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Abstract: Elizabethkingia spp. is a ubiquitous pathogenic bacterium that has been identified as the
causal agent for a variety of conditions such as meningitis, pneumonia, necrotizing fasciitis, endoph-
thalmitis, and sepsis and is emerging as a global threat including in Southeast Asia. Elizabethkingia
infections tend to be associated with high mortality rates (18.2–41%) and are mostly observed in
neonates and immunocompromised patients. Difficulties in precisely identifying Elizabethkingia at the
species level by traditional methods have hampered our understanding of this genus in human infec-
tions. In Southeast Asian countries, hospital outbreaks have usually been ascribed to E. meningoseptica,
whereas in Singapore, E. anophelis was reported as the main Elizabethkingia spp. associated with
hospital settings. Misidentification of Elizabethkingia spp. could, however, underestimate the number
of cases attributed to the bacterium, as precise identification requires tools such as MALDI-TOF MS,
and particularly whole-genome sequencing, which are not available in most hospital laboratories.
Elizabethkingia spp. has an unusual antibiotic resistance pattern for a Gram-negative bacterium with
a limited number of horizontal gene transfers, which suggests an intrinsic origin for its multidrug
resistance. Efforts to prevent and further understand Elizabethkingia spp. infections and limit its
spread must rise to this new challenge.

Keywords: Elizabethkingia spp.; antibiotic resistance; multidrug resistance; meningitis; bacteremia;
outbreak; Southeast Asia

1. Introduction

The Gram-negative bacteria of the genus Elizabethkingia have recently emerged as
an important pathogen in hospital-acquired infections and are generally associated with
high mortality [1]. Recent literature has reported several cases of severe infection in hu-
mans owing to this organism, with neonatal meningitis most commonly presented in
children [2], accompanied by a range of other clinical manifestations such as septicemia
and bacteremia [3,4], osteomyelitis [5], urinary tract infections [6,7], endogenous endoph-
thalmitis [8], endocarditis [9], epididymo-orchitis [10], pulmonary abscess [11], necrotizing
fasciitis [12,13], cystic fibrosis [14], hydrocephalus [15], and secondary infections with a
high mortality rate, particularly in immunocompromised patients [16]. Elizabethkingia
meningoseptica infections have also been associated with COVID-19 patients [17]. Eliza-
bethkingia spp. infects not only immunocompromised patients but also immunocompetent
ones [18–20].

Historically, the first report of human infection due to Elizabethkingia was that of
19 cases of meningitis in infants in the United States of America [21]. Even in its earliest
description, the isolates were demonstrated to be multidrug-resistant. Not long after King’s
(1959) report, an outbreak of meningitis infection with E. meningoseptica was reported among
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neonates in the Congo [22] with varying sensitivities to chloramphenicol, carbomycin,
magnamycin, and erythromycin.

Worldwide infections caused by E. meningoseptica were reportedly high amongst
immunocompetent neonates as well as hospitalized patients with existing underlying
infections, and in a comprehensive review, Dzuiban et al. [2] showed that from 283 cases
reported from 28 countries from 1944 to 2017, 76% of them were neonates aged 0–1 month.
From the 283 cases that were reviewed, 209 of the patients were diagnosed with meningi-
tis [2]. Infections by this pathogen have been reported in many parts of the world, including
in Southeast Asian countries such as Malaysia [2], Singapore [23], Thailand [24], Indone-
sia [25], and Cambodia [26]. However, until now, there have been no published reports
from other Southeast Asian countries such as the Philippines, Brunei, Myanmar, Laos,
and Timor-Leste. Although for Vietnam, there have been no published reports of clinical
Elizabethkingia spp. infections, the isolation of the pathogen from the environment [27,28]
suggests the existence of infections that could have been misidentified and/or have not
been published. In Malaysia, there were only 32 cases from four published reports [2],
indicating the scarcity of data for Elizabethkingia spp. infections in most countries around
the region. The aim of this review is to summarize our current understanding of the char-
acteristics of Elizabethkingia spp., the current epidemiological developments, and clinical
manifestations of Elizabethkingia spp. in Southeast Asia.

2. Identification

When first discovered in 1959, the suggested name for the bacterium was Flavobac-
terium meningosepticum, which was later recommended to be changed to Chryseobacterium
meningosepticum (in 1994) [29]. In 2005, it was assigned to the genus Elizabethkingia (named
after the first scientist to report its’ discovery, Elizabeth King) under the Flavobacteriaceae
family based on 16S rRNA phylogenetic studies [30]. Recently, whole-genome sequence
analysis along with optical mapping and MALDI-TOF mass spectrometry led to the revi-
sion of the genus Elizabethkingia into eight species, namely E. meningoseptica, E. miricola,
E. anophelis, E. bruuniana, E. ursingii, E. occulta [31], E. argenteiflava sp. nov. [32], and the
latest E. umeracha [33].

Since correct identification of Elizabethkingia is difficult using traditional microbiologi-
cal methods and misidentification of E. anophelis with E. meningoseptica has been found to
be common (Lau et al., 2016), it is therefore highly likely for this pathogen to be underre-
ported. Correct identification of the organism is crucial for the diagnosis and management
strategies, as E. anophelis is a nososcomial pathogen [34]. Hence, differentiation between
E. anophelis and E. meningoseptica requires accurate microbial identification, but the pheno-
typic similarities between E. anophelis and E. meningoseptica present a challenge to accurate
identification, particularly for clinically derived isolates; 16S rRNA gene analysis had
identified a 98.6% similarity between E. meningoseptica and E. anophelis, which has often led
to the misidentification of these bacteria [34].

