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Abstract

Purpose: To identify stage I lung adenocarcinoma patients with a poor prognosis who will benefit from adjuvant therapy.

Patients and Methods: Whole gene expression profiles were obtained at 19 time points over a 48-hour time course from
human primary lung epithelial cells that were stimulated with epidermal growth factor (EGF) in the presence or absence of a
clinically used EGF receptor tyrosine kinase (RTK)-specific inhibitor, gefitinib. The data were subjected to a mathematical
simulation using the State Space Model (SSM). ‘‘Gefitinib-sensitive’’ genes, the expressional dynamics of which were altered
by addition of gefitinib, were identified. A risk scoring model was constructed to classify high- or low-risk patients based on
expression signatures of 139 gefitinib-sensitive genes in lung cancer using a training data set of 253 lung adenocarcinomas
of North American cohort. The predictive ability of the risk scoring model was examined in independent cohorts of surgical
specimens of lung cancer.

Results: The risk scoring model enabled the identification of high-risk stage IA and IB cases in another North American
cohort for overall survival (OS) with a hazard ratio (HR) of 7.16 (P = 0.029) and 3.26 (P = 0.0072), respectively. It also enabled
the identification of high-risk stage I cases without bronchioalveolar carcinoma (BAC) histology in a Japanese cohort for OS
and recurrence-free survival (RFS) with HRs of 8.79 (P = 0.001) and 3.72 (P = 0.0049), respectively.

Conclusion: The set of 139 gefitinib-sensitive genes includes many genes known to be involved in biological aspects of
cancer phenotypes, but not known to be involved in EGF signaling. The present result strongly re-emphasizes that EGF
signaling status in cancer cells underlies an aggressive phenotype of cancer cells, which is useful for the selection of early-
stage lung adenocarcinoma patients with a poor prognosis.
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Introduction

Lung cancer is the leading cause of cancer-related death in the

world. With the recent advances in diagnostic imaging technology

such as computed tomography, the number of patients diagnosed

with stage I non-small cell lung cancer (NSCLC), particularly

adenocarcinoma, the commonest histological type, has been

increasing [1,2]. However, even among patients with the earliest

form, stage IA (tumors #3 cm in diameter with no evidence of

regional lymph node and/or regional metastasis, according to the
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American Joint Cancer Committee/Union Internationale Contre

Le Cancer [AJCC/UICC] 6th Edition), treated by surgery with

curative intent, 10–30% will relapse and die of recurrence [3]. It is

also reported that 30–40% of stage I patients, including stage IA

and IB, will relapse [4]. Therefore, biomarkers to identify high-risk

patients with a poor prognosis among stage I patients, and who

would benefit from adjuvant therapy, are greatly needed, due to

the low predictive powers of clinicopathological factors to identify

such patients [5].

Several whole gene expression profiling studies have been

conducted to obtain gene signatures applicable as biomarkers for

clinical use [4,5,6,7,8,9,10,11]. However, there is still little

evidence to support the use of gene signatures in preference to

clinical factors, including stage, age, and sex [5]. In particular, to

the best of our knowledge, gene signatures that enable prediction

of the outcomes of stage IA patients have not been reported.

Epidermal growth factor (EGF) signaling affects a variety of

cellular processes linked to aggressive phenotypes of lung and other

cancer cells, such as growth, invasion, and metastasis [12,13]. EGF

activates EGF receptor (EGFR) tyrosine kinase and stimulates a

variety of intracellular signaling pathways. The EGF signaling

pathway is considered to be commonly, but to different extents, de-

regulated in lung cancer cells by oncogenic EGFR, KRAS, or BRAF

mutations and/or by other unidentified genetic/epigenetic alter-

ations. Up to now, however, such mutations/alterations themselves

have not been proven useful for predicting patients’ outcomes. Thus,

methods to identify and assess the de-regulated EGF signaling status

driven by genetic/epigenetic alterations in cancer cells are

necessary. However, since it has been difficult to comprehensively

identify EGF signaling-regulated genes from the huge quantity of

gene expression profiling data that change dynamically over time in

response to EGF [14], comprehensive assessment of the significance

of EGF signaling-regulated genes in aggressive phenotypes of

human cancer is lacking.

We used a State Space Model (SSM) to predict gene expression

patterns in cells stimulated with EGF, based on a mathematical

assumption that expression levels of genes in cells at one time point

affect expression levels of each gene at the next time point, as we

previously reported [15]. Expression levels of each gene in cells

stimulated with EGF at succeeding time points are thus

predictable using the observed gene expression levels at the

preceding time points. When cells were stimulated with EGF in

the presence of an EGFR tyrosine kinase-specific inhibitor,

gefitinib [16], the expression patterns of genes that were

unpredictable due to inhibition of EGFR tyrosine kinase were

designated as gefitinib-sensitive genes.

