1〉 > 0, Ī > 0, then the equilibrium
is endemic. Moreover 〈B̄ Ī | S̄〉 6= 0 > 0. From the preceding analysis we see that if R0 = 1 then
the unique equilibrium is the DFE. In the case R0 < 1 we have Ī < 0, that is the equilibrium is
not biologically feasible. 2

3.4. Global stability of the endemic equilibrium
To prove the global stability of the endemic equilibrium we need to study in more detail the struc-
ture of A. We will treat in this section one example. For the sake of brevity we will consider a
model of two susceptible classes and two infective classes with stage progression. It is not difficult,
but certainly more involved, to treat exactly in the same way the case of n susceptible compart-
ments and k infectious compartments. The compartimental model is represented in figure 3.4..
The model is given by the following system of ordinary differential equations.
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



Ṡ1 = p1 Λ− µS1 − β11 I1 S1 − β12 I2 S1

Ṡ2 = p2 Λ− µS2 − β21 I1 S2 − β22 I2 S2

İ1 = β11 I1 S1 + β12 I2 S1 + β21 I1 S2 + β22 I2 S2 − (µ + γ1 + δ1) I1

İ2 = γ1 I1 − (µ + γ1 + δ2) I2

Ṙ = γ2 I2 − µR.

(3.8)

Theorem 3..3. If R0 > 1, then the unique endemic equilibrium is globally asymptotically stable.
The basic reproduction number is given by

R0 =
γ1(β12S

∗
1 + β22S

∗
2) + (µ + γ1 + δ2)(β11S

∗
1 + β21S

∗
2)

(µ + γ1 + δ1)(µ + γ1 + δ2)
.

Proof. The basic reproduction ratio is obtained by applying (3.2). From the general theory we
know that there exists a unique endemic equilibrium which satisfies the following relations





p1 Λ = µS̄1 + β11 Ī1 S̄1 + β12 Ī2 S̄1

p2 Λ = µS̄2 + β21 Ī1 S̄2 + β22 Ī2 S̄2

β11 Ī1 S̄1 + β12 Ī2 S̄1 + β21 Ī1 S̄2 + β22 Ī2 S̄2 = (µ + γ1 + δ1) Ī1

γ1 Ī1 = (µ + γ1 + δ2) Ī2

γ2Ī2 = µR̄.

(3.9)

Let us consider a possible Lyapunov function

VEE = (S1 − S̄1 ln S1) + (S2 − S̄2 ln S2) + (I1 − Ī1 ln I1) + (
β12S̄1 + β22S̄2

(µ + γ1 + δ2)
) (I2 − Ī2 ln I2)

Setting d = β12S̄1+β22S̄2

(µ+γ1+δ2)
, its derivative along the trajectories of (3.8) is

V̇EE = [p1 Λ− µS1 − β11 I1 S1 − β12 I2 S1 − p1 Λ S̄1

S1
+ µS̄1 + β11 I1 S̄1 + β12 I2 S̄1]

+[p2 Λ− µS2 − β21 I1 S2 − β22 I2 S2 − p2 Λ S̄2

S2
+ µS̄2 + β21 I1 S̄2 + β22 I2 S̄2]

+[β11 I1 S1 + β12 I2 S1 + β21 I1 S2 + β22 I2 S2 − (µ + γ1 + δ1) I1

−β11 Ī1 S1 − β12 I2
Ī1
I1

S1 − β21 Ī1 S2 − β22 I2
Ī1
I1

S2 + (µ + γ1 + δ1) Ī1]

+d [γ1 I1 − (µ + γ1 + δ2) I2 − γ1 I1
Ī2
I2

+ (µ + γ1 + δ2) Ī2].

