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Epigenetic aging signatures in mice livers
are slowed by dwarfism, calorie restriction
and rapamycin treatment
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Abstract

Background: Global but predictable changes impact the DNA methylome as we age, acting as a type of molecular
clock. This clock can be hastened by conditions that decrease lifespan, raising the question of whether it can also
be slowed, for example, by conditions that increase lifespan. Mice are particularly appealing organisms for studies of
mammalian aging; however, epigenetic clocks have thus far been formulated only in humans.

Results: We first examined whether mice and humans experience similar patterns of change in the methylome with
age. We found moderate conservation of CpG sites for which methylation is altered with age, with both species
showing an increase in methylome disorder during aging. Based on this analysis, we formulated an epigenetic-aging
model in mice using the liver methylomes of 107 mice from 0.2 to 26.0 months old. To examine whether epigenetic
aging signatures are slowed by longevity-promoting interventions, we analyzed 28 additional methylomes from mice
subjected to lifespan-extending conditions, including Prop1df/df dwarfism, calorie restriction or dietary rapamycin. We
found that mice treated with these lifespan-extending interventions were significantly younger in epigenetic age than
their untreated, wild-type age-matched controls.

Conclusions: This study shows that lifespan-extending conditions can slow molecular changes associated with an
epigenetic clock in mice livers.
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Background
In humans, numerous CpG sites have DNA methylation
states that correlate with age. These associations have
been used to formulate models, called epigenetic clocks,
that make quantitative predictions of age based on se-
lected sets of CpG sites [1–3]. These models are derived
from the methylation profile of many individuals mea-
sured using oligonucleotide arrays, such as the Illumina
450 K platform, which determines the methylation value
at >450,000 CpG sites genome-wide. Although the age
predictions of these molecular models are generally very
accurate across the human population, for particular
individuals the prediction can be markedly different

from the actual chronological age. For example, an
advanced molecular age relative to chronological age has
been associated with a number of diseases, such as obes-
ity, viral infection and Down syndrome [4–6]. Further-
more, a recent retrospective analysis of longitudinal
cohort studies showed that a molecular age advance-
ment of 5 years corresponded to a 21% increased risk of
mortality overall [7]. Thus, predictions of “epigenetic
age” may be an indication of an individual’s biological
state of aging.
Beyond these examples of advanced epigenetic aging, a

complementary but unanswered question is whether
epigenetic clocks can also be slowed. Epigenetic aging
studies in humans have not thus far been well suited to
address questions of slowed aging, given the lack of
well-documented interventions that enhance health or
lifespan and the difficulty of controlling for confounding
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factors. However, rodents are particularly appealing
experimental organisms in studies of mammalian aging,
because they are genetically tractable and can be sub-
jected to potential lifespan-extending interventions. The
earliest described such intervention, calorie restriction,
was shown to extend rodent lifespan by as much as 2-
fold [8]. These findings have since been replicated in
numerous mouse strains [9]. Another well-studied
lifespan-extending condition is a single-point mutation
in the Prop1 gene that results in dwarfism and lifespan
extension up to 1.5-fold [10]. These effects are likely due
to reduced somatotropic signaling [11]. A more recently
described treatment, dietary rapamycin, has been re-
ported to increase the lifespan of genetically heteroge-
neous mice by 1.2-fold [12].
Despite these known lifespan-extending interventions,

an epigenetic clock has not yet been formulated for
mice. Nonetheless, mouse methylation signatures can
now be analyzed genome-wide using either reduced
representation bisulfite sequencing (RRBS) or whole
genome bisulfite sequencing (WGBS) [13]. Using such
data, previous studies have suggested that mice might
experience patterns of epigenetic aging similar to those
documented in humans [14–16]. For instance, CpG
methylation sites distinguish young versus old mouse
hematopoietic stem cells [17], and CpG methylations al-
tered in murine acute myeloid leukemia are also found
to change with age [18]. These findings suggest that an
epigenetic measure of age is plausible for mice.
Here, we ask if conditions that extend mouse lifespan –

Prop1df/df dwarfism, calorie restriction and dietary rapa-
mycin – also affect a mouse epigenetic clock. While such
a link seems plausible, an alternative possibility is that
these lifespan-extending conditions might operate inde-
pendently of the changes that underlie an epigenetic clock,
which would then proceed at a normal rate despite inter-
vention. To distinguish between these possibilities, we first
assess whether there are similarities between mouse and
human epigenetic aging. We then formulate epigenetic
readouts of age to score the effect of lifespan-extending
interventions.