The aggressiveness of lung cancer cells, defined by their abilities

with respect to cell survival, invasion, and metastasis, is considered to

be related to patient prognosis. In the present study, it is shown that

expression signatures of such gefitinib-sensitive genes are useful to

predict the outcome of early-stage lung adenocarcinoma patients.

We propose that our strategy, analyzing biological pathways that

involve changes in gene expression levels over time in profiles

obtained by DNA microarray and next-generation sequencing,

holds promise for the discovery of genes that could be used as

biomarkers to predict aggressive phenotypes in cancer patients.

Methods

Cell culture
Recombinant human epidermal growth factor (EGF) was

purchased from Millipore (Billerica, MA, USA). Normal human

small airway epithelial cells (SAECs) were purchased from Lonza

Walkersville (Walkersville, MD, USA) and grown in SAGM

medium (Cambrex, East Rutherford, NJ, USA).

Selection of genes with potential to influence EGF-
regulated genes

A total of 1,500 genes was selected for SSM analysis as

described below. First, by analyzing DNA microarray data of small

airway epithelial cells (SAECs) with and without EGF treatment,

579 genes were selected based on a criterion of .1.5-fold

differences in expression levels between EGF-treated and untreat-

ed cells at any time point from 0 to 9 hours, when a subset of the

EGF response genes can be detected by this method [17]

(Figure S1). SSM is based on a mathematical model that can

predict expression patterns of each gene by using expression

patterns of other genes. It represents mathematically how much

each gene contributes to expression pattern of another gene. Due

to the above assumption, it is not guaranteed that the expression

patterns of the above 579 genes can be precisely predicted by only

themselves. Thus we next conducted other approaches to further

select genes that were not chosen by the criterion above, because

differences in expression levels between EGF-treated and untreat-

ed cells were small. The first was a literature search (190 genes) or

ingenuity pathway analysis (IPA) (802 genes), since we assume that

such genes have connection with the pathways in which EGF

signaling is involved; of these 190+802 genes, 597 genes whose

expression at measurable levels were detected in EGF-treated cells

were selected. The second approach was to select genes showing

strong dynamics in expression patterns in EGF-treated cells,

regardless of differences in expression levels between EGF-treated

and untreated cells. A total of 324 such genes was selected from

the top of the list by examining variances in expression levels in

EGF-treated cells throughout the entire time course. Ultimately,

1,500 genes (579+597+324) were selected (Details are in Infor-

mation S1, Selection of 1,500 genes for SSM analysis. A list of the

1,500 genes is in Table S1).

State Space Model (SSM) analysis
The EGF-response SSM was constructed to simulate time-

course expression patterns of 1,500 genes that had the potential to

be regulated by EGF (Details are in Figure S2 and Informa-

tion S1, State Space Model).

For SSM analysis, a control and a case were determined, i.e.,

EGF-treated cells without and with gefitinib. It was assumed that,

if the systems that regulate a gene differ between cells under the

two conditions, the control’s gene regulatory system (the SSM for

the control) cannot predict the case’s time-course expression

pattern of the gene [15]. The SSM for the control (EGF-response

SSM) was constructed using the control’s time-course gene

expression data. The EGF-response SSM was used to predict

the control’s time-course expression patterns. The integrated P-

value (P[EGF]), which represents the overall difference between

the predicted and observed expression levels at all time points, was

calculated, and genes with small prediction error (P[EGF].0.4)

were selected as genes with successful modeling. The EGF-

response SSM was then used to predict the case’s time-course gene

expression pattern. Of the selected genes above, genes that showed

unpredictable time-course expression patterns using the EGF-

response SSM were further selected as gefitinib-sensitive genes.

Such genes had integrated P-values (P[EGF+gefitinib]),0.05,

showing a large difference between the predicted and observed

gene expression patterns. In addition, genes with small prediction

error (P[EGF+gefitinib].0.5) were selected as gefitinib-insensitive

genes. Further details are in Information S1, SSM analysis.

Prognostic Genes for Stage I Lung Adenocarcinoma
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Figure 1. Diagrams of experimental procedures and gene set selection by SSM analysis. (A) A diagram of the in vivo experimental
procedures. The serum-starved cells were stimulated with EGF (100 ng/mL) in the presence or absence of gefitinib (0.5 mM) for 48 h at 37uC. Before
stimulation with EGF, cells were starved for 24 h at 37uC. Total RNA was isolated at each time point as indicated by the arrows (19 time points); the

