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ABSTRACT

Lung cancer is a leading cause of cancer mortality worldwide. In tumors, the 

important role of noncoding RNA regulatory networks has been more and more reveal. 

EGFR has been identified as an oncogenic driver of NSCLC, especially activating 
mutations EGFR and its inhibition with specific TKIs can generate dramatic tumor 
responses. Studies have shown that EGFR plays significant roles in the progression 
of NSCLC. Subset analysis of the small proportion of patients with EGFR-mutant lung 
cancer showed a disease-free survival benefit, but was underpowered to detect a 
survival advantage. Herein, we highlight the progression of EGFR, noncoding RNA, 

and their roles in carcinogenesis. We also focus on anti-lung cancer drug development 

and EGFR-related drug resistance.

INTRODUCTION

Lung cancer is the leading cause of cancer-related 

mortality worldwide, and more than 1.5 million deaths 

is related with it every year [1]. The majority of patients 

present with locally advanced or metastatic disease. 

Approximately 85% of lung cancers are classified as 
non–small cell lung cancer (NSCLC), and include lung 

adenocarcinoma, squamous cell carcinoma (SCC), and 

large cell carcinoma (LCC) histologic subtypes. Over 

the past decade, major advances in the understanding of 

lung cancer, especially NSCLC, have been achieved [2]. 

NSCLC is defined as a group of different diseases, and 
as an oncogenic driver, epidermal growth factor receptor 

(EGFR) has been identified. Blockade of EGFR with 
specific tyrosine kinase inhibitors (TKIs) can generate 
dramatic tumor responses in NSCLC [3, 4].

EGFR is one of the four members of the HER 

family receptors, which compose of EGFR/HER1/

erbB1, HER2/erbB2, HER3/erbB3, and HER4/erbB4. 
There are 11 species in the HER family of growth factors 

which can be broadly divided into those that specifically 
bind with EGFR (EGF, TGF-α, Amphiregulin (AR)), 
those that binding with EGFR and HER4 (BTC, HB-
EGF, Epidermal regulators), and those that binding with 

HER3 and HER4 (Neuregulin). Although HER2 has no 

corresponding ligand, it usually binds to a ligand similar 

to the one that activates it, readily forming a dimer with 

other members of the HER family. Additionally, EGFR 

is a receptor of tyrosine kinase (RTK). It is consisted 
of a C-terminus intracellular region that possesses the 

kinase activity, and an N-terminus extracellular ligand-
binding site, a hydrophobic transmembrane domain [5]. 

The EGFR signaling network plays a significant role in 
the epithelial tissues maintenance and growth, active 

EGFR signaling is frequently observed in lung cancer,  

and EGFR level is related with advanced stage of disease 

and bad prognosis [6]. As known, HER family receptor 
related malformation from primary lung tumors, NSCLC 

brain metastases have some strikingly differences [7]. 
Therefore, in the development of new drugs for cancer 

treatment, EGFR and its signaling components can be 

used as targets, such as chimeric monoclonal antibodies 

(panitumumab and cetuximab) [8] and TKIs (gefitinib, 
erlotinib, and afatinib) [9–11]. However, to date, cancer 

heterogeneity and the drug resistance greatly limit the 

usefulness of anti-EGFR agents [12]. 

EGFR gene is an oncogene-driven gene, tyrosine 

kinases (TK) active [13]. Meanwhile, discovered in 
2004, EGFR mutation is the first molecular alteration in 
lung cancer that is shown to confer sensitivity to specific 
targeted therapies, namely TKIs [14–17]. EGFR-TKIs 
can inhibit EGFR autophosphorylation activation and 

its downstream signaling pathways through competitive 
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binding with the EGFR binding region, preventing the 

binding of ATP and EGFR receptors. The EGFR signaling 

pathway is summarized in Figure 1. 

These molecular alterations could be influential 
in SCC and have important implications in lung 

cancer treatment [18]. Currently, none of the recurrent 

molecular alterations, which are commonly altered in 

lung squamous cell carcinoma, have proven to be as 

predictive for response to therapy as EGFR alterations 

in lung adenocarcinoma. Despite the establishment of 

tumor profiling for lung adenocarcinomas, its clinical 
benefits for other histologic subtypes of lung cancer, such 
as lung SCC and SCLC, remain unclear. Furthermore, 

a significant minority of patients with NSCLC have 
activating mutations in EGFR [19], patients typically 

develop resistance within 9 to 12 months. Moreover, 
anti-EGFR antibody therapy uses extensive in treatment 

cancer [20].