By using the endemic relations in the system (3.9) we obtain,
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V̇EE = [µS̄1 + β11 Ī1 S̄1 + β12 Ī2 S̄1 − µS̄1
S1

S̄1

−(µS̄1 + β11 Ī1 S̄1 + β12 Ī2 S̄1)
S̄1

S1
+ µS̄1 + β11 I1 S̄1 + β12 I2 S̄1]

+[µS̄2 + β21 Ī1 S̄2 + β22 Ī2 S̄2 − µS̄2
S2

S̄2

−(µS̄2 + β21 Ī1 S̄2 + β22 Ī2 S̄2)
S̄2

S2
+ µS̄2 + β21 I1 S̄2 + β22 I2 S̄2]− (µ + γ1 + δ1) I1

−β11 Ī1 S̄1
S1

S̄1
− β12 Ī2S̄1

S1

S̄1

Ī1
I1

I2
Ī2

+ β21 Ī1 S̄2
S2

S̄2
− β22 Ī2S̄2

S2

S̄2

Ī1
I1

I2
Ī2

+β11 Ī1 S̄1 + β12 Ī2 S̄1 + β21 Ī1 S̄2 + β22 Ī2 S̄2

+d [γ1 I1 − (µ + γ1 + δ2) I2 − γ1 I1
Ī2
I2

+ γ1 Ī1]

= µS̄1[2− S̄1

S1
− S1

S̄1
] + µS̄2[2− S̄2

S2
− S2

S̄2
]

+β11 Ī1 S̄1[2− S̄1

S1
− S1

S̄1
] + β12 Ī2 S̄1)[2− S̄1

S1
− S1

S̄1

Ī1
I1

I2
Ī2

]

+β21 Ī1 S̄2[2− S̄2

S2
− S2

S̄2
] + β22 Ī2 S̄2[2− S̄2

S2
− S2

S̄2

Ī1
I1

I2
Ī2

]

+(β11 S̄1 + β21 S̄2 + d γ1 − (µ + γ1 + δ1)) I1

+(β12S̄1 + β22 S̄2 − d (µ + γ1 + δ2)) I2 − d γ1 Ī1
I1
Ī1

Ī2
I2

+ d γ1 Ī1.

Using the expression for d, we observe that

β12S̄1 + β22 S̄2 − d (µ + γ1 + δ2) = 0

and

β11 S̄1 + β21 S̄2 + d γ1 − (µ + γ1 + δ1) = β11 S̄1 + β21 S̄2 + β12S̄1+β22S̄2

(µ+γ1+δ2)
γ1 − (µ + γ1 + δ1)

= (µ+γ1+δ2)(β11 S̄1+β21 S̄2)+γ1 (β12S̄1+β22S̄2)
(µ+γ1+δ2)

− (µ + γ1 + δ1)

= (µ + γ1 + δ1)[
(µ+γ1+δ2)(β11 S̄1+β21 S̄2)+γ1 (β12S̄1+β22S̄2)

(µ+γ1+δ1)(µ+γ1+δ2)
− 1]

= 0.

Substituting the endemic relations in the third equation of system (3.9), we obtain

β11 Ī1 S̄1 + β12 Ī2 S̄1 + β21 Ī1 S̄2 + β22 Ī2 S̄2 = (µ + γ1 + δ1) Ī1,

(β11 S̄1 + β21 S̄2 + γ1

(µ+γ1+δ2)
(β12 S̄1 + β22 S̄2)) = (µ + γ1 + δ1),

(µ+γ1+δ2)(β11 S̄1+β21 S̄2)+γ1 (β12S̄1+β22S̄2)
(µ+γ1+δ1)(µ+γ1+δ2)

= 1,

d γ1 Ī1 = β12S̄1+β22S̄2

(µ+γ1+δ2)
γ1 Ī1

= γ1

(µ+γ1+δ2)
(β12Ī1S̄1 + β22Ī1S̄2)

= β12Ī2S̄1 + β22Ī2S̄2.
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and finally we have the following expression for V̇EE

V̇EE = µS̄1[2− S̄1

S1
− S1

S̄1
] + µS̄2[2− S̄2

S2
− S2

S̄2
]

+β11 Ī1 S̄1[2− S̄1

S1
− S1

S̄1
] + β12 Ī2 S̄1)[3− S̄1

S1
− S1

S̄1

Ī1
I1

I2
Ī2
− I1

Ī1

Ī2
I2

]

+β21 Ī1 S̄2[2− S̄2

S2
− S2

S̄2
] + β22 Ī2 S̄2[3− S̄2

S2
− S2

S̄2

Ī1
I1

I2
Ī2
− I1

Ī1

Ī2
I2

]

≤ 0

Using the comparison between the arithmetical and the geometrical means we see that V̇EE is
negative definite. This ends the proof of the theorem.
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Figure 1: The two susceptible classes and two infectious classes model
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