Prognostic Genes for Stage I Lung Adenocarcinoma
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same experiments were performed two or three times at several time points. (B) Schematic view of time-course gene expression patterns of
predicted or observed gene expression levels. The blue solid line represents a predicted gene expression pattern based on the EGF-response SSM,
using the observed gene expression levels derived from the EGF-treated cells (x). (C) The red solid line represents a predicted gene expression pattern
based on the EGF-response SSM, using the observed gene expression levels derived from the EGF+gefitinib-treated cells (o). (D, E) A representative
gene expression pattern of gefitinib-sensitive genes (D) and -insensitive genes (E). Left panels: observed gene expression patterns in EGF-treated cells
(x in blue) and EGF-response SSM-predicted gene expression patterns (blue dotted line). Right panels: observed gene expression patterns in
EGF+gefitinib-treated cells (o in red) and the EGF-response SSM-predicted gene expression patterns (red solid line).
doi:10.1371/journal.pone.0043923.g001

Table 1. Gene names of the 139 genes identified for stage IA prediction and their biological functions.

Biological functions Gene names

growth factor HBEGF, GDNF, PDGFB, CTGF

cytokine LIF, IL1F5, TGFB2, IL1A

chemokine and receptor CXCL1, CXCR7, S100A2

angiogenesis VEGFA

cytokine-related factor IGFBP3, IGFBP6, IGFBP2

cell proliferation JUND, PHLDA2, FOSL1

negative regulation for cell proliferation SESN1, INHBA, GPNMB

cell motility TMSB10, CDC42EP2, LPXN, RAC2, CDC42

cell adhesion ITGB8, ITGB7, CLEC2B

apoptosis CASP4, NDRG1, DDX21, IER3

cell migration NMU, PLA, ADAM10, ADAM8, CYR61, AMAM19,

MMP12, TIMP3, LGALS7, MMP1, MMP3

tyrosine kinase signaling PTRF, GRB10, PAK2, DUSP1, DUSP4, SPRY4, PI3KCD,

DUSP5, SPRY2, SH2D2A

actin cytoskeleton organization ACTC1, PALM, MYLK, MYL9, COTL1, TUBA1A

immune response NFATC4, IL1RN, NFIL3, ISG20L1, ISG20

wnt signaling FZD10, SOX9

vesicular trafficking MLPH, HGS, VCP, FER1L4

ubiquitination UBE2C, UBD

cell cycle CDKN1A, SEH1L, CENPF

signal transduction CSNK1D, PDIA4, YWHAQ, ITPR1

stemness SOX2

transcription SPDEF, ETS2, TAF9, NFIL3, SMOX, ZBED2, CD3EAP,

ATF2, ZNF750, NCOR2, HOPX

protein folding HSPA1A, HSPA8, HSPB1, HSPA5

(epidermis) differentiation KRT14, ADRBK2, ID1, KRT5, SALL2

G protein GNG4, MRAS, GNG11, GNB1

DNA repair NUPR1

tumor suppressor TSC22D1, MTSS1

tumor prognostic factor KIAA1199

metabolism MVK, BPGM, THRA, HMGA2, MTHFD2, GAPDH, UST,

HMGCS1, KCNJ5, PCK2, NP, GAD1, ADCY6, SERPINB5,

ODC1, PPAP2A, CHST2, SLC25A37, RDH16, PPRC1,

LDLR, PFKFB3, HMGCR, ALOX15, CYP1A1, SLC29A1,

SEPW1

ribosome RPS14

RNA binding protein HNRPM

unknown DDEFL1

doi:10.1371/journal.pone.0043923.t001
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Construction of the risk scoring model based on gene
signature and validation of the risk scoring model

The risk scoring model to calculate a risk score for each patient

was constructed using a publicly available data set (the combined

data of 253 cases from University of Michigan [UM] and Moffitt

Cancer Center [HSM] in the National Cancer Institute [NCI]

training set) as a training data set, as previously reported [18]. A

partial Cox regression method was used to decrease the

complexity of the model by a partial least squares regression to

avoid overfitting when more genes than the number of samples

[19] are used, as previously reported [18]. The risk score is the

sum of the expression scores, which are the product of the weight

coefficient and expression level of each gene in the cancer tissue.

Weight coefficients were determined so that the patients were

classified as accurately as possible into two groups based on

whether the risk score was .0 (worse prognosis) or #0 (better

prognosis), using zero as the cut-off value. For validation, risk

scores were calculated for each patient in the validation data sets

using the expression level of each gene in the cancer tissue,

according to the risk scoring model described above. Each patient

was classified into a.0 or #0 risk score group using the weight

coefficients and zero as the cut-off value, both of which were fully

specified by the NCI training data set. (Information S1, Survival

analysis in detail).

This study was conducted according to the principles of the

Declaration of Helsinki, and it was approved by the institutional

review boards of the National Cancer Center and the Institute of

Medical Science, University of Tokyo.