In summary, studies have been focused on the 
underpinning mechanisms the resistance for anti-EGFR 

agents, and EGFR mutations play a pivotal role in lung 

cancer.

EGFR AS A TARGET IN LUNG CANCER 

TREATMENT

Currently many studies have highlighted the 

relationship between EGFR and cancers. High expression 

of EGFR correlates with poor survival in cancer of the head 

and neck, as well as in cervical carcinoma and bladder 
[20–22]. In NSCLC, EGFR as a prognostic factor remains 
disputable. Some studies have verified that EGFR over-
expression is predictive of a poor result in NSCLC [23–27], 
whereas others don’t found such situation [27–29]. 

In the progression of NSCLC, EGFR, regarded as 
the cancer driver gene [30, 31], demonstrates the effects 

of numerous oncogenic, including stimulating DNA 

synthesis, cell cycle, cell proliferation, cell metastasis and 

invasion [32, 33], and has been proposed as an attractive 

and promising target for anti-cancer treatment [34]. The 

expression of high level of EGFR, the pathway can also 

be up-regulated by coexpression of receptor ligands 

(such as transforming growth factor-α (TGF-α) or EGF). 
Moreover, the duration of the EGFR signaling pathways 
are stimulated by the positive feedback loop formed by 
EGFR, a ligand-releasing protease and the RAS-MAPK 
signaling pathway (Figure 1). As the signaling response 

can be prolonged in a cell that is efficient in recapturing 
the endogenous ligand, in spite of the levels of EGFR 

expressed may be low [35]. Furthermore, a research 

in breast cancer verified that co-expression of TGF-α 
and EGFR had a more remarkable effect on survival, 
comparing to the co-expression of HER-2 and EGFR [36]. 

In lung cancer, one study has reported that synchronous 
expression of EGFR and HER-2 is predictive of 

increased recurrence risk. Moreover, the success therapy 

with programmed death ligand 1 (PD-L1) blockade 
in lung cancer suggests that immune escape mechanisms 

can be conducive to lung tumor etiopathogenesis [37].  

ACQUIRED RESISTANCE OF EGFR TKIS

In lung cancer, especially in NSCLC, a variety of 
EGFR mutations exist which are closely related to tumor 

development. The discovery of activating mutations 

in EGFR and the eventual approval of TKIs are the 
milestones in the history of NSCLC treatment.

First-generation EGFR TKIs

Gefitinib and Erlotinib have greatly improved the 
progression-free survival over standard chemotherapy 

for EGFR-positive NSCLC. Yet, due to the emergence 

of resistance, disease progression eventually occurs in 

almost all patients. Quinazoline has the core skeleton of 
gefitinib and erlotinib combined with EGFR reversibility. 
However, almost all patients who received gefitinib/
erlotinib treatment eventually and inevitably acquired 

resistance, with a median progression-free survival (mPFS) 

of approximately 9 to 11 months [38]. The most common 

mechanism of acquired resistance is point mutation of 

exon 20 to T790M, with an incidence of approximately 
50% to 60% [39] (Figure 2). The threonine (T) at site 790 
of EGFR is located at the ATP bound pocket of the tail end, 
and mutations in the kinase receptor-binding region form 
a huge chain methionine(M) residue, resulting in steric 
hindrance, which affects EGFR TKIs from binding to the 
receptor. Other mechanisms of resistance include MET 
gene amplification [40], small cell transformation [41], 
epithelial mesenchymal transition (EMT) [42], and so on.

Second-generation EGFR TKIs

The second-generation EGFR TKIs were designed, 
in order to get around the problem of gefitinib and erlotinib 
resistance, and mainly included BIBW 2992 (afatinib), 
PF00299804 (dacomitinib), HKI-272 (neratinib),  
CI-1033(canertinib). The second-generation EGFR TKIs 
have greater potential to overcome or delay withstand 

to the first-generation EGFR TKIs [43], and have 
improvements in target, binding form, and efficacy. 
Sufficient evidences have not yet been accumulated to 
determine whether or not they can overcome the resistance 

to first-generation EGFR TKIs entirely. Recent discoveries 
based on these principles continue to inspire the next 

generation of innovative clinical trials in this diseases.

Third-generation EGFR TKIs

To date, acquired resistance to EGFR-TKI is 
an unavoidable process and usually appears after  

10–12 months of therapy. New EGFR-TKIs with specific 
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Figure 1: EGFR signaling pathway. EGFR is a receptor protein that spans the cell membrane. TKI consists of N lobe and C lobe. 
EGFR-TKI competes with ATP for inhibition of this site. If the growth factor (ligand) binds to the receptor, it forms an asymmetric dimer. 
A variety of proteins associated with the phosphorylation of tyrosine, the downstream protein is constantly activated, as shown in chart the 

RAS-RAF-MAPK pathway and PI3K-AKT pathway.