The four automated bacterial identification systems that are commonly used in di-
agnostic laboratories are: (1) API/ID32 Phenotyping Kits (bioMérieux, Marcy l’Etoile,
France); (2) Phoenix 100 ID/AST Automated Microbiology System (Becton Dickinson Co.,
Sparks, MD, USA); (3) VITEK 2 Automated Identification System [35]; and (4) MALDI-TOF
MS System (bioMérieux, Marcy l’Etoile, France) [36]. At the time of writing this review,
the four microbial identification systems that are listed above do not, however, contain
all eight species of Elizabethkingia in their reference spectra database. Studies have also
shown that misidentification of Elizabethkingia was rife using these automated identification
systems, with E. anophelis commonly misidentified as E. meningoseptica [1,35,37]. When
the accuracy of the API/ID32, Phoenix 100 ID/AST, Vitek 2, and Vitek MS Elizabethkingia,
clinical isolate identifications were compared with 16S rRNA gene sequencing; it was
reported that species identification concordance between these identification systems and
16S rRNA gene sequencing was low at only 24.5–26.5% [35]. Nevertheless, MALDI-TOF
MS systems with amended databases (labeled as “research-use only” system) either in the



Microorganisms 2022, 10, 882 3 of 17

Vitek MS Knowledge Base v3.2 and Bruker MALDI Biotyper Library (Bruker Daltonics
GmbH, Bremen, Germany) are now able to reliably differentiate E. meningoseptica from
E. anophelis, but not the remaining species of the genus Elizabethkingia [35]. In a recent report
of 22 clinical and 6 environmental hospital isolates from Queensland, Australia, Burnard
et al. (2020) showed that the VITEK MS Knowledge Base v3.2 had a 96.2% accuracy in
identifying Elizabethkingia, with a solitary isolate of E. bruuniana being the only species that
was misidentified. Whole-genome sequencing confirmed that the majority of the isolates
were E. anophelis (n = 22), with the rest being E. miricola (n = 3), E. meningoseptica (n = 2),
and E. bruuniana (n = 1) [38].

In the near future, the inclusion of novel Elizabethkingia species spectra into the
databases should ensure highly accurate identification using MALDI-TOF MS systems,
making it a reliable identification tool in lieu of whole-genome sequencing.

3. Antibiotic Resistance

Elizabethkingia are intrinsically resistant to most β-lactams, β-lactam/lactamase in-
hibitors, and carbapenems due to the presence of two unique class B metallo-β-lactamases
(MBLs), namely blaBlaB and blaGOB, along with a class A extended-spectrum β-lactamase
(ESBL), blaCME [39–41]. Elizabethkingia are the only known bacteria thus far with mul-
tiple chromosomally encoded MBLs [42]. Reports of subclasses of MBL genes such as
blaBlaB-1 [40], blaBlaB, and blaGOB in both E. meningoseptica and E. anophelis [41], as well as
blaBlaB-16 and blaGOB-19 in E. miricola isolated from a black-spotted frog in China [43], make
Elizabethkingia spp. a possible environmental reservoir for β-lactam resistance.

Elizabethkingia isolates are frequently resistant to aminoglycosides, macrolides, tetra-
cycline, and vancomycin but show variable susceptibility to piperacillin, piperacillin-
tazobactam, fluoroquinolones, minocycline, tigecycline, and trimethoprim- sulfamethox-
azole [3,38,41,44–46]; cephalosporins, monobactams, and moderate susceptibilities to
piperacillin [47–49], ceftazidime, colistin, and meropenem [50]; and levofloxacin [51]. There
are currently no established MIC breakpoints for Elizabethkingia, and susceptibilities are
largely reported based on Enterobacteriaceae breakpoints of the Clinical and Laboratory
Standards Institute (CLSI) M100 guidelines and/or the European Committee on Antimi-
crobial Susceptibility Testing (EUCAST) pharmacokinetic–pharmacodynamic (PK–PD)
“non-species” breakpoints [37,38]. It has been pointed out that susceptibilities, especially
for vancomycin and piperacillin-tazobactam as determined by disk diffusion and E-test,
are deemed unreliable and inaccurate for Elizabethkingia, and broth microdilution is instead
recommended for susceptibility determination [45,52]. Although successful therapy has
been attributed to rifampicin, there has been a report of bacterial resistance after three days
of starting treatment [53]. A similar case was reported for an E. meningoseptica isolate in the
Kuala Lumpur General Hospital, which developed resistance during treatment to cefepime,
a cephalosporin antibiotic that is normally highly active against both Gram-positive and
Gram-negative organisms [54].