Results

Construction of EGF-response SSM in cells stimulated
with EGF

To identify EGF-regulated genes in general, human primary

small airway epithelial cells (SAECs), which are cultured normal

lung epithelial cells (Figure S3 and Information S1, Results,

Profiles of human primary SAECs), were used. SAECs were

stimulated with EGF in the presence or absence of gefitinib, and

RNAs were extracted at 19 time points in a 48-hour time course,

corresponding to 2 rounds of cell cycles (Fig. 1A). Gene expression

profiling was then performed by DNA microarray. Genes that

have the potential to be regulated by EGF were then selected for

SSM analysis. Since the number of genes needs to be reduced for

efficient computation, 1,500 candidate genes were selected, as

described above.

The ‘‘EGF-response SSM’’ was then constructed using the

expression levels of the 1,500 individual genes in EGF-treated cells

throughout the entire time course. It was assumed that expression

levels of all 1,500 genes involved in EGF signaling at one time

point affect expression levels of each gene at the next time point

[15]. Expression levels of each gene among the 1,500 genes in cells

stimulated with EGF at succeeding time points are thus

predictable using the observed expression levels of the 1,500

genes at the preceding time points. In other words, the EGF-

response SSM allowed prediction of expression patterns of the

1,500 genes in EGF-treated cells.

Selection of gefitinib-sensitive genes by SSM analysis
Of the 1,500 genes, successfully modeled genes, those for which

there was little difference between predicted and observed

expression patterns in EGF-treated cells, were selected first. From

the successfully modeled genes in EGF-treated cells, genes for

which expression patterns were not well predicted in EGF+gefi-

tinib-treated cells were then selected. The selected genes were then

designated as gefitinib-sensitive genes.

At first, expression levels of each gene at any time point were

predicted based on the observed expression levels of the 1,500

genes at the preceding time points in the EGF-treated cells using

the EGF-response SSM (Fig. 1B, Blue arrows indicate the

observed points used for calculation [tail] and the predicted points

[head], respectively). More than half of the 1,500 genes showed

small prediction error and were selected as successfully modeled

genes in EGF-treated cells (Fig. 1B). Gefitinib-sensitive genes were

then identified from this subset. Expression levels of each gene at

succeeding time points were predicted based on the observed

expression levels in EGF+gefitinib-treated cells at the preceding

time points using the EGF-response SSM (Fig. 1C, left panel; Blue

arrows indicate the observed points used for calculation (tail) and

the predicted points (head), respectively). Using this strategy, 277

genes were selected as gefitinib-sensitive genes (Fig. 1C, left panel).

These genes showed large differences (large prediction errors)

between the predicted and observed expression patterns. As a

control, 431 genes were selected as gefitinib-insensitive genes

(Fig. 1C, right panel).

Time-dependent expression patterns of either gefitinib-sensitive

or gefitinib -insensitive genes are depicted in Figure 1D and 1E.

The EGF-response SSM correctly predicted expression patterns of

both ADCY6 and MEF2A genes in EGF-treated cells and that of

MEF2A in EGF+gefitinib-treated cells, but not that of ADCY6 in

EGF+gefitinib-treated cells.

Risk scoring model based on gefitinib-sensitive genes as
predictors of the prognosis of lung adenocarcinoma
cases

The gene expression profiles of a total of 439 lung adenocar-

cinoma tissues derived from the NCI consortium project were used

[18]. These data provided independent training and validation

data sets derived from lung adenocarcinoma samples collected and

analyzed in 5 different institutions and hospitals (Clinicopatholog-

ical characteristics are shown in Table S2).

Figure 2. Validation procedures. Validation procedures of the final
risk scoring model using the 139 genes.
doi:10.1371/journal.pone.0043923.g002

Prognostic Genes for Stage I Lung Adenocarcinoma
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A risk scoring model for overall survival (OS) was constructed

based on the 277 gefitinib-sensitive genes using the training data set

of 253 stage I-III lung adenocarcinomas, as previously done [18]