Figure 2: EGFR mutations and drug-resistant mechanism. As common mutant sites, the mutations of exon18-21 in EGFR are 

discovered. Itʼs including common mutations and rare mutations. Common mutations are involved deletion mutations in 45 percent of  

19 exon, and point mutations of L858R in 40–45 percent of 21 exon. Others are rare mutations. The reason to raise drug-resistant is that it 

arises new mutations, the most important mutations is T790M in 50 percent. I stands for Mutations associated with drug resistant, II stands 
for Mutations associated with drug sensitivity. 
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capability bind to T790M mutated receptor have been 
developed and successfully tested in patients with 

acquired resistance [44, 45]. Moreover, the emerging 
third-generation EGFR TKIs have demonstrated high 
tolerability, through tested the higher ability to spare 

EGFR wild-type counterpart. The most famous of the third 

generation TKI is AZD9291 (osimertinib). It can response 
highly rate to drug-resistance in T790M mutations. Some 
patients showed resistance to this drug, and the major 

mutation site is C797S on the EGFR gene by the discovery 
of genome sequencing. The reason to drug resistance is 

including C-MET amplification, small cell lung cancer 
transformation, and downstream genes (KRAS or 
BRAF) activation. So patients can be controlled using a 
combination of the first and three generation EGFR-TKIs. 
With these evidences, AZD9291 (osimertinib), HM61713 
(olmutinib), CO-1686 (rociletinib) and others (ASP8273, 
EGF816) are object of several clinical trials and AZD9291 
has already obtained FDA and EMA approval for the 
therapy of EGFR mutant T790M-positive NSCLC [46].

In the future, when EGFR-TKI drug resistance 
occurs, genetic testing could be used to select the treatment 

method corresponding to the resistance mechanism.

PRECISION MEDICINE OF EGFR IN LUNG 

CANCER

Precision medicine in the treatment of lung cancer 

has dramatically impacted diagnostic pathology, and 

precision medicine provides a better comprehension of 

both the mechanism of the disease at the molecular level. 

The discovery of EGFR mutations and ALK-
rearrangements were the first molecular alterations in 
lung adenocarcinoma that confer sensitivity to TKIs 
in 2004 and 2007 (Figure 3), heralding the initiation of 
the era of precision medicine for lung [15, 47]. Among 
EGFR mutations, EGFRT790M mutation was a clear target 

for drug development to address the important precision 

medicine need, which identified as a mechanism of 
resistance to TKIs (Figure 3). The remarkable responses 
to TKIs observed in patients as well as the discoveries 
made studying these molecular subsets of lung cancer, 

served as catalysts for further exploration of the lung 

cancer genome, leading to the incorporation of molecular 

testing in routine clinical practice. Clinical trials have 

revealed that treatment of advanced EGFR lung cancers 

is superior to chemotherapy, using the appropriate TKIs  

Figure 3: Timeline of EGFR-related drug development.
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[19, 48]. Conversely, it has also been shown that patients 

with the mutant EGFR lung cancers rarely respond 

to EGFR TKIs and are more likely to benefit from 
chemotherapy, underlining the importance of matching 

tumor genotype to therapy [48]. Here, we show the 

timeline of the history of EGFR development in recent 

years (Figure 3). At present and future efforts to find new 
types of precision medicine for lung cancers is necessary 

to improve outcomes for patients with lung cancer, as well 

as biomarker-driven clinical trials. In lung cancer, the 
impact of precision medicine has resulted in considerable 

changes as well as challenges in diagnostic pathology [49]. 

NONCODING RNA AND EGFR 

MiRNAs in EGFR-targeted therapies for lung 

cancer

MicroRNAs (miRNAs) are a class of small 
noncoding RNAs that act as key post-transcriptional 
regulators of gene expression. They can functionally 

impact cell fate determination through the regulation of 

critical protein expression, thus playing a pivotal role in 

the diverse processes of human cancer, acting as either 

tumor oncogenes or suppressors [50–53]. Recently, 

increasing numbers of miRNAs have been correlated 

with the drug resistance of lung cancer cells to anti-

EGFR agents, indicating that miRNAs may serve as 

novel targets or promising predictive biomarkers for anti-
EGFR therapy. Moreover, miRNA-based therapy has 
been suggested to be a rational and potentially effective 

approach for the therapeutic targeting of EGFR [54]. 