Using disk diffusion, Lau, Chow [1] reported 21 Elizabethkingia isolates from Hong
Kong as susceptible to vancomycin. However, studies using broth microdilution tests
on isolates from Taiwan [45,55] and Australia [38] indicated that the isolates are likely
non-susceptible based on the high MICs obtained (that ranged between 8 and 256 µg/mL).
Similar ranges of vancomycin MICs were obtained by Han et al. [37], who investigated
Elizabethkingia isolates from South Korea using the agar dilution method and concluded that
all isolates were non-susceptible based on the interpretive criteria used for Staphylococcus
spp. The vancomycin resistance gene, vanW, was reported in the majority of Elizabethkingia
genomes, although the exact function of vanW is currently unknown [38,46]. However,
mutations in vanW have been identified in microorganisms with VanB-type glycopeptide
resistance [46,56]. In view of these facts and despite some anecdotal reports of success
in using intravenous vancomycin alone to treat Elizabethkingia infections [57,58], it was
recommended that even if intravenous vancomycin is the favored therapy for Elizabethkingia
meningitis, ciprofloxacin, linezolid, or rifampicin should also be included until future
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clinical studies could be carried out to conclusively determine the clinical efficacy of these
vancomycin-combination regiments for treatment [52].

One of the earliest reports of the whole-genome sequences of Elizabethkingia spp.
strains from Southeast Asia was from Singapore, whereby sputum isolates obtained from
three patients (NUHP1, NUHP2, and NUHP3) and four from the hospital’s sink (NUH1,
NUH4, NUH6, and NUH11) at the National University Hospital, Singapore, were com-
pared against five previously sequenced E. anophelis strains Ag1 (PRJNA80705) and R26
(PRJNA178189), E. meningoseptica ATCC 12535 (NITE) (PRJNA199489), E. meningoseptica
ATCC 12535 (OSU) (PRJNA198814), and E. meningoseptica 502 (PRJNA176121). This led
to the discovery of 16 antibiotic resistance genes from the core genomes and 19 antibiotic
resistance genes from the accessory genomes of Elizabethkingia spp., and this included genes
that confer resistance to aminoglycosides, β-lactams, fluoroquinolones, glycopeptides,
macrolide-lincosamide-streptogramins, tetracyclines, trimethoprim, and rifampicin [40].
A later study on two African isolates, E27017 and E18064, that compared their genomes
with the genomes of 18 strains belonging to the genus Elizabethkingia from many different
regions, including Malaysian and Singaporean genomic sequences that were available at
that time, identified that all Elizabethkingia genomes contained at least 17 antimicrobial
resistance genes (Supplementary Table S1) [41].

A whole-genome sequencing study on three isolates of E. meningoseptica collected from
an outbreak from three separate patients living in different counties in the Midwest regions
of Michigan led to the identification of 22 resistance genes and 18 multidrug resistance efflux
pump-encoded genes (Supplementary Table S1) in all samples [59]. While Elizabethkingia
spp. genomes shared many antibiotic-resistance genes with each other, minor differences
have been reported [3,60]. Hence, genomic investigations of Elizabethkingia spp. offers
invaluable novel information on the species, but unfortunately, there have not been any
reports of the whole-genome sequence of Elizabethkingia spp. isolates from Southeast Asia
besides those from Singapore.

4. Virulence Factors

The mechanisms of pathogenesis of Elizabethkingia spp. are still being studied [59].
When the virulence factor database (VFDB, http://www.mgc.ac.cn/VFs/, accessed on
12 December 2021) was used to predict their presence from the genome sequences of vari-
ous Elizabethkingia spp., this led to the prediction of a total of 270 putative virulence factor
genes. More than fourteen virulence factor classes for Elizabethkingia spp. were identified
(see Supplementary Table S2 for the complete list) with the following defined virulence-
associated functions: adherence, antimicrobial activity, biofilm, cellular metabolism, ef-
fector delivery system, exoenzyme, exotoxin, immune modulation, invasion, motility,
nutritional/metabolic factor, post-translational modification, regulation, stress survival,
and others. Different species of Elizabethkingia shared the same virulence factors (Figure 1).

Among the 270 predicted genes for virulence factors, 162 have been reported as unique
in E. anophelis (Supplementary Table S2). E. meningoseptica carried six unique genes involved
in adherence that encode curli nucleator protein (csgB), curli assembly proteins (curEm1,
curEm2, curEm3, curEm4), a curli production assembly protein (csgG), and two genes
involved in immune modulation encoding a capsular polysaccharide synthesis enzyme
(cap8O), a gene encoding Rab2-interacting conserved protein A (ricA) and a putative
carbonic anhydrase-encoded gene (mig-5) (Supplementary Table S2). Four of the E. miricola
unique virulence genes were predicted to be involved with urease accessory protein (ureE),
urease alpha subunit (ureA), twitching motility protein (pilG), and sphingomyelinase-c
(smcL) (Supplementary Table S2).

Identification of 6880 gene families in E. anophelis highlighted the genomic heterogene-
ity of Elizabethkingia species [41]. Genes homologous to heme iron acquisition, oxidative
stress resistance proteins, and hemolysins were reported in earlier studies [34,61,62]. Exten-
sive variations of capsular polysaccharide synthesis genes in E. anopheles were first reported
by Breurec, Criscuolo [41], with variable cps clusters observed amongst the different lin-
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eages suggesting virulence heterogeneity among Elizabethkingia strains [41]. Identification
of the capsule biosynthesis gene, capD [59], and the adeG gene for the AdeFGH efflux
pump [20] in all Elizabethkingia species (Supplementary Table S2) leads to possible biofilm
formation [44,63], which empowers the bacteria with the ability to persist on various
surfaces [59,64]. Thirty clinical isolates from Malaysia, which comprised E. anophelis,
E. meningoseptica, and E. miricola, were recently shown to produce biofilms on polystyrene
microtiter plates [65].