(Training set in Table S2). The partial Cox regression method was

used to avoid overfitting when handling more genes than the

number of samples [19]. A weight coefficient, representing the

contribution level to prognosis, was determined for each gene using

the NCI training data set. A larger number means a stronger effect,

and positive and negative numbers mean bad and good effects on

prognosis, respectively. Then, we simply removed genes with small

absolute values of the weight coefficients from the 277 genes, since

they are not evidently contributing to prognosis. For the above

selection, we set a single threshold value (5.0E-5) for the absolute

values of the weight coefficients of the 277 genes. We simply

removed 138 genes with small absolute values of the weight

coeffients (,,5.0E-5). As a result, we removed a half of the genes (138

genes) and 139 genes are remained. A risk scoring model was then

reconstructed based on the remaining 139 genes as the final

prognostic model using the same training data set (the 139 genes are

in Table 1). (The weight coefficients of the 139 genes and the gene

names of the 277 and 431 genes are in Table S1 saved in an Excel

file. Risk scores in the training data set are in Table S3). The final

prognostic model based on the 139 genes was tested for effectiveness

on the independent validation data sets using the weight coefficients

and zero as the cut-off value, both of which were determined by the

training data set as described above (Fig. 2) First, the 186 remaining

Figure 3. The power of survival prediction for the NCI validation data sets and the Duke data set using the 139 genes. Kaplan-Meier
plot survival estimates are depicted for high- (red line) and low- (black line) risk groups by analyzing the NCI validation data sets containing two data
sets designated as MSK and CAN/DF (A), and the Duke data set (B). P-values were obtained with the use of the log-rank test. Numbers in parentheses
represent the number of patients that were segregated.
doi:10.1371/journal.pone.0043923.g003

Prognostic Genes for Stage I Lung Adenocarcinoma
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subjects from the NCI consortium project, i.e., a combined data set

of Memorial Sloan-Kettering Cancer Center [MSK] and Dana-

Faber Cancer Institute [CAN/DF] data sets (Clinicopathological

characteristics of NCI sets are shown in Table S2) were used. The

model based on the 139 genes correctly classified the stage I-III lung

adenocarcinoma cases based on the log-rank test (Fig. 3A). In the

Cox proportional hazard model, high-risk group cases showed a

significantly shorter OS than did low-risk group cases (HR, 2.91;

95% confidence interval [CI], 1.75–5.04), P = 2.561025) (Table 2).

The model also enabled prediction of the prognosis of stage I, IA,

and IB cases (Fig. 3A and Table 2). Next, the cases were divided into

two independent data sets, MSK and CAN/DF, representing

different institutions where samples were collected, as analyzed in

the previous report [18]. The model enabled prediction of stage I-

III, as well as stage I, patients (Figure S4A, S4B). The area under the

curve (AUC) for each group also revealed the predictive value of the

risk scoring model based on the 139 genes (MSK, stage IA

AUC = 0.829, CAN/DF, stage IA AUC = 0.944; MSK, stage IB

AUC = 0.813, CAN/DF, stage IB AUC = 0.574). (The risk scores in

the MSK test set are in Table S4 and those in the CAN/DF test set

are in Table S5).

The final risk scoring model was also validated using the

publicly available Duke cohort [20]. The publicly available Duke

cohort is comprised of 111 NSCLC cases, including 67 stage I

cases (Clinicopathological characteristics are shown in Table S2).

The risk scoring model based on the 139 genes enabled prediction

of the prognosis of stage I-III, as well as stage I NSCLC, cases

(Fig. 3B). In the Cox proportional hazard model, high-risk group

cases showed a significantly or marginally significantly shorter OS

than low-risk group cases in stage I-III and stage I cases,

Table 2. Hazard ratios for overall survival (OS).

Multivariate

Data set Case (n) Variable HR 95% CI P

NCI (MSK/CAN/DF)

Stage I-III (186) Age 1.03 1.00 – 1.06 0.028

Sex (Male/Female) 1.54 0.96 – 2.46 0.072

Stage (II/I) 2.45 1.43 – 4.15 0.0012

Stage (III/I) 5.07 2.66 – 9.30 4.67E–06

139 gene risk score (High risk/low risk) 2.91 1.75 – 5.04 2.45E–05

Stage I (119) Age 1.05 1.01 – 1.09 0.0062

Sex (Male/Female) 1.06 0.51 – 2.18 0.88

Stage (IB/IA) 1.61 0.73 – 4.06 0.25

139 gene risk score (High risk/low risk) 3.56 1.63 – 8.60 0.0011

Stage IA (38) Age 1.00 0.94 – 1.07 0.91

Sex (Male/Female) 0.31 0.02 – 1.96 0.24

139 gene risk score (High risk/low risk) 7.16 1.20 – 136.06 0.029

Stage IB (81) Age 1.08 1.03 – 1.13 0.0010

Sex (Male/Female) 1.56 0.66 – 3.76 0.31

139 gene risk score (High risk/low risk) 3.26 1.37 – 8.63 0.0072

DUKE

Stage I-III (111) Age 1.00 0.98 – 1.03 0.80

Sex (Male/Female) 1.05 0.61 – 1.86 0.86

Stage (II/I) 1.57 0.74 – 3.11 0.23

Stage (III/I) 3.36 1.74 – 6.31 0.00050

Stage (IV/I) 1.29 0.21 – 4.45 0.74

139 gene risk score (High risk/low risk) 1.99 1.17 – 3.44 0.011

Stage I (67) Age 0.99 0.96 – 1.03 0.74

Sex (Male/Female) 1.01 0.49 – 2.18 0.97

139 gene risk score (High risk/low risk) 1.97 0.94 – 4.24 0.073

NCC-Tokyo

Stage I (156) Age 1.02 0.95 – 1.11 0.59

Sex (Male/Female) 0.71 0.25 – 2.07 0.52

Surgery Extent (segmentectomy/lobectomy) 0.00 0.00 – . 0.69

Tumor size (.2cm/#2cm) 0.52 0.13 – 2.26 0.37

Stage (IB/IA) 1.27 0.38 – 4.31 0.69

139 gene risk score (High risk/low risk) 8.20 2.25 – 31.28 1.80E–03

HR, hazard ratio; CI, confidence interval.
doi:10.1371/journal.pone.0043923.t002

Prognostic Genes for Stage I Lung Adenocarcinoma
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respectively (Table 2). Due to the limited number of cases and the