Results
Age-related methylation changes share common behavior
in mouse and human
First, we assessed the similarities of age-related methy-
lome changes between mice and humans. For this pur-
pose, we obtained publicly available mouse methylation
data from Reizel et al. [19] consisting of RRBS from
livers of 102 male or female C57BL/6 mice ranging in
age from 0.2 to 7.1 months. These data were filtered to
identify sites that were reliably measured with sufficient
sequencing depth in most mice (see “Methods”), yielding

36,094 CpG sites total, of which 27,612 CpG sites were
conserved in humans.

Next, we obtained publicly available methylation data
from 164 human livers that were generated using 450 K
Illumina methylation arrays [4, 20]. We identified 2634
CpG sites that were assayed in the human Illumina arrays
that were orthologous to those from the set of filtered
sites from mouse RRBS (Fig. 1a). From this orthologous-
profiled space, we identified 88 age-associated sites in
mice (for which the methylation status had a significant
association with age) and 176 age-associated sites in
humans (Fig. 1a, likelihood ratio test at 1% false discovery
rate (FDR), see “Methods”). Among these, we saw slight
but significant overlap between sites that were age-
associated in mice versus sites that were age-associated in
humans (Fig. 1a) (p < 0.01 by hypergeometric test).
Notably, the age-associated sites in both species showed
similar under/over-enrichments in various genomic
annotations, including regions marked by histones
(H3K27me3, bivalent and H3K9ac), although different
genomic regions were associated with statistical signifi-
cance in mice and humans, with only H3K27ac regions
significantly under-enriched in both species (Additional
file 1: Figure S1). Thus, age-associated CpG sites in the
orthologous-profiled space appear to be slightly conserved
with respect to various genomic regions affected.
Previous methylation studies of whole blood in

humans have documented increasing entropy with age
[1, 5]. Increasing entropy indicates that, during aging,
the state of each CpG becomes less uniform across the
cell population [1]. We asked if this trend of increasing
disorder of age-associated CpG sites in the methylome
also exists in mice and human livers, regardless of
whether a particular site was sampled in both species.
We saw that, in both mice and humans, the age-
associated regions of the methylome tended toward
higher disorder (Fig. 1b, c). This finding suggests that a
trend toward disorder over time is a conserved property
of aging in mammals.

Development of an epigenetic clock in mice
Motivated by the shared patterns affecting the aging epi-
genome in mice and humans, we next formulated an epi-
genetic clock for mice. Toward this goal, we created a
consolidated mouse liver methylome dataset combining
two previous studies [19, 21] with data newly generated in
this study (Additional file 2: Datasets used summary). This
consolidated dataset consisted of 107 liver methylomes of
mice aged 0.2 to 26.0 months old (Additional file 1: Figure
S2A), covering 7628 CpG sites that were detected in
nearly all samples (“Methods”). Normalization with Com-
Bat [22, 23] was performed to estimate and remove effects
resulting from the different sequencing technologies
(RRBS and WGBS) and mouse strains (Ames, C57BL/6
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and UM-HET3) in this integrated dataset (“Methods”). To
train a predictive model of mouse age that can be used as
an epigenetic clock, we applied ElasticNet [24], a statistical
regression framework used previously to formulate epigen-
etic clocks in humans [1, 2]. This training process selected
a subset of 148 CpG sites for an epigenetic clock in mice
livers (Additional file 3). These sites were predominantly
located in intronic and intergenic regions and, in
particular, were significantly under-represented in pro-
moters and over-represented in enhancers (Additional
file 1: Figure S2B, p < 0.01 and p < 10-5 by Fisher’s
exact test, respectively).
We pursued two different strategies to assess predictive

performance. First, we performed 4-fold cross validation,
in which the 107 mice used for training were arbitrarily di-
vided into four sets of comparable sizes. Each of these sets
was withheld, in turn, from model training and instead
used to test the performance of the trained model. In this
cross-validation scenario, we found that the ages of the
test sets were accurately predicted with a correlation ran-
ging from 83% to 92% (average r = 0.91; Fig. 2a). Second,
we tested the performance of the model when predicting
age from the liver methylomes of 50 mice that had not
been used for model training or cross validation (spanning
three mouse strains and two ages, 2 and 22 months;
Additional file 2: Datasets used summary). Predicted epi-
genetic ages were well correlated with chronological ages

(Fig. 2b) and did not show any strain-specific effects: 2-
month-old Ames wild-type, UM-HET3 and C57BL/6 mice
had roughly the same epigenetic age; the same was true
for 22-month-old Ames wild-type and untreated UM-
HET3 mice, with an average prediction error of 4.2 months
(Additional file 1: Figure S2C, Additional file 4: Wild type
mice predictions & Wild type stats).

