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Epidermal Growth Factor and Intestinal Barrier Function

Xiaopeng Tang,1,2 Hu Liu,1,2 Shufen Yang,1,2 Zuohua Li,1,2

Jinfeng Zhong,1,2,3 and Rejun Fang1,2

1College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
2Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
3Hunan Polytechnic of Environment and Biology, Hengyang 421005, China

Correspondence should be addressed to Rejun Fang; fangrj63@126.com

Received 5 April 2016; Accepted 26 June 2016

Academic Editor: Dianne Cooper

Copyright © 2016 Xiaopeng Tang et al.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival,migration,
apoptosis, proliferation, and di	erentiation. In addition, EGF has been established to be an e	ective intestinal regulator helping to
protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several
researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-
�/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth
factor and intestinal development and intestinal barrier is described, to provide a better understanding of the e	ects of EGF on
intestine development and health.

1. Introduction

In addition to serving as a major organ for nutrient digestion
and absorption, the single layer of intestinal epithelium lining
the gut acts as a selective barrier to prevent the passing of
toxins, allergens, and pathogens from the luminal content
into the circulation system and other tissues [1]. Dysfunction
of the intestinal barrier is associated with increased gut per-
meability and development of multiple gastrointestinal dis-
eases, such as food allergy, in
ammatory bowel disease (IBD),
irritable bowel syndrome (IBS), celiac disease, and infectious
enterocolitis [2–4]. Recently, several substances, such as glu-
tamine [2], sodium butyrate [5], bile acid [6], lactic acid bac-
teria [7], and epidermal growth factor (EGF) [8, 9], have been
reported to have a protective e	ect on intestinal epithelial
through various underlying mechanisms.

EGF was �rst discovered by Dr. Cohen more than half
a century ago [10]. It is a cytoprotective peptide consisting
of 53 amino acid residues and three intramolecular disul�de
bridges which has been detected in a variety of body 
uids,
such as saliva, milk, amniotic 
uid, urine, plasma, and
intestinal 
uid, which is produced and secreted by the

submaxillary salivary glands, mammary glands, placenta,
kidney, and duodenal Brunner’s glands, respectively [11]. EGF
plays an important role in regulating cell growth, survival,
migration, apoptosis, proliferation, and di	erentiation [12–
16]. In additional to enhancing cellular proliferation and
di	erentiation, EGF also functions as a gastrointestinal tract
(GI) mucosal protective factor, which associates with intesti-
nal maturation and maintenance of epithelial cell homeosta-
sis in the small intestine [17]. �e biological actions of EGF
are mediated via binding to the EGF receptor (EGFR), a
transmembrane receptor tyrosine kinase of the ErbB fam-
ily, that leads to autophosphorylation of receptor tyrosine
kinase (RTK) and subsequent activation of Ras/mitogen-
activated protein kinases (Ras/MAPK), phosphatidylinosi-
tol 3-kinase/AKT (PI3K/AKT), phospholipase C-�/protein
kinase C (PLC-�/PKC), and STATS signal pathways [18], to
promote intestinal development [15, 19–22], regulate tight
junction protein expression [9, 23–25], reduce cell autophagy
[26], inhibit apoptosis induced by oxidative stress [16], and
reduce the colonization of the intestinal epitheliumby entero-
pathogens [8, 27–30].

Hindawi Publishing Corporation
Mediators of Inflammation
Volume 2016, Article ID 1927348, 9 pages
http://dx.doi.org/10.1155/2016/1927348



2 Mediators of In
ammation

Table 1: �e applications of EGF for animals on intestinal development.

Animal Dose Signi�cant results Reference

Fetal rabbit 300 �g/kg/d
EGF infusion signi�cantly increased intrauterine
growth retardation, fetal small intestinal villus height,
and crypt cells

[35]

Early-weaned pigs 1.5mg/kg
Increased the mucosa IgA levels and crypt depth at
jejunum on day 28 a�er weaning

[36]

Early-weaned mice 50 �g/kg Increased mean villous height and crypt depth and
enhanced enterocyte proliferation

[37]

1-day-old, large
white-duroc cross
breed piglets

10 �g/kg/d
Stimulates proliferation of intestinal crypt epithelial
cells and promotes recovery from atrophic enteritis in
PEDV-infected piglets

[49]

Early-weaned pigs 1.0mg/kg diet
Failed to alter the small intestinal villus morphology,
DNA, or protein content of gastrointestinal mucosa

[19]