lack of stage IA/IB information in a subset cases, predictive values

for stage IA and IB cases were not investigated.

Validation of the final risk scoring model based on 139
genes as predictor of prognosis of stage I cases
excluding BAC histology in the NCC-Tokyo cohort

A limitation of the NCI data sets is that they include a

significant number of patients (34 patients) treated with adjuvant

therapy, which may modify prognosis [5]. The information about

adjuvant therapy is not available for the Duke data sets. It is

reported that subtypes of lung adenocarcinoma with BAC

histology have a better prognosis than other subtypes. Therefore,

another data set of the NCC-Tokyo cohort in which no patients

underwent adjuvant therapy and information of BAC histology is

available for every patient [21] was used. Information for

recurrence-free survival (RFS) is also available for the data set.

All 156 stage I lung adenocarcinoma cases were analyzed after

Figure 4. The power of survival prediction for NCC-Tokyo validation data sets using the 139 genes. (A) Kaplan-Meier plots of overall
survival (OS) and recurrence-free survival (RFS) estimates for the stage I NCC-Tokyo data set without BAC histology. (B) Kaplan-Meier plot OS
estimates for stage I patients in the NCC-Tokyo data set divided into EGFR mutation (+) or (2) group.
doi:10.1371/journal.pone.0043923.g004

Table 3. Hazard ratios for relapse-free survival (RFS).

Multivariate

Data set Case (n) Variable HR 95% CI P

NCC-Tokyo

Stage I (156) Age 1.01 0.96 – 1.07 0.74

Sex (Male/Female) 0.98 0.49 – 2.03 0.96

Surgery Extent (segmentectomy/lobectomy) 0.00 0.00 – . 0.48

Tumor size (.2cm/#2cm) 1.11 0.43 – 3.23 0.83

Stage (IB/IA) 2.10 0.98 – 4.65 0.06

139 gene risk score (High risk/low risk) 3.06 1.24 – 7.09 1.62E–02

HR, hazard ratio; CI, confidence interval.
doi:10.1371/journal.pone.0043923.t003
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excluding 6 cases with BAC histology in the data set (Clinico-

pathological characteristics are shown in Table S2, and details of

patient selection are described in Figure S5 and Information S1,

NCC-Tokyo cohort). The risk scoring model that was prospec-

tively determined based on the 139 genes identified was applied to

the cohort set. The log-rank and Cox proportional hazard tests

revealed that the model enabled prediction of prognosis of OS and

RFS stage I lung adenocarcinoma cases without BAC histology

(Fig. 4A, Tables 2 and 3). (The risk scores in the NCC-Tokyo test

set are in Table S6.

Validation of the risk scoring model based on 139 genes
in a separated group of the NCC-Tokyo cohort including
162 stage I cases with or without EGFR mutation

Given that the 139 genes are gefitinib-sensitive genes, it would

be interesting to examine whether the risk scoring model based on

the 139 genes classifies the levels of aggressiveness of tumors that

are highly dependent on EGF signaling. Since the majority of

tumors with activating EGFR gene mutations is sensitive to

gefitinib, these tumors are highly dependent on EGF signaling

[22]. Since all of the 156 stage I NCC-Tokyo cohort patients were

informative for EGFR mutation status, survival analysis was

performed after dividing stage I samples according to EGFR

mutations. The model enabled prediction of the outcomes both of

patients with and without EGFR mutations significantly or with a

marginal significance (Fig. 4B). Therefore, the 139 genes can

predict the aggressiveness of lung adenocarcinomas irrespective of

EGFR mutations.

Discussion

In the present study, to the best of our knowledge, SSM was

used for the first time to analyze growth factor signaling. This

strategy allowed the identification of critical prognostic genes for

stage I lung adenocarcinoma patients.

Many molecules encoded by the 139 genes, such as vascular

endothelial growth factor A (VEGFA), a known molecular target

[23] (Table 1), are known to play roles in tumor aggressiveness.