Nine virulence factor genes were shared between six of the Elizabethkingia spp.,
including the E. argenteiflava-encoded adeFGH efflux pump, isocitrate lyase (icl), cata-
lase/(hydro)peroxidase (katA), 60K heat shock protein (htpB), phospholipase C (plc), phos-
phopyruvate hydratase (eno), translation elongation factor (tuf ), catalase/peroxidase HPI
(katG), and aspartate 1-decarboxylase precursor (panD), which is involved with adher-
ence, biofilm formation, cellular metabolism, exotoxin production, and stress survival
(Supplementary Table S2). Isocitrate lyase (icl) plays an important role in the glyoxylate
cycle [66], and its presence in Elizabethkingia spp. can predict its essential role in stationary-
phase survival. An early report had shown that the presence of icl in Mycobacterium
tuberculosis promoted the tenacity of infection by helping the pathogen to survive inside
macrophages [67].

However, the specific role of bacterial enzymes in pathogenesis varies with infection.
The presence of phospholipases C (plc) in all Elizabethkingia spp. [46] suggest its crucial
role in downregulating host immunity [68]. In L. monocytogenes, plc aided bacterial escape
toward the cytosol and cell-to-cell propagation, whereas, in C. perfringens, it helped bacteria
induce endothelial damage and platelet aggregation, and in P. aeruginosa, it led to the
triggering of signaling pathways that lead to inflammation [69].

The catalase-peroxidase genes, katA and katG (encoding hydroperoxidase I), are cru-
cial against oxidative stress [70]. An earlier report showed that strains with katA were
resistant to dodecyl sulfate, proteinase K, pepsin, trypsin, chymotrypsin, and the neu-
trophil protease cathepsin G, and they could survive for a long period once released from
lysed cells [71]. Presence of katA [40,41,44,46,60,61,72,73] and katG [44,46,72,73] could also
support Elizabethkingia species’ resistance to aminoglycosides.
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5. Sources of Isolation and Transmission

The genera Elizabethkingia are aerobic, non-fermenting, non-motile, catalase-positive,
oxidase-positive, indole-positive, and Gram-negative bacilli widely distributed in soil,
mosquitoes, plants, fresh and marine fish [30,75], food products [76], hospital settings [77],
stagnant water, inland wetlands, and rivers [33]. Due to their biofilm-forming ability [63],
they have been isolated from sinks and taps where they colonize the most, leading to
nosocomial and community infections [78] (Table 1).

Vector-borne transmission of the bacterial pathogen via mosquito bites has been
suggested ever since the discovery of E. anophelis in the midgut of the Anopheles gambiae
mosquito [79,80] and, more recently, in the salivary glands and saliva of Aedes albopictus [81].
The microbiome of Anopheles mosquitoes has evidently revealed the strong symbiotic nature
of E. meningoseptica [82], which has been isolated from various independent sources, includ-
ing Anopheles stephensi, the vector for the malarial parasite Plasmodium vivax [78,83,84], semi-
field Anopheles gambiae females [82,84–86], field sampled mosquitoes in Cameroon [87,88],
and laboratory-reared mosquitoes where Anopheles were the predominant species [87,89].
Another comparative study on bacterial microbiota isolated from the midgut of various
Anopheles spp., which were obtained in the same region of Mae Sot District and Sop Moei
District in Thailand, reported on the findings of Elizabethkingia spp. from Anopheles minimus,
Anopheles dirus, Anopheles maculatus, Anopheles sawadwongporni, and Anopheles dravidicus
mosquitoes [90]. However, sequences associated with the genus Elizabethkingia could not
be definitively assigned to either E. anophelis or E. meningoseptica as the V3–V4 region of
the 16S rRNA gene used for microbiome profiling could not differentiate between the two
species [90]. Despite these multiple discoveries of Elizabethkingia spp. in the midgut and
salivary glands of various mosquito species, there is currently a lack of strong direct evi-
dence that supports Elizabethkingia infection, particularly E. anophelis, as a mosquito-borne
disease [45], although this should not be ruled out with our current level of knowledge. A
comparative genomics study of three cases of E. anophelis also provided evidence of vertical
transmission from mother to her baby [62].

Table 1. Various sources of isolation of Elizabethkingia spp. in Southeast Asia.