Lifespan extension slows epigenetic aging
We then assessed the behavior of these 148 CpG sites in
the WGBS data generated from mice subjected to vari-
ous lifespan-extending conditions. This analysis included
methylomes from Prop1df/df dwarf mice at 2- or 22-
months-old [10], with four in each group; four calorie-
restricted mice at 22-months-old; four rapamycin-
treated mice at 22-months-old [12], and the control
mice of the same genetic background described above.
First, we used principal component analysis (PCA) using
these CpG sites (Additional file 1: Figure S3A). The first
principal component of these features (PC1) correlated
strongly with age, and PC1 values of mice subjected to
lifespan-extending treatments were always lower than
PC1 values of age-matched controls (Fig. 3a, b; Additional
file 1: Figure S3A; Additional file 5). Next, we applied the
epigenetic-aging model to these mice (“Methods”; Add-
itional file 2: Datasets used summary; Additional file 4:
Long-lived mice predictions). We found that the predicted

a b

c

Fig. 1 Comparison of methylation aging in mice and human livers. a Mapping from mouse CpG sites profiled by reduced representation bisulfite
sequencing (RRBS) to orthologous CpG sites profiled by Illumina 450 K human methylation array. Detailed procedures can be found in “Methods.”
The Venn diagram describes the age-associated sites in the orthologous–profiled space. b, c Entropy across all age-associated sites in mouse (b)
and in humans (c) is plotted over age. Pearson’s correlation (r) is displayed (mouse p < 10−11, human p < 10−11). FDR false discovery rate
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epigenetic ages of these long-lived mice were significantly
less than those of age-matched control mice (Fig. 3c). Re-
inforcing this observation, such differences were also de-
tected by an ANOVA statistical analysis between the
lifespan-extending conditions versus control mice aged to
22 months (p < 10−4; “Methods”; Additional file 4: Treat-
ment vs wild type stats). In particular, an average reduc-
tion of 10.1 months was seen when comparing the
epigenetic ages of 22-month-old dwarf mice to 22-month-
old wild types (p < 0.01 by t-test, Fig. 3d). Similar reduc-
tions in epigenetic ages were observed in calorie-restricted
mice versus their age-matched controls, corresponding to
a 9.4-month decrease on average (p < 10−4, Fig. 3d). Rapa-
mycin treatment had a smaller, but significant effect on
epigenetic ages, corresponding to a 6.0-month decrease
on average in rapamycin-treated mice compared to age-
matched controls (p < 0.05, Fig. 3d). Finally, 2-month-old
dwarf mice also had reduced epigenetic ages compared to
2-month-old wild-type mice, by 1.5 months on average
(p < 10−3, Fig. 3d). These results are consistent with the
smaller magnitudes of age-associated PC1 of long-lived
mice, relative to their age-matched controls.
We then assessed the change in methylation with age

of the 148 CpG sites used to formulate this epigenetic
clock. Among these CpG sites, we found that 76 gained
methylation with age and 72 lost methylation with age.
These sites clustered the mice according to age and
treatment rather than by genetic background (Fig. 3e;
Additional file 1: Figure S3B). Among CpG sites whose
methylation decreased with age, we saw that long-lived
mice generally had higher methylation values than their
age-matched controls, which may have contributed
toward the observed decreases in epigenetic age (Fig. 3e).
Thus, whether examined individually (Fig. 3e) or

summarized along a single dimension (Fig. 3a, b),
changes in methylation due to aging are generally less
extreme in mice exposed to pro-longevity conditions,
leading to younger epigenetic ages (Fig. 3c, d).