IPA analysis showed that molecules encoded by the 139 genes

play roles in multiple signaling pathways that may affect

properties of cancer cells: RTK signaling, chemokine/cytokine

signaling, integrin/actin cytoskeleton signaling, G-protein signal-

ing, stemness, and so forth (Table 4, Table S7. Methods are

described in Information S1, IPA to identify overlapping

pathways with the 139 genes). The molecules encoded by the

139 genes were compared with the 5-gene signature that

consisted of DUSP6, MMD, STAT1, ERBB3, and LCK [11].

The 139 molecules include DUSP1, DUSP4, and DUSP5, the

same family of proteins with DUSP6, LIF, an activator of

STAT1, and HBEGF, a ligand for ERBB3 heterodimer. This

indicates that at least 3 molecules in the 5-gene signature are

involved in similar signaling pathways in which the 139

molecules are involved, though it is not likely that the 5-gene

signature is able to predict the prognosis of stage IA cases. It

Table 4. Potential cross-talk among pathways encoded by the 139 genes.

Signaling Category Pathway Name*

RTK signaling Insulin-like growth factor (IGF)-1 Signaling, VEGF Signaling

Ephrin Receptor Signaling

Tumorigenesis Hypoxia-inducible factor (HIF)-1a Signaling

p53 signaling, Leukocyte Extravasation Signaling

MAPK signaling Stress-activated protein kinase (SAPK)/Jun amino-terminal kinase

(JNK) Signaling, ERK Signaling, p38 MAPK Signaling

Chemokine/cytokine signaling C-X-C chemokine receptor type 4 (CXCR-4) Signaling

Interleukin (IL)-8 Signaling,

C-C chemokine receptor type 3 (CCR3) Signaling

IL-17 Signaling, IL-1 Signaling, Oncostatin M Signaling

Integrin/ actin/ cytoskeleton Integrin Signaling, Actin Cytoskeleton Signaling

signaling Focal adhesion kinase (FAK) signaling, Tight Junction Signaling

Nuclear Receptor Signaling Retinoic acid receptor (RAR) Activation

Vitamin D Receptor (VDR) Activation

Aryl Hydrocarbon Receptor Signaling

Endocytosis Clathrin-mediated Endocytosis Signaling

G protein signaling G Beta Gamma Signaling

Stemness Role of NANOG in Mammalian Embryonic Stem Cell Pluripotency

Human Embryonic Stem Cell Pluripotency

Others Protein Kinase A Signaling, PTEN Signaling, JAK/Stat siganling

cAMP response element binding protein (CREB) Signaling

Phospholipase C (PLC) Signaling, Wnt/b-catenin Signaling

Role of Nuclear factor of activated T-cells (NFAT) in Regulation of the

Immune Response

*Representative pathways derived from the IPA analysis are listed.
doi:10.1371/journal.pone.0043923.t004
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would be possible to reduce the number of genes by selecting the

most significant genes to develop a quantitative real time-

polymerase chain reaction (PCR)-based diagnostic kit.

Because exact gene expression patterns were examined in EGF-

treated cells over multiple points for 48 h, a relatively long time

course, it was possible to detect genes that had altered expression

levels by gefitinib-treatment not only at early time points but also

at later time points. An example is shown in Figure 1D (compare

observed expression levels in EGF-treated cells [left] and in

EGF+gefitinib-treated cells [right]). Moreover, this method

allowed identification of some gefitinib-sensitive genes, irrespective

of different levels in observed gene expression between EGF-

treated cells and EGF+gefitinib-treated cells, if the predicted

expression patterns of the genes in the EGF response SSM are

under the strong influence of other genes that showed altered

expression levels in EGF+gefitinib-treated cells.

It is thus reasonable to speculate that we were able to detect

indirectly regulated genes through activation of other signaling

pathways after the first wave of direct activation of EGF signaling

pathways. This seems to be important for identifying key genes

that affect tumor aggressiveness in general. Indeed, the risk scoring

model based on the 139 genes enabled identification of high- and

low-risk groups irrespective of gefitinib-sensitive EGFR mutation

status in lung adenocarcinoma tissues. The fact that the model

enabled prognosis prediction even without the EGFR mutation

further confirms that the 139 genes reflect tumor aggressiveness in

general.

Each of the 139 genes has a specific weight coefficient that

represents contribution levels for prognosis. Seventy genes, half of

the 139 genes, have positive weight coefficients, and 69 genes,

the other half of the 139 genes, have negative weight coefficients

(Table S1). This indicates that our signature represents either a

worse or better prognosis. It is well known that EGF signaling

not only activates pathways for positively regulating tumorigen-

esis, but it also activates many negative regulators [17]. The

levels of imbalance of activation status between the positive and

negative pathways might represent cancer status, in other words,

prognosis.