Source of Isolation Country of Origin Citation

Blood
Malaysia, Singapore,
Thailand, Indonesia,

Cambodia
[8,13,15,23–26,36,65,91–96]

Peritoneal fluid Malaysia [91]
Cerebrospinal fluid (CSF) Malaysia, Singapore [15,23,91,97–100]
Contact lens Malaysia [101]
Hospital environment
(aerators, sink drains
and traps at ICUs, pediatric wards, surgical wards, orthopedic wards)

Singapore [8,102–104]

Catheter tips Singapore [8]

Respiratory specimens Singapore
Malaysia [8,65]

Rectal swabs Singapore [105]
Urine Malaysia [65]
Wound swabs Malaysia [65]
Nasal swabs Malaysia [65]
Vitreous culture Singapore [8]
Frogs (Rana catesbeiana (American bullfrogs) and Theloderma bicolor
Chapa bug-eyed frogs, Warty toads (Bombina microdeladigitora), and
Northern leopard frogs (Lithobates pipiens)

Malaysia
Vietnam [27,106,107]

Mosquitoes (Anopheles minimus, Anopheles dirus, Anopheles maculatus,
Anopheles sawadwongporni, and Anopheles dravidicus) Thailand [90,108]

Fish (Clarias gariepinus (African sharptooth catfish) and Pangasius
hypophthalmus (Tra catfish) Malaysia, Vietnam [28,75,109]

Retail sausages Malaysia [76]
Gnetum gnemon (Tree) Malaysia [110,111]
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Zainuri et al. (2013) reported on the isolation of E. meningoseptica from American
bullfrogs (Lithobates catesbeianus or Rana catesbeiana) suffering from red leg syndrome and
cataract in Sabah, Malaysia [106]. Isolation of E. meningoseptica from bullfrogs was also
described in an earlier study, in which the isolates obtained were found to be resistant
to multiple antibiotics [107]. E. miricola, which had been implicated in acute infections in
humans, caused a disease outbreak associated involving the internal organs of different
anuran species, including northern leopard frogs (Lithobates pipiens), Chapa bug-eyed frogs
(Theloderma bicolor), and Vietnamese warty toads (Bombina microdeladigitora) captured in
Vietnam. The presence of β-lactamases and putative virulence genes in the E. miricola
isolates were detected in silico [27].

E. miricola was also reportedly isolated from Tra catfish (Pangasius hypophthalmus)
fillets in the industrial processing lines in Vietnam [109]. Tra catfish is a type of freshwater
fish, which is one of the major fish species in the Mekong River, and its processed fillets
are exported to more than 80 different countries worldwide [28]. Other scientists have also
reported the isolation of E. meningoseptica from retail sausages in Kampar, Malaysia, al-
though the identification was performed by traditional biochemical methods and identified
as Chryseobacterium meningosepticum [76].

Furthermore, 454 pyrosequencing of the 16S rRNA gene from the bacterial community
of the root of the gnetalean gymnosperm Gnetum gnemon and nearby bulk soils of a tropical
forest arboretum at the Forest Research Institute of Malaysia (FRIM) at Kepong, near
Kuala Lumpur, identified the mutualistic presence of E. meningoseptica and E. miricola [110].
Elizabethkingia spp. was surprisingly found in relative abundance (4.9%) on the leaves of
Gnetum gnemon in comparison with rhizoplane (1.4%) [111]. These reports indicate the
ubiquity of Elizabethkingia spp. in the environment and, thus, the difficulty in tracing an
outbreak should one occur in the community and outside of hospital settings.

6. Malaysia Reports

Most reported cases of Elizabethkingia spp. infections in Malaysia occurred as isolated
cases rather than outbreaks, and the most dominant strain is E. meningoseptica (Table 2).
These early identifications of E. meningoseptica were made before laboratories could reliably
distinguish between the different Elizabethkingia spp. Although there are currently no
published reports on E. anophelis infections in Malaysia, whole-genome sequencing and
assembly of a clinical isolate of E. anophelis B2D had been submitted to NCBI (Accession:
PRJNA248328) by the University of Malaya but as E. meningoseptica. This led a group of sci-
entists from the University of Malaya to revive thirty archived lyophilized isolates collected
from their University Hospital that were initially identified as Flavobacterium meningosep-
ticum [65]. Re-identification using 16S rRNA sequencing revealed that 24 were actually
E. anophelis, whereas the remaining six were E. miricola [65]. None of the isolates were
identified as E. meningoseptica, underlining the very high possibility of misidentification
of these pathogens from earlier publications, particularly those that relied on traditional
biochemical tests for their identification. Hence, the cases that had been previously reported
as infections due to E. meningoseptica and reviewed below should be taken with caution.

The first case of E. meningoseptica (then reported as Flavobacterium meningosepticum)
infection that was recorded in Malaysia involved three neonates with meningitis, where
the infection was rapidly controlled by the use of rifamycin [97]. Another study reported
six epidemiologically distinct isolates of E. meningoseptica (then reported as Flavobacterium
meningosepticum) collected over a two-year period from neonates with meningitis in Kuala
Lumpur [98]. From 1972 to 1981, the University of Malaya Medical Centre (UMMC)
reported seven confirmed cases of Flavobacterium meningosepticum isolates in infants from
the cerebrospinal fluid, three from the blood, and one from the peritoneal fluid [91]. Out
of the seven infants, two of them died before receiving intraventricular chemotherapy,
and the rest were treated with rifamycin SV, erythromycin, and novobiocin. Two of
the surviving patients developed post-infection hydrocephalus, mental retardation, and
spasticity (Thong et al., 1981). According to a prospective study carried out over a 12-month
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period (July 1986 and June 1987) among neonates positive for septicemia at the Special
Care Nursery in Hospital Kuala Lumpur (HKL), 6 out of 155 were reported to be positive
with E. meningoseptica infection and were treated with rifampicin, erythromycin, and
novobiocin [112].

Table 2. Elizabethkingia spp. isolated from various Southeastern Asian countries based on the
published reports until March 2022.