Discussion
Previous studies in humans have shown that epigenetic
clocks can be accelerated by conditions associated with
decreased lifespan [4–6]. However, it was unclear if these
epigenetic clocks could be slowed by conditions that
increase lifespan. Here, we have found that lifespan-
extending interventions can indeed slow an epigenetic
clock in mice livers. Previous studies of these longevity-
promoting interventions have shown that these interven-
tions not only extend lifespan [9, 10, 25], but also improve
tissue and physical functioning with age [26–29]. Interest-
ingly, rapamycin had a smaller effect than the other
treatments considered here, possibly due to metabolic dif-
ferences, such as increased insulin resistance under rapa-
mycin treatment [30]. Nonetheless, our findings suggest
that epigenetic clocks, measured from DNA methylation,
can be slowed by lifespan-extending conditions.
Notably, we found that dwarf mice had a decreased epi-

genetic age at our earliest time point, when just 2 months
old (Fig. 3c,d). This finding suggests that age-related
changes in the methylome occur during both development
and aging [31–34]. Prominent changes in the DNA
methylome have been observed during development in
mice and continue gradually throughout adulthood
[33]. In humans, epigenetic clocks are accurate in both
adolescents and adults [2]. Thus, the decrease in epi-
genetic age of young dwarf mice is consistent with their
apparent developmental delay [11].
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Comparing this epigenetic clock to those in humans,
we observed a prediction error of 4.2 months (~16%
relative to the average mouse lifespan), whereas that for
human clocks was 3.7 years [1, 2] (~5% relative to the
average human lifespan). This difference in accuracy is
likely due to two major technical differences. The first is
that there are fewer samples available in mice than there
are for humans. Second, the methylation profiles from
mice represent a random sampling of genomic regions
(RRBS and WGBS), whereas those from humans derive
from microarrays, in which a consistent set of sites is
reproducibly measured. However, when comparing age-
related methylation changes between mice and humans,
we found that the age-associated methylome exhibits in-
creased disorder in both species (Fig. 1b, c). These results
suggest that, regardless of the specific regions impacted,
the increased disorder of the age-associated methylome is
a common feature of mammalian aging. This increased
disorder of the age-associated methylome may contribute
to our ability to formulate epigenetic clocks in both spe-
cies [1–3, 35].
Finally, since this mouse clock was developed using

liver methylomes, in future studies it will be very inter-
esting to examine whether these clocks are similar
across various tissues. Intriguingly, previous studies in
humans have found that obesity is specifically associated
with epigenetic age advancement in the liver but not in
other tissues such as blood [4]. Furthermore, rapamycin
treatment has been shown to accelerate cataract forma-
tion in eyes and increase testicular degeneration, but
delays age-related phenotypes in other tissues [29]. A
key question will be whether these same tissue-specific
effects are reflected in epigenetic aging rates, in which
some tissues may reflect slowed aging while others
reflect accelerated aging.

Conclusions
We have formulated an epigenetic-aging model in mice
and used it to find evidence that lifespan-extending condi-
tions slow an epigenetic clock in mice livers. To further
understand whether lifespan-extending conditions promote

more youthful epigenetic signatures globally, it will be of
interest to study different tissues, as well as profile mice
exposed to other lifespan-extending conditions, such as
methionine restriction or other mutations in somatotropic
signaling pathways [26]. Ultimately, such studies will help
elucidate the relationship between the slowed epigenetic
clock and healthy aging.

Methods
Long-lived mice
To study the effects of dwarfism, we studied 2- or 22-
month-old male Ames Prop1df/df dwarf and wild-type
mice livers [10], with four mice in each group. Mice
were maintained under controlled conditions at the
University of North Dakota (Grand Forks, ND, USA)
with access to food ad libitum. To study the effects of
calorie restriction and rapamycin treatment, we used fe-
male UM-HET3 mice livers aged to 22 months, where
mice were subjected to calorie restriction (60% of food
consumption relative to age-matched controls, gradually
reduced over 2 weeks), subjected to 42 mg/kg dietary
rapamycin treatment from 4 to 22 months, or left un-
treated, with four mice in each group. We also obtained
livers from female untreated UM-HET3 mice aged to
2 months [12]. UM-HET3 mice were maintained at the
University of Michigan (Ann Arbor, MI, USA). The
weights of these mice are described in Additional file 6.