In contrast, when the prognostic ability of the 431 gefitinib-

insensitive genes was examined, they did not have prognostic

value (Information S1, Results, Comparison of the risk scoring

model based on the gefitinib-sensitive genes and gefitinib-

insensitive genes, Figure S6). As a comparison, the prognostic

value of several sets of genes that were conventionally selected

based on more than 2-fold differences in expression levels

between EGF- and EGF+gefitinib-treated cells for 6 or 12 hours

was also examined. However, all gene sets failed to predict

prognosis in stage I patients from the MSK and CAN/DF data

sets (data not shown).

Recently, guidelines have been proposed to address problems in

studies seeking to develop prognostic gene signatures [5]. The

present study complied with these guidelines, including use of

validation and statistically significant improvement over standard

risk factors (clinical variables). In addition, the number of genes

used for risk score construction, 139, is small enough for a

diagnostic kit, as evidenced by the 70-gene signature kit that is

clinically used for breast cancer prognosis. It would be also

possible to reduce the number of genes to develop a quantitative

real time-polymerase chain reaction (PCR)-based diagnostic kit. It

is also necessary to re-construct a risk scoring model by optimizing

for the qRT-PCR test to predict RFS. We probably need to use a

training set that includes full data of recurrence. We continue to

collect more samples for analysis.

Supporting Information

Figure S1 Gene selection procedure.

(JPG)

Figure S2 The eight module pairs in the EGF-signaling
SSM. The time course changes in the expression levels of the 1,500

genes are classified into 8 expression patterns, called modules, that

include a group of genes showing similar expression patterns. The

most representative 100 genes for each module are shown. The

expression pattern of each gene is vertically arranged. Each module

is composed of two pairs of sub-modules that contain mirrored

images of time-course gene expression patterns. Green indicates low

expression compared to the average expression of each gene, and red

indicates high expression compared to the average. Based on the

assumption that genes belonging to the same module are under

similar regulatory mechanisms, genes in a module regulate genes in

every other module at each time point by the estimated regulation

coefficients that are defined for each module (the estimated

regulation coefficients are indicated as numbers on the red and blue

arrows indicating positive and negative regulations, respectively).

(JPG)

Figure S3 Profiles of human primary small airway
epithelial cells (SAECs). (A) Expression levels of the epidermal

growth factor receptor (EGFR) family members. Western blotting was

performed using specific antibodies, as indicated on the right. (B)

Phosphorylation of EGFR, Akt, and ERK, upon stimulation with

EGF, in various lung cancer cell lines and SAEC. After starvation for

24 h at 37uC, the cells were stimulated with EGF (100 ng/mL) for

5 min at 37uC. Western blotting was performed using specific

antibodies, as indicated on the right. ‘‘P’’ indicates ‘‘phosphorylated.’’

(C) Cell growth inhibition by gefitinib in a dose-dependent manner.

Cell numbers were determined using a CellTiter 96H after incubation

at 37uC for 72 h with a growth medium containing gefitinib. The

results represent the means 6 S.D. of several independent experiments.

(JPG)

Figure S4 Kaplan-Meier plot survival estimates.

(JPG)

Figure S5 Selection of eligible cases of the NCC-Tokyo
cohort consisting of 156 stage I lung adenocarcinoma
patients without BAC histology and adjuvant therapy (22).

(JPG)

Figure S6 Comparison of the risk scoring model based
on the gefitinib-sensitive genes and gefitinib-insensitive
genes. A risk scoring model based on the 431 geftinib-insensitive

gene signature was constructed. The prognostic ability of the two

models: the 277 gefitinib-sensitive gene signature and 431 gefitinib-

insensitive gene signature by using the two validation test sets are

presented. The 277-gene signature was useful for predicting the

survival of patients at all stages in both validation data sets and for

the stage I MSK data set (P,0.05, as indicated in red in

Figure S6A–C), except for the stage I CAN/DF data set

(P = 0.081 in Figure S6D). Conversely, it was not possible to predict

the survival for any stage at all when the 431 gefitinib-insensitive

gene signature was used (high P-values, P.0.1 in Figure S6E–H).

(JPG)

Table S1 1,500 genes with integrated P-values calculated
by using the SSM and the probe ID on the Affymetrix U133A.

(XLS)

Table S2 Clinicopathological characteristics of non-small
cell lung cancer (NSCLC) subjected to prognosis analysis.

(XLS)
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Table S3 Risk scores in the training data set for the 139
genes for survival prediction.

(XLS)

Table S4 Risk scores in the MSK test set of stage I
disease for the 139 genes for survival prediction.

(XLS)

Table S5 Risk scores in the CAN/DF test set of stage I
disease for the 139 genes for survival prediction.

(XLS)

Table S6 Risk scores in National Cancer Center
Hospital test set of stage I disease for the 139 genes
for survival prediction.
(TXT)

Table S7 Ingenuity pathway analysis to identify over-
lapping pathways with the 139 genes.

(XLS)

Information S1 Supporting information.
(DOC)
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