Recently, a number of miRNAs, such as miR-200a, miR-

27a/27b, miR-133a, and miR-134 have been verified to 
directly target EGFR [54–58] (Table 1). These EGFR-

miRNAs regulation network studies demonstrated that 
miRNA-based therapy could possibly be utilized to target 

EGFR, except for TKIs and classical mAbs for EGFR-
targeted therapies [54]. 

 Our lab has confirmed that miR-34a, miR-181a-5p, 
miR-32, and miR-486-5p play vital roles in the progression 

of NSCLC [59–61]. Our recent study demonstrated that 

miR-34a can suppress NSCLC by directly targeting 

EGFR in vitro and in vivo (paper in under-decision).These 

findings demonstrate that altered miRNA expression may 
be related to the oncogenesis of lung cancer. Some studies 

have verified that EGFR mutations can be regulated by 
miRNA in cancer therapies. At present study, small RNA 

possesses the best potential as a diagnostic biomarkers 
and therapeutic drug for cancer, which is the most mature 

miRNA. For instance, because of its pivotal role in lung 

cancer, liver cancer, breast cancer, and among others, miR-

34a is considered to be the most likely of the miRNAs to 
become a diagnostic marker and target of drugs [62–64] .

In conclusion, the emerging role of miRNAs as 
regulators could not only active EGFR signaling, but also 

the lung cancer cells resistance to anti-EGFR therapy. 

Additionally, miRNAs could also be employed as novel 

therapeutic targets to circumvent the resistance of lung 

cancer cells to EGFR inhibitors, and as biomarkers for 
response to anti-EGFR agents.

LncRNAs in EGFR- TKIs for lung cancer

Long non-coding RNAs (lncRNAs) are non-coding 

RNAs with a length > 200 nt. It has been revealed that 
lncRNAs are involved in a number of biological processes, 

such as chromatin modification, gene regulation, 
transcription activation and interference, and cellular 

processes, including cell apoptosis, migration, tumor 

invasion, metastasis, and drug resistance [82–84]. They 

play vital roles in the tumor incidence and development.

Currently study shown that lncRNAs can connect 

to transcription sites and regulate both the expression of 

alleles and a long fragment, whereas coding genes and 

miRNAs have no such functions [85]. This suggests that 

lncRNAs may be better epigenetic regulators in gene 

expression regulation. Research has shown that some 

lncRNAs, including lncRNA UCA1, H19, BC200, and 
BC087858, were increased in gefitinib-resistant human 
lung cancer cells, as determined by lncRNA microarray 

analysis [86]. Studies have also demonstrated that lncRNA 

UCA1 may stimulate   non-T790M acquired resistance 
for EGFR-TKIs by activating the AKT/mTOR pathway 
and EMT [87]. Moreover, over-expression of lncRNA 
BC087858 could act via a novel mechanism by which 
acquired resistance for EGFR-TKIs can develop in 
EGFR-mutant NSCLC patients without T790M mutation 
[88]. Another study showed that stimulation of the PI3K/
AKT and MEK/ERK pathways, as well as EMT, could 
be implicated in the resistance to EGFR-TKIs [89, 90]. 
Herein, we illustrate that lncRNAs are involved in the 

EGFR signaling pathway, as displayed in Figure 4.

   In conclusion, further exploration of the function 
and mechanism of lncRNAs will reveal their critical 

role in the process of lung cancer generation, and their 

significance as a diagnostic tool as well as in the treatment 
of cancer.

tRNA-derived RNA fragments and EGFR

A close connection has been established between 

cancers and a variety of small noncoding RNAs, such 

as miRNAs, piRNAs, and circRNAs, but not including 

tRNA-derived RNA fragments (tRFs). tRFs, the 

class of small RNAs, are noncoding-stranded RNAs  

14–35 nt in length, which always derive from the 5′ end 
or 3′ end of tRNA in the particular environment [91]. The 
length and the generation of tRFs are very similar to those 

of miRNAs. Through the action of anticodon-cleaving 

enzymes, some tRNA cleavages can be generated from 

mature tRNAs. The biological function of tRFs is still 
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unclear. Some studies have shown that, in biological 

processes, tRFs have the capacity to regulate some 

cellular processes, including translational efficiency 
under stress conditions [92], oncogenic transformation 

[93], and mitochondrial-mediated apoptosis [94]. EGFR 

and transferrin receptors (TFR) are known to be involved 
in cell growth and to be expressed in normal human 

epidermis. Currently, about EGFR and TRF expression in 

human cancer is few. 

However, their biological function has drawn the 

attention of many research efforts. Some studies have 

shown that, in biological processes, the function of 5’ tRFs 

might extend much farther than that of 3’ tRFs [95, 96].  