WGBS library preparation
DNA was isolated from mice livers using the DNeasy
blood and tissue kit (Qiagen, Germantown, MD, USA).
WGBS was carried out by the Beijing Genomics Institute
(Shenzhen, China) following standard protocols [36].
Briefly, DNA was fragmented using sonication to an aver-
age fragment size of 100–300 bp, end-repaired, and ligated
to methylated-sequencing adapters to generate sequencing
libraries. Bisulfite conversion was performed on these se-
quencing libraries using the ZYMO EZ DNA Methylation-
Gold kit (Irvine, CA, USA) and sequenced using 90 bp
paired-end sequencing on an Illumina HiSeq-4000 (San
Diego, CA, USA). Ames mice were sequenced to an

(See figure on previous page.)
Fig. 3 Effects of lifespan extension on a mouse epigenetic clock. a, b The 148 CpG sites used in the mouse epigenetic-aging model (used for a
mouse epigenetic clock) were subjected to principal component analysis. Principal component 1 is plotted for wild-type mice according to age
and lifespan extension status, for wild-type Ames or dwarf mice (a) or wild-type UM-HET3, rapamycin-treated or calorie-restricted mice (b). c The
mouse epigenetic-aging model applied to long-lived mice, with colors and shapes representing the different lifespan-enhancing conditions. The
gray markers are the wild-type mice (identical to Fig. 2b), and the black line represents the linear fit of the epigenetic age versus chronological
age of the wild-type mice. The green line represents the linear fit of the epigenetic age versus chronological age for long-lived mice. The gray
dashed line represents the diagonal. d The residual (epigenetic age minus chronological age) is plotted for all mice according to their strain and
treatment, and colors represent 2 or 22 months of age. p-values were calculated by comparing ages of long-lived mice to age-matched controls of the
same genetic background using a t-test. *p < 0.05; **p < 0.01. e Hierarchical clustering of the top 20 most variable sites used by this epigenetic clock
using average linkage with Euclidean distance. Treatment is depicted under the dendrogram, CpG sites are to the right of the heatmap
(chromosome:start, 0-based) and rows are blocked according to clusters of sites that increase or decrease methylation with age.
m Months, R Rapamycin treatment, C, CR Calorie restriction, D Ames Dwarf, W wild-type Ames or untreated, wild-type UM-HET3
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expected 15× coverage; UM-HET3 mice were sequenced
to an expected 5× coverage.

Data processing
For the WGBS study in long-lived mice, sequencing
reads were trimmed using Trim Galore [37] and aligned
to a bisulfite-converted mouse genome (mm9) obtained
from UCSC [38] using bowtie [39]. Methylation states
were called using bismark v0.10.0 [40]. The resulting
sites were then converted to mm10 coordinates using
liftOver [38] with default parameters.
In addition to the above data, public bisulfite sequencing

data were downloaded from GEO [41] or the Sequence
Read Archive (SRA) (accession numbers: [GEO: GSE6
0012] [19], [GEO: GSE52266] [42], [GEO: GSE67507] [43]
and [SRA344045] [21]). Sequencing reads were trimmed
using Trim Galore [37] with default parameters, aligned to
bisulfite-converted Ensembl mmGRC38 version 84 [44]
using bowtie2 [45] with parameters –N 1, and the methyla-
tion states were determined using Bismark v0.14.3 [40].
When multiple sequencing runs were associated with a
single sample, the methylation states for each CpG were
collapsed by summing the reads.
Human 450 K liver data were downloaded from GEO

(accession numbers: [GEO: GSE61258] and [GEO: GSE
48325]), corresponding to Horvath et al. [4] and Ahrens
et al. [20] datasets. The data were processed in R using
Minfi [46]. Missing data were imputed using impute
package in R [47]. The data were then beta-mixture
quantile normalized [48] using a gold reference distribu-
tion following the procedure provided by Horvath [2].
The gold reference distribution was set to the mean
probe values from [GEO: GSE61258].

Evolutionary trends
To compare mice with humans, we wanted to maximize
the number of mouse CpG markers that we could com-
pare reliably across species. For this reason, we limited
our analysis to RRBS datasets obtained from GEO.
Specifically, we filtered Reizel et al. [19] with Cannon et
al. [42] and Orozco et al. [43] to identify reproducible
CpG sites. Sites were filtered according to the following
criteria: ≥5 reads, <20% missing data across mice from
all three studies, and distinct mapping onto chromo-
somes 1–19. We then removed individual mouse sam-
ples missing >40% of these sites. These filtering steps
resulted in 97 samples profiled across 36,094 sites in
Reizel et al. [19]. Missing data were imputed using the
mean methylation value for that site.
To define a commonly–profiled set of orthologous