Early-weaned pigs 50 �g/kg BW/d
Greater jejunal and duodenal villus heights; greater
intestinal length

[20]

Early-weaned pigs 180�g/d Increased villous height in the duodenum, jejunum,
and ileum

[21]

Early-weaned pigs 115�g/kg BW/d
Enhanced jejunal structure development, increased villi
height, and decreased lamina propria width

[15]

Early-weaned pigs 180�g/d Increased villus height and increased the intestinal
structural integrity proteins expression

[22]

Early-weaned pigs 60 �g/kg BW/d
Enhanced mean villous height, crypt depth, and villous
height: crypt depth and stimulated proliferation of
piglet enterocytes

[38]

Early-weaned rats 50 �g/kg
Enhanced mean villous height, crypt depth, total
protein, DNA, and RNA and stimulated enterocytes
proliferation

[39]

2. EGF and Intestinal Development

EGF is acid- and heat-stable and resistant to proteases
digestion; it can be administered orogastrically and delivered
to the brush border of the small intestine segment where
EGFR is abundantly located onboth the apical and basolateral
aspect of villus enterocytes [31]. �e binding of EGF at the
enterocytes surface induces dimerization of EGFR, which
results in activation of EGFR tyrosine kinase activity andRTK
autophosphorylation and subsequent activation of various
signal transduction pathways leading to cellular proliferation
and di	erentiation that help in intestinal development and
intestinal mucosa repair [32, 33]. EGF is one of the most
abundant growth factors in the milk, more than 500 times
higher than other growth factors such as amphiregulin
and TGF-� detected in human colostrums [34], indicating
an important function EGF performed in early intestinal
development. Previous evidence has indicated that EGF plays
a signi�cant role in intestinal development, including increas-
ing villous height and crypt depth, enhancing enterocyte
proliferation, and stimulating secretion of digestive enzymes
such as trypsin, chymotrypsin, alkaline phosphatase, sucrase,
maltase, and lactase, which is important for improving nutri-
tion absorption, feed utilization, and growth performance
of animals [15, 19–22, 35–39]. �e applications of EGF for
animals are listed in Table 1.

�e intestinal development is related to the intestinal
barrier integrity directly, to keep intestinal health, and intra-
cellular homeostasis is essential for the formation of the
intestinal barrier. Pervious study has shown EGF controlling
mucosal homeostasis through regulating the tight junction
components [9, 40], enhancing the mucins secretion [41, 42],
and decreasing pathogens colonization [8, 27–30].

3. EGF and Intestinal Barrier

3.1. Intestinal Barrier Structure. �e intestinal epithelium
is formed by a continuous monolayer of proliferating and
di	erentiating intestinal epithelial cells (IECs) separating
the intestinal mucosa from the lumen environment. �e
IECs are tightly bound together by junctional complexes
(including tight junctions, gap junctions, adherens junctions,
and desmosomes [43, 44]), which form a selective barrier
that allows nutrients absorption and defends against toxins,
allergens, and pathogens from the gut lumen into mucosal
tissue and circulation [45]. Tight junctions (TJs) seal the
space between adjacent epithelial cells near the apical sur-
face, which are the most apical components of intercellular
junctional complexes [44, 46]. Adherens junctions (AJs) are
located beneath the TJs and are involved in cell-cell adhesion,
intracellular signaling, and the integrity of TJs regulation [24,
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Figure 1: Tight junction structures. �e tight junction is organized by multiple transmembrane proteins, including junctional adhesion
molecules (JAM), occludin, claudins, and zona occludens (ZO), which interact in a coordinated manner to form intestinal barriers.

44, 46, 47]. Gap junctions and desmosomes contribute to cell-
cell adhesion and intracellular communication, respectively
[44, 46]. Disruption of the intercellular junctional complex
has been reported to increase intestinal permeability that
results in an easy passing of pathogens into intestinal mucosa
which causes numerous gastrointestinal diseases [44, 48].
�us, maintaining the integrity of intercellular junctional
complex is critical for intestinal development and health.