Isolate
Malaysia Singapore Thailand Indonesia Vietnam Cambodia

NR NR NR NR NR NR

E. meningoseptica
(CL) 12 11 2 4 - 1

E. meningoseptica
(EN) 2 - 1 - - -

E. anophelis
(CL) 1 2 - - - 2

E. anophelis (EN) - - - - - -

E. miricola (CL) 1 1 - - - -

E. miricola (EN) 2 - - - 2 -

Elizabethkingia spp. (UI) - - 1 - - -

NR—number of published reports; CL—clinical isolates; EN—environmental isolate; UI—unidentified species.

Another case study of resistant E. meningoseptica was confirmed at HKL and was
successfully treated with the fourth-generation cephalosporin, cefepime [54]. Ali and Reddy
(2007) reported an unusual finding of E. meningoseptica isolate in a bilateral simultaneous
hypopyon corneal ulcer in a contact lens wearer caused by polymicrobial infection [101].
In addition, a study conducted at the adult ICU in Hospital Universiti Sains Malaysia
(HUSM) involving 1869 organisms isolated in the period between 2005 and 2007 reported
that 1% of the isolates comprised of E. meningoseptica [113]. In another study conducted at
HKL, it was reported that out of five positive samples for microorganisms on CSF culture
and sensitivity, one sample was positive with E. meningoseptica [99]. Septicemia due to
E. meningoseptica in Malaysia was reported in a hemorrhagic stroke patient who developed
septic shock during prolonged neuro-intensive care management at HUSM [100].

Findings from a study conducted at a 562-bed tertiary hospital in Selangor, Malaysia [102],
showed that 4 out of 358 samples collected and analyzed were E. meningoseptica. Most of
the isolates were from the surgical wards. Another study [15] reported on the isolation
of E. meningoseptica from the blood and cerebrospinal fluid (CSF) of a premature infant
of a dichorionic diamniotic (DCDA) twin with neonatal meningitis. The infant required
non-invasive continuous pressure ventilation and, after 10 days, was noted to be febrile,
less active, and developed seizures. The patient was successfully treated with intravenous
vancomycin and ciprofloxacin for 6 weeks, and oral rifampicin was given for a total of
8 days according to the susceptibility testing of the organism. However, the patient’s
recovery was complicated with hydrocephalus.

A prospective cohort study was conducted on gastrointestinal tuberculosis-suspected
patients at the Queen Elizabeth Adult Hospital in Kota Kinabalu, Sabah, Malaysia [114].
Interestingly, blood cultures revealed the presence of E. meningoseptica in one of the cases,
which was classified as a “non-tuberculosis case” using standard case definitions.

7. Singapore Reports

Although E. anophelis had been reported as the dominant species of Elizabethkingia
in Singapore [92], it is not short of the presence of E. meningoseptica. Between April and
June 2011, the National University Hospital (NUH) Singapore isolated three imipinem-
resistant E. meningoseptica from rectal swabs of patients [105]. Another study by NUH
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reported an increasing prevalence of E. meningoseptica in ICUs after an environmental
sampling control. About 44% (35/79) of the collected tap water samples were positive with
E. meningoseptica [104].

During a three-week period in 2012, an investigation of an outbreak by the hospital
infection control team at NUH showed that three cardiothoracic ICU patients and two
surgical ICU patients were initially diagnosed with E. meningoseptica infection as identified
by MALDI-TOF MS [115]. All patients were treated with intravenous piperacillin and
tazobactam, cotrimoxazole, or levofloxacin, either alone or in combination; however, three
of the patients succumbed to their infections due to septicemia. Three subsequent samples
collected from the cardiothoracic ICU patients (NUHP1, NUHP2, and NUHP3) and four
samples collected from the sink area (NUH1, NUH4, NUH6, and NUH11) were sent for
whole-genome sequencing. Findings showed that the isolates obtained were more closely
related to E. anophelis strains that were isolated from the midgut of the Anopheles gambiae
malaria mosquito vector than to E. meningoseptica [40,115], thus making this the first case of
E. anophelis outbreak in an ICU in Singapore.

Another case involved a 75-year-old patient with numerous comorbidities diagnosed
with E. meningoseptica in all her four blood cultures after spending 2 months in the hos-
pital for treatment of other conditions [8]. Three days after the diagnosis and starting
treatment with intravenous cotrimoxazole, levofloxacin, and minocycline, she started de-
veloping redness and pain in her left eye with blurred vision. An intravitreal tap for
vitreous culture was taken, and again, her results showed positive with E. meningosep-
tica. The patient was injected with intravitreal vancomycin and amikacin and had started
on hourly fortified gentamicin and cefazolin eyedrops. The patient’s vitreous culture
results showed that E. meningoseptica was susceptible to several antibiotics, including
ciprofloxacin, levofloxacin, cotrimoxazole, and minocycline, but nevertheless resistant to
ceftazidime, gentamicin, and amikacin. Thus, the intravitreal administration was switched
to ciprofloxacin (100 µg/0.05 mL) and repeated five times. The patient’s anterior chamber
fibrin clot progressively resolved and the inflammatory material in the vitreous cavity
became organized, whereas vision was not recovered [8]. Another study also reported
infections with carbapenem-resistant E. meningoseptica after 30 days of hospitalization at
Tan Tock Seng Hospital (TTSH), Singapore [116].