CpG sites, we mapped the 36,094 sites profiled in mm10
to hg19 coordinates using liftOver [38], with -minMatch
= 0.1. The resulting coordinates were intersected with
the Illumina 450 K probes, as defined by their locations

from the Illumina manifest (bedtools intersectbed [49]).
Any mouse sites that mapped to the same human site
were combined by taking the average value of these
sites.
Annotation tracks were downloaded from Encode for

human hepatocytes from UCSC [50]. The following data
tracks were downloaded: DNASE-seq, H3K36me3, H3
K4me1, H3K27ac, H3K9ac, H3K4me3 and H3K27me3.
Enhancer regions were defined as the intersected regions
between H3K27ac and H3K4me1. Bivalent regions were
defined as the intersected regions between H3K4me3 and
H3K27me3. Repeat elements were downloaded from
UCSC for hg19 [51]. CpG sites were mapped to each
feature by intersecting the site coordinates with each
annotation using bedtools intersectbed. Annotations for
transcription start site (TSS), 5′ untranslated region
(UTR), body, exons, shelf, island and shore were defined
by the Illumina 450 K manifest. Promoters were defined
as CpG sites with TSS annotations. Similarly for mice, an-
notation tracks were downloaded from UCSC for the
same marks from adult male mice liver. Gene features for
mice were also downloaded from UCSC for mm10 or
mm9 [51]. Coordinates for mm9 were translated to mm10
using liftOver (default parameters) and assigned to sites
using bedtools intersectbed. Promoters in mice were de-
fined as 2 kb upstream of protein-coding genes. We only
considered annotations that fell within the orthologous-
profiled set of CpGs. These annotations were used as
genomic regions.
Odds ratios (ORs) were calculated by counting ortholo-

gous CpG sites annotated to different genomic regions and
assessing whether they were age-associated or not age-
associated. This formed a 2-by-2 contingency table for each
genomic region, so we could assess whether age-associated
sites were under-represented or over-represented in that
particular genomic region. This process was repeated for
each genomic region separately in both human and mouse.
When there were overlapping genomic region annotations
for sites, sites were counted only for the genomic re-
gion considered so that sites were not counted twice.
Over-represented genomic regions were those with an
OR > 1 and under-represented genomic regions were
those with an OR < 1. p-values were calculated using
Fisher’s exact test.
To identify age-associated sites, we built a multivariate

linear model regressing each methylation site against
treatment, gender and age in mice, or against body mass
index, gender and age in humans. Then, we conducted a
drop-one F-test to determine if age had a significant as-
sociation with that site. For comparisons in the
orthologous-profiled space between mice and humans,
we conducted the drop-one F-test using Reizel et al. [19]
for mice or all human samples, and we selected sites that
had an age-association at a Benjamini-Hochberg 1%
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FDR. To calculate the significance of the overlap, we
used a hypergeometric test.
To identify all age-associated sites, regardless of con-

servation, we conducted the same drop-one F-test, first
using the 97 mice of Reizel et al. [19] for all 36,094 CpG
sites, then selecting CpG sites that passed a Benjamini-
Hochberg 1% FDR. We repeated this analysis using the
2.1-month-old mice from Cannon et al. [42] and 3.7-
month-old mice from Orozco et al. [43], using the CpG
sites identified in Reizel et al. [19], and selected sites that
continued to have an age-association at a Benjamini-
Hochberg 1% FDR. Using these criteria, we found 393
age-associated sites in mice. These sites were used to
calculate entropy for Reizel et al. [19] (Fig. 1b). We iden-
tified age-associated CpG sites in humans similarly,
using all 485,512 CpG sites on the 450 K Illumina chip,
first in [GEO: GSE61258] [4] (79 samples), identifying
CpG sites with an age-association at a Benjamini-
Hochberg 1% FDR threshold. We repeated this analysis
for the identified CpG sites in [GEO: GSE48325] [20] (85
samples), selecting CpG sites that passed a Benjamini-
Hochberg 1% FDR threshold. Using these criteria, we
found 322 age-associated CpG sites. These sites were used
to calculate entropy (Fig. 1c) for [GEO: GSE61258] [4].
Entropy was calculated according to the formula de-

scribed in [1]:

Entropy ¼ 1

N � log 1
2

� �
XN

i
½MFi � logðMFiÞ þ ð1−MFiÞ � logð1−MFiÞ�

where MFi is the methylation fraction of the ith methyla-
tion CpG site and N is the number of age-associated
CpG sites (393 sites for mice and 322 sites for human,
described above). Since the entropy approaches 0 when
MFi approaches 0, the entropy for methylation sites with
a value of 0 were set to 0.