In addition, it has been found that tRFs suppress breast 
cancer progression via YBX1 displacement [97]. 
Furthermore, some tRFs can active cellular functions 

through argonaute engagement, such as cell proliferation 

and RNA silencing [98–100]. TRF expression is not 

Table 1: miRNAs that target EGFR signaling pathway involved in cancer

miRNAs Carcinomas Biological effect Regulation Citations

miR-200
anaplastic thyroid 

cancer/bladder cancer

Regulate EMT and reverse resistance of 
EGFR therapy

Down  [65, 66]

miR-23b/27b bladder cancer Regulate EGFR and suppress cancer Down   [55]

miR-27a renal cell carcinoma
Suppress human RCC cell proliferation 

and induce cell apoptosis
Down   [56]

miR-133a NSCLC

Suppresses multiple oncogenic 

membrane receptors and cell 

invasion

Down [57]

miR-134 NSCLC Inhibit proliferation Down   [58]

miR-7 various cancer cells
Inhibit EGFR-PI3K-AKT signaling and 

reverse radio resistance
Down   [67]

miR-34a solid cancer
Regulate Axl receptor tyrosine kinase by 

targeting SIRT1 and MEK1 Down   [68]

miR-145 lung cancer Negatively regulate EGFR expression Down   [69]

miR-146a NSCLC Inhibit EGFR in NSCLC cancer cells Down  [70, 71]

miR-146b-5p glioblastoma Suppress EGFR expression Down   [72]

miR-206 squamous lung cancer Suppress EGFR signaling Down   [73]

miR-135a-1 prostate cancer Inhibit cell growth and migration Down   [74]

miR-133a NSCLC Suppress EGFR signaling Down   [57]

miR-133b NSCLC
Suppress EGFR pathway signaling and 

enhance susceptibility to EGFR-TKI Down  [75]

miR-1203,1237,541,542-5p human lung cancer Downregulate EGFR Down  [67, 76]

miR-199a-3p prostate cancer Suppress the expansion and tumor Down  [77]

miR-2861 cervical cancer Inhibit tumor growth Down  [78]

miR-25 lung cancer Upregulate EGFR Up  [79]

miR-24 Activates EGFR signaling Up  [80]

miR-21 glioblastoma
Regulate the EGFR/AKT pathway in a 

PTEN independent manner
Up  [81]
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associated with cellular proliferation, in embryonic and 

fetal epidermis, whereas EGFR appears to be correlated 

with proliferation and undifferentiated cells [101].

PERSPECTIVES AND CHALLENGE IN 

EGFR-RELATED STUDY

The evolution of modern medical technology 

has enabled advancements in research to reveal the 

mechanism of the development of a variety of incurable 

disease. In the case of cancer, the emerging view is 
that cancer is a “genetic disease”. With next generation 
sequencing technology and promotion of the human 

genome project, the treatment of cancer has been gradually 

moving towards the era of precision therapy. Under this 

condition, new therapies take advantage of RNA and other 
powerful features targeting genes that play a critical role 

in tumorigenesis.

The importance of miRNA regulatory network’s role 
in tumors has been revealed more and more. Meanwhile, 
we should combine molecular mechanisms to overcome 

the emergence of resistance. As described in this review, 

several molecular pathways underlying the mechanisms 

of this disease have been elaborated in part, among them 

the EGFR pathway is one of the well-known signal 
cascades that play a pivotal role in oncogenesis. In lung 
cancer, dysregulation of EGFR signaling is frequently 

found. Strategies to effectively inhibit the EGFR 

signaling pathway have been mounted for developing 

anticancer therapeutic agents. However, on account of the 

development of drug-resistance, most anti-EGFR-targeted 

agents are unable to repress cancer progression. Therefore, 

studies of the mechanisms underpinning the resistance 

toward anti-EGFR agents may afford important findings for 
the use of anti-EGFR therapies in lung cancer treatment.

Finally, when determining the applicability 

of EGFR-TKI in practice, clinical benefit should be 
carefully analyzed based on clinical background and the 
prediction of the presence or absence of EGFR mutations. 

Furthermore, immune-based cancer prevention can 

also influence premalignant biology. It has been shown 
that cancer vaccines reprogram the immune response to 

prevent, reject, and detect premalignant cells, which might 

be applicable in EGFR therapy [102]. Going forward, in 

lung cancer, EGFR may be the rising star in the era of 

precision medicine.

Figure 4: An illustration representing long noncoding RNAs (lncRNAs) and they involved in EGFR signaling pathway 

in lung cancer.
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