Three patients aged 2.8 months, 4.9 months, and 4.8 years were diagnosed with
E. meningoseptica using MALDI-TOF MS (VITEK MS) within 13 days in the ICU at Kan-
dang Kerbau Women’s and Children’s Hospital (KKH), Singapore in 2017 [93]. Further
investigation was conducted, and 27 environmental samples were collected from the three
patients’ rooms or cubicles. Of 27 samples collected from tap water outlets and sinks,
10 samples showed positive with E. anophelis, and 1 sample was positive with E. meningosep-
tica. E. meningoseptica was isolated from a water tap not associated with any of the cases,
and E. anophelis was isolated from an aerator [93].

In another retrospective study from 2009 to May 2017 conducted by Chew et al.
(2018), seventy-nine blood isolates analyzed with Bruker MALDI Biotyper (bioMérieux)
resulted in the identification of either E. meningoseptica (96.2%) or E. miricola (3.8%). Further
16S rRNA gene sequencing using universal primers was performed, and 77 samples
showed closer nucleotide identity to E. anophelis. One sample each had a closer nucleotide
identity to E. anophelis subsp. Endophytica and E. meningoseptica [92]. Due to the high
resemblance between Elizabethkingia species, many isolates were initially misidentified
as E. meningoseptica (Yung et al., 2018). Among the 77 isolates collected from hospital
waste matters, the blaSHV-producing E. meningoseptica strain was identified among the most
predominant taxa (1.4%), showing resistance to extended-spectrum cephalosporins and
carbapenems [103].

An eight-year retrospective descriptive study (2010–2017) conducted in a tertiary
pediatric hospital in Singapore reported 13 cases of patients with E. meningoseptica infection
from the blood and 4 from CSF samples [23]. A 15.4% (2/13) mortality was reported
among patients with E. meningoseptica bacteremia. However, a high (75%) number of
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morbidities consist of patients presented with meningitis. Most patients had developed
post-infectious conditions such as hydrocephalus, quadriplegic cerebral palsy with severe
disability, and reduced academic performance, whereas another had moderate global
developmental delay.

A hemodialysis patient was confirmed positive for E. meningoseptica infection in a
retrospective study conducted between January 2011 and June 2012 at the Singapore
General Hospital (SGH). The patient was among 118 adult hemodialysis patients confirmed
with vascular-access-associated bloodstream infection (VAABSI) [94].

Another case involved a preterm infant born with marked generalized abdominal
distension and respiratory distress in the third trimester (33rd week), who was transferred
to the neonatal intensive care unit for further care, and three weeks later, the patient was
diagnosed with sepsis and subsequently, cloxacillin and amikacin were initiated. Blood
samples were collected, and the patient was confirmed to be positive for E. meningoseptica
infection. Antibiotic therapy was changed to rifampicin and piperacillin/tazobactam for a
period of 4 weeks until full recovery [95].

Combined antibiotic therapy is reported to be the choice of treatment for E. meningosep-
tica patients in Singapore. The most commonly used combination is piperacillin/tazobactam
with trimethoprim/sulfamethoxazole, followed by piperacillin/tazobactam with fluro-
quinolone [23,95]. Other antimicrobial agents used include minocycline [8,23], clindamycin,
rifampicin, ciprofloxacin, cotrimoxazole, and levofloxacin [8].

Singapore and Wisconsin outbreak isolates have type I cps cluster [44]. Additionally,
these outbreak strains carry a disrupted DNA repair mutY gene caused by the insertion
of an integrative and conjugative element (ICEEa1). Genetic and morphological changes
could have substantially contributed to the evolutionary dynamics of the outbreak strains
that could have increased their concomitant adaptability eventuating in a hypermutator
phenotype [44]. These “outbreak” strain features have not been studied in other Southeast
Asian strains due to the lack of WGS investigation. It would not be surprising to find new
Southeast Asian or geo-specific lineages, as was recently revealed by a distinct Taiwan
strain [117].

8. Thailand Reports

In comparison with Malaysia and Singapore, there are not as many reports on Eliz-
abethkingia infections from Thailand. Nevertheless, a retrospective study conducted by
researchers from the University of Bangkok and Chulalongkorn University among eight
hospitalized patients at King Chulalongkorn Memorial Hospital (KCMH) led to the first
reported cases of E. meningoseptica infection in Thailand [24]. All isolates had shown resis-
tance to cephalosporins, carbapenems, aminoglycosides, vancomycin, and colistin. Patients
were treated with combined therapy of ciprofloxacin and cotrimoxazole, followed by lev-
ofloxacin, rifampicin, vancomycin, and imipenem. Despite the treatment, the mortality
rate was high at 50% [24]. A subsequent report of MALDI-TOF analysis of 54 clinical
isolates obtained from Siriraj Hospital, Mahidol University, showed that three of them were
E. meningoseptica [36].