Epigenetic clock data processing and data normalization
For construction of an epigenetic-aging model, we used
[GEO: GSE60012] [19], [SRA344045] [21] and our own
control mice, for a total of 124 mice liver/hepatocyte
samples. Because RRBS is targeted towards CpG-rich re-
gions of the genome, we included sites that were covered
by ≥2 reads in 97% of mice, mapped to chromosomes 1–
19 and had a standard deviation >0 and ≤20%. Mice
missing over 30% of these sites were removed from fur-
ther analysis. Missing data were imputed using the mean
value of each site. These filtering steps resulted in 119
samples profiled across 7628 CpG sites. For studies pro-
filing a single time point [42] and the long-lived mice, in
order to maximize the overlap with the 7628 CpG sites
selected above, we considered any site with ≥1 reads
(bedtools intersectbed). Missing data were imputed by
the mean methylation value for that site.

All data were then normalized using ComBat (nonpara-
metric mode) from the SVA package in R [22, 23]. Ages (in
days) were transformed to log2 scale, prior to normalization.
The specific sequencing studies ([19, 21, 42], Ames and
UM-HET3) were used to represent batch, and the model
provided to ComBat included the covariates age, gender
and treatment. After performing ComBat, we used PCA to
verify that this normalization reduced the effects due to
differences in sequencing technology or mouse strains
(Additional file 1: Figure S2D,E). Bismark alignment reports,
as well as average read depth per unique CpG called
and per CpG used to construct the epigenetic-aging
model, are shown in Additional file 2: Public data
and Data here detailed.

Epigenetic-aging model construction
The normalized methylation values from [19, 21, 42]
and data from wild-type, untreated UM-HET3 and Ames
aged to 2 and 22 months (one from each group)
(Additional file 2: Datasets used summary) were used as
training data for ElasticNet regression [24] using the
python scikit-learn package [52]. The normalized
methylation values were used as features, and the log2-
transformed ages (in days) were used as the predicted
variable. Model fitting parameters were selected using
4-fold cross validation. The final model was trained on
these training data with the most optimal regularization
parameters when averaging the 4-fold cross-validation
results. The model sites selected by ElasticNet, along
with the associated weights and intercept, are shown in
Additional file 3.
We assessed whether epigenetic ages were informative

by comparing the epigenetic ages for untreated, wild-type
mice from our study or mice from Cannon et al. [42]. We
used either a t-test or an ANOVA to compare whether
epigenetic ages were significantly different between 2- ver-
sus 22-month-old mice, and whether epigenetic ages of
mice with similar chronological ages were affected by
differences in genetic backgrounds (Additional file 4: Wild
type stats). To assess the effect of normalization in
addition to selection of regularization parameters or hid-
den biases correlated to aging signals, the covariates of
each study were shuffled, ComBat normalization was
repeated, and models were learned using the same
strategy described above. This process was repeated
120 times and predictions between models generated
from permuted data or actual data were compared
using the residual (epigenetic age minus chronological
age) for wild-type mice. The model learned from actual
data minimized the residual for the wild-type mice
(Additional file 1: Figure S2F–J).
We used the annotations for mouse (described

above) to annotate the selected sites to genomic
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regions, considering only intronic, intergenic, exonic,
promoter and enhancer regions. When there were
overlapping annotations, we prioritized enhancer and
promoter regions. We calculated under-representation
of over-representation of these selected sites in these
regions using a Fisher’s exact test, with significance
defined as p < 0.01. We assigned nearest genes to
these sites using closestBed and displayed this along
with overlapping histone/chromatin state information
in Additional file 3.

Assessing epigenetic age in long-lived mice
The epigenetic-aging model was applied to the methy-
lation profiles of long-lived mice and the age-matched
controls not used for training (Additional file 2: Data-
sets used summary). Reductions in age were calculated
by subtracting the epigenetic ages of the untreated,
wild-type mice from those of the treated mice of the
same genetic background. To assess the significance,
we used an ANOVA for all