3.2. Regulation of Tight Junction by EGF. TJs aremultiple pro-
tein complexes composed of at least three types of transmem-
brane proteins, claudins, occludin, and junctional adhesion
molecule (JAM), which interact with cytoplasmic sca	old
protein such as zona occludens (ZO-1, ZO-2, and ZO-3) and
interact in a coordinated manner to form intestinal barriers
(Figure 1) [61, 62]. �ey regulate the paracellular passage of
ions, water, and solutes and act as a fence to maintain cell
polarity by blocking the free di	usion of proteins and lipids
between the apical and basolateral domains of the plasma
membrane [62]. Signi�cant evidences indicate that TJs are
associated with numerous intracellular signaling molecules
regulated by the activity of signal transduction pathways [23].
�e integrity of the TJ is regulated by PKC, PI3K, MAPK,
myosin light chain kinase (MLCK), the Rho family of small
GTPases, G-proteins, c-Src, PLC-�, and protein phosphatase
2A (PP2A) [23, 46, 63].

EGF is a key regulator of epithelial paracellular perme-
ability, a property that depends on TJs and can be evaluated
through the measurement of the transepithelial electrical
resistance (TER) [23–25]. EGF has been shown to protect
intestinal barrier function by preventing early-weaned [22],
hydrogen peroxide [40, 50–52], ethanol [8], acetaldehyde
[53–55], and intestinal ischemia-reperfusion [16, 64] induced
disruption of TJs and paracellular permeability. EGF induces
changes in the composition of TJ through activating several
signaling pathways such as PKC [50], MAPK [23], and STATs
[25] in di	erent types of cells (Table 2).

Numerous researches have demonstrated that oxidative
stress impairs intestinal barrier function [65]. Weaning pigs

from the sows is one of the most stressful events in the
pig’s life that can contribute to intestinal dysfunctions [66].
Xu et al. [22] indicated that the oral administration of EGF
could improve the gene expression of tight junction proteins
such as ZO-1, claudin-1, and occludin, thus enhancing the
intestinal barrier function of early-weaned piglets. EGF pre-
vented hydrogen peroxide-induced intestinal barrier disrup-
tion throughERK/MAPKandPLC/PKCpathways (Figure 2).
Basuroy et al. [23] showed that, in Caco-2 cells, pretreating
with EGF can inhibit the oxidative stress-induced intestinal
barrier disruption, as indicated by TER, and TJ proteins
(ZO-1 and occludin) redistribution, while pretreatment of
Caco-2 cells withMAPK/ERK kinase (MEK) inhibitors com-
pletely blocked the protective e	ects of EGF on TJs. When
epithelial cells su	ered from stress, upon supplementation
with EGF they bind to EGFR, leading to autophosphorylation
of RTK; the interaction between EGFR and SHC/Grb2 results
in the recruitment of SOS to the plasma membrane to
activate Ras. Activated Ras mediates Raf activation and then
activates MEK, leading to the activation of ERKs [18, 33].
Activated ERK can regulate the expression of TJs such as
ZO-1, occludin, and claudin (Figure 2). Pretreating with EGF
can increase F-actin expression, decrease G-actin expression
[40], and increase the F-actin-to-G-actin ratio [52]. EGF
protection against oxidants requires PKC (isoforms �1 and
�) activation [50, 51]; the activation of PLC-�/PKC-�1 can
inhibit the activation of NF-�B and enhance I�B� stabiliza-
tion, which helps to protect the F-actin assembly and barrier
function in enterocyte monolayers [40, 52]. Arda-Pirincci
and Bolkent [16] reported that EGF treatment of rats with
ischemia-reperfusion prevented the ischemia/reperfusion-
induced oxidative injury by reducing apoptosis and lipid
peroxidation and by increasing antioxidant enzyme activities.
Geng et al. [64] showed that the TJs (ZO-1 and occludin)
in jejunum and ileum are notably accelerated and expressed
in all EGF-treated ischemia-reperfusion rats. Ethanol and
its oxidized metabolite, acetaldehyde, also induce intestinal
hyperpermeability, which contributes to the development of
alcoholic liver disease (ALD) [62]. Banan et al. [67] showed
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Table 2: �e e	ects of EGF on EGF-mediated protection of tight junctions.

Cell lines Inducer TJ associated proteins Involved pathways Reference

Caco-2 Hydrogen peroxide
Increased in tubulin
polymerization

PKC-�1 [50]

Caco-2 Hydrogen peroxide
Increased in tubulin

polymerization and decreased
in monomeric tubulin

PKC-� [51]

Caco-2 Hydrogen peroxide
Increased F-actin-to-G-actin

ratio
PKC-�1 ↑; NF-�B ↓2 [52]

Caco-2 Acetaldehyde Occludin ↑; ZO-1 ↑1 Inhibited tyrosine
phosphorylation

[53]

Caco-2 Hydrogen peroxide F-actin ↑; G-actin ↓ PLC-� ↑; NF-�B ↓ [40]

Caco-2 Hydrogen peroxide Occludin ↑; ZO-1 ↑ ERK-MAPK [23]

Caco-2 Acetaldehyde Occludin ↑; ZO-1 ↑ Not mentioned [54]

Caco-2 Acetaldehyde Occludin ↑; ZO-1 ↑ PLC-�/PKC [55]

Caco-2 Acetaldehyde Occludin ↑; ZO-1 ↑ ERK1/2-MAPK [24]

NRC-1 cells3 Hydrogen peroxide ZO-1 ↑; claudin-3 ↑ PLC-�/PKC [56]

MCAS4
None

Claudin-3 ↓ MEK/ERK or
PI3K/Akt [57]

HUOA5 Claudin-4 ↓
MDCK6 None Claudin-4 ↑ MEK/ERK [58]

MDCK None Claudin-2 ↓; claudin-4 ↑ Src and STAT3 [25]
1Symbols ↑ and ↓ indicate increases and decreases in the protein or mRNA expression, respectively. 2Symbols ↑ and ↓ stand for activation and inhibition,
respectively. 3Cholangiocytes. 4Mucinous cystadenocarcinoma. 5Serous cystadenocarcinoma. 6Darby canine kidney cells.

that ethanol induces disruption of the F-actin cytoskele-
ton and of intestinal barrier integrity, in part, through I-
kBa degradation and NF-kB activation. Chen et al. [8]
demonstrated that EGF improved the intestinal integrity
by lowering intestinal permeability under chronic ethanol
exposure. However, whether EGF protects intestinal barrier
function through preventing ethanol-induced disruption of
TJs and paracellular permeability has not been reported
yet. Acetaldehyde, a metabolic product of ethanol oxidation,
seriously harms the intestinal barrier function. Previous
studies have shown that acetaldehyde, but not ethanol,
disrupts TJ and increases paracellular permeability by a
tyrosine kinase-dependentmechanism [24, 54, 55]. Acetalde-
hyde induces tyrosine phosphorylation of occludin, ZO-1,
E-cadherin, and �-catenin and dissociates these proteins
from the actin-rich, detergent-insoluble fractions [24, 53–55].
EGF prevents acetaldehyde-induced increase in paracellular
permeability (as indicated by increased TER and decreased
macromolecule 
ux) and redistribution of occludin, ZO-1,
E-cadherin, and �-catenin from the intercellular junctions
through the activation of EGFR-PLC-�-PKC�1/
 and EGFR-
ERK/MAPK signaling pathways (Figure 2) [24, 55].

Previous studies indicated that EGF has a potential role in
the prevention of necrotizing enterocolitis- (NEC-) induced
TJs disruption in neonates, including humans and rats [68,
69]. Clark et al. [41] showed that NEC rats supplementedwith
EGF canmake the expression of occludin and claudin-3 in the
ileum normalized, which help to maintain intestinal barrier
function.

3.3. EGF Promotes Mucin Secretion. �e intestinal epithe-
lial monolayer also protects and separates itself physically

from exogenous stress by secreting mucins to form a thick
protective layer of mucus over the intestinal mucosas which
are important for intestinal lubrication, limiting bacteria
adhesion and maintaining proper intestinal permeability [15,
70]. Mucins (Muc), both secretory type (including Muc2,
Muc5AC, Muc5B, Muc6, and Muc19) and membrane-bound
type (including Muc1, Muc3, Muc4, Muc12, Muc13, Muc15,
Muc16, Muc17, andMuc20), are highmolecular weight, heav-
ily glycosylated proteins. EGF seems to exert bene�cial e	ects
on intestinal mucosas mucin secretion especially Muc2,
Muc3, andMuc5AC [15, 42].Muc2 is one of themost predom-
inant gel-formingmucins secreted by goblet cells in the small
intestine and colon [71]. Muc5AC expressed by goblet cell is
mainly present at the inner mucous layer of gastric mucosa
[71]. Muc3 is a transmembrane mucin expressed in the small
intestine and colon [42, 71]. Clark et al. [41] demonstrated
that treatment of NEC with EGF increased goblet cell density
andMuc2 production in the ileum but had no e	ect onMuc2
production in the jejunum. Bedford et al. [15] showed that
EGF treatment can increase the expression of interleukin-
13 (IL-13), stimulating both goblet cell di	erentiation and
mucin secretion in the intestine [72], and keratinocyte
growth factor (KGF), stimulating human colonic epithelial
cell di	erentiation into goblet cells [73], that resulted in
an increased Muc2 expression. �e reactive oxygen species
(ROS) generated by the membrane NADPH oxidase (NOXs)
enzymes, such as dual oxidases 2 (DUOX2), has shown to
contribute to promoting receptor signaling activation [74].
Damiano et al. [42] found that EGF modulates DUOX2
levels through ERK1/2-PKC pathways increasing ROS lev-
els, in turn, inducing gel-forming Muc5AC and the trans-
membrane Muc3 expression. In conclusion, EGF through
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Figure 2: �e EGFR-phospholipase (PLC)-�-PKC and EGFR-ERK/MAPK signaling pathways are involved in EGF-mediated protection of
tight junctions. ERK/MAPK pathways were mainly involved in regulating barrier function by improving the gene expression of tight junction
proteins such as ZO-1, claudin-1, and occludin, while PLC-�-PKC pathways were mainly involved in regulating actin cytoskeletal architecture
such as F-actin and G-actin.

stimulating goblet cell di	erentiation produces Muc2 and
through inducing DUOX2 expression and ROS production
activates ERK1/2-PKC pathways, thus inducing Muc5AC
and Muc3 expression, to form a thick protective layer
of mucus over the intestinal mucosas to maintain intestinal
14 barrier integrity (Figure 3).

3.4. EGF Reduces Bacterial Colonization. �e intestinal
microbiota pro�le plays an essential role in intestinal
integrity. EGF can reduce colonization of the intestinal
epithelium by enteropathogens, such as Escherichia coli (E.
coli) [21, 27, 59, 60],Campylobacter jejuni (C. jejuni) [30], and
Enterococcus [21] (Table 3). Administration of EGF to new-
born rabbits can signi�cantly reduce bacterial translocation
and was associated with increased goblet cells in intestine
[59]. Oral administration of EGF to weaned rabbits infected
with enteropathogenic E. coli showed a signi�cant inhibition
of E. coli colonization in the small and large intestine without
a	ecting the proliferation of E. coli in vitro [27]. In addition,

EGF can reduce C. jejuni colonization in the jejunum of C.
jejuni infected chicks and prevent C. jejuni-induced claudin-
4 disruption [30]. What is more, EGF showed a protective
e	ect on TJs in experimental Clostridium di	cile (C. di	cile)
infected mice [9], suggesting a potential role of EGF in
reducing C. di	cile colonization.

4. Conclusions

�e biological functions of EGF are mediated through bind-
ing to EGFR and inducing RTK autophosphorylation and
subsequent activation of various signal transduction path-
ways to regulate intestinal development, TJs expression, and
mucins secretion which are important for the formation of
intestinal barrier functions. In conclusion, EGF acts as a key
epithelialmucosa regulator to regulate intestinal permeability
and intestinal barrier integrity through the following 3 ways:
(1) activating EGFR-PLC-�-PKC and EGFR-ERK/MAPK sig-
naling pathways to regulate TJs expression; (2) stimulating
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Figure 3:Mechanism of EGF inducedmucins secretion. EGF treatment can increase the expression of interleukin-13 and keratinocyte growth
factor (KGF) that resulted in an increased Muc2 expression [15]. EGF through inducing DUOX2 expression and ROS production to activate
ERK1/2-PKC pathways thus inducing Muc5AC and Muc3 expression [42].

Table 3: E	ects of EGF on intestinal bacterial colonization and translocation.

Animals Signi�cant results Reference

New Zealand white rabbits
EGF treatment signi�cantly inhibits enteropathogenic Escherichia coli
colonization in the small and large intestine

[27]

Newborn rabbits
Administration of EGF signi�cantly reduced bacterial translocation
and was associated with increased goblet cells in intestine

[59]

Rats
Administration of EGF signi�cantly reduced aerobic bacterial
colonization

[60]

White leghorn chicks
EGF reduced Campylobacter jejuni colonization in the jejunum and
dissemination to the liver and spleen and inhibited Escherichia coli
translocation

[30]

Rats
An intervention with EGF decreased fecal Escherichia coli
colonization

[8]

Early-weaned piglets
EGF treatment decreased the amount of Escherichia coli in the ileum
and cecum and Enterococcus counts in the ileum

[21]

goblet cell di	erentiation to produce Muc2 and inducing
DUOX2 expression and ROS production to activate ERK1/2-
PKC pathways thus inducing Muc5AC andMuc3 expression;
(3) reducing bacterial colonization and translocation.
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