9. Indonesia Reports

Reports of Elizabethkingia spp. infections in Indonesia only appeared in the past
couple of years. In Malang, Indonesia, a three-month-old infant presented to the Emer-
gency Department of a tertiary hospital with a history of a 15-day fever associated with
lethargy [13]. The patient was diagnosed with necrotizing fasciitis with cerebral salt
wasting and disseminated intravascular coagulation. The patient had undergone fas-
ciotomy and distal phalanges amputation. A postoperative blood sample revealed the
presence of E. meningoseptica using the VITEK 2 system (bioMérieux). The isolate was
further tested with various antimicrobials and showed susceptibility to cefepime, tigecy-
cline, trimethoprim-sulfamethoxazole, intermediate susceptibility to combined antibiotics
piperacillin-tazobactam, and resistance to ampicillin, ampicillin-sulbactam, cefazolin, cef-
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tazidime, aztreonam, meropenem, amikacin, and gentamicin. The patient was put on three
weeks cefepime (50 mg/kg per body weight/day) followed by mechanical ventilation, fluid
and electrolyte therapy, intravenous hypertonic saline infusion, intravenous inotropic ther-
apy, thrombocyte concentrate and fresh frozen plasma transfusion, and oral fluid cortisone
therapy. After eight weeks of treatment, the patient showed clinical improvement.

In Jakarta, a group of researchers from the Eijkman Institute reported the presence
of E. meningoseptica in one non-dengue febrile patient [118]. A retrospective cohort study
conducted at the Pediatric Intensive Care Unit at Sanglah Hospital in Denpasar, Bali,
Indonesia, from January 2015 to April 2017 led to the isolation of E. meningoseptica from
one of their patients’ blood samples diagnosed with septicemia [25]. In a cross-sectional
study conducted between April and August of 2015 in the neonatology ward of Haji Adam
Malik Hospital in Medan, North Sumatra, 3 out of 43 neonates were found positive for E.
meningoseptica from their blood samples, although the method of identification was not
stated [96].

10. Cambodia Reports

Reports of Elizabethkingia spp. infections in Cambodia are rare. Reed et al. (2020)
reported a case in which a 7-day-old female patient with presumed late-onset neonatal
sepsis was transferred to the pediatric ICU at Angkor Hospital for Children, Siem Reap,
Cambodia [26]. The patient had experienced symptoms of meningitis, including fever and
seizures. Intravenous meropenem (40 mg/kg three times a day) was initiated, and after
three days of hospitalization, blood culture isolated was identified as E. anophelis through
MALDI-TOF MS using the bioMérieux VITEK MS. Later, the patient’s antibiotic therapy was
replaced with intravenous ciprofloxacin (10 mg/kg, 2 per day) and vancomycin (15 mg/kg,
1 per day), and the patient was discharged after 28 days. A month later, the patient was
hospitalized, and clinical features showed raised intracranial pressure, including neurologic
deficits. The patient was later diagnosed with hydrocephalus. This had led the researchers
to the retrieval of the seven isolates stored at −80 ◦C from January 2012 to October 2018
that had been previously identified as C. meningosepticum, C. miricola, or Elizabethkingia spp.
Isolates were subcultured and analyzed using VITEK MS MALDI-TOF mass spectrometry;
six of them were re-identified as E. anophelis and one isolate as E. meningoseptica. It is worth
noting that four out of seven patients had died due to ventilator-associated pneumonia
(VAP) and sepsis [26].

11. Conclusions

Our review of case reports involving Elizabethkingia spp. infections in Southeast Asia
showed the dearth of knowledge in the majority of countries within the region. Of the
eleven Southeast Asian nations, only Singapore had the most data and published reports,
while we were unable to find any clinical case reports from the Philippines, Brunei, Vietnam,
Laos, Myanmar, and Timor-Leste. Genomic data are also available mainly from Singapore,
with currently only a single isolate of E. anophelis from Malaysia in GenBank (accession
no. JNCG01000000) that was (erroneously) deposited in 2014 as E. meningoseptica. The
paucity of our knowledge is an important challenge when dealing with Elizabethkingia
infections and requires urgent attention from researchers and medical and health officials.
Elizabethkingia spp. is still an understudied pathogen with an intrinsic multidrug resistance
phenotype that has been reported in several countries around the world, causing oppor-
tunistic infections with high mortality rates. The apparent ubiquity of the pathogen, being
found in diverse environments and animal hosts, and the presence of multiple antimicrobial
resistance genes in its genome is a cause of serious concern as it could serve as a natural
reservoir of antimicrobial resistance genes for horizontal transmission to other pathogenic
microorganisms. Since currently, only whole-genome sequencing (and perhaps, MALDI-
TOF MS in the near future) is able to accurately identify Elizabethkingia to the species level,
cheaper but equally specific and sensitive identification or diagnostic methods need to be
developed, as genome sequencing and MALDI-TOF MS are not available to most hospital
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diagnostic laboratories in poorer Southeast Asian countries. Nevertheless, a deeper under-
standing of the pathogen along with more precise diagnostic procedures, better accessibility
of treatment options either with antibiotics or other alternatives such as bacteriophage
therapy, and improvements in the prevention of transmission and infection will eventually
enable better control of this extremely pathogenic and highly resistant bacteria.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10050882/s1, Table S1: Genes encoding en-
zymes/proteins and efflux pumps involved in antibiotic resistance of the Elizabethkingia spp.; Table S2:
Potential virulence-associated features among Elizabethkingia spp. as predicted using the Virulence
Factor Database (VFDB) [39–41,43,44,46,59–62,72,73,77,119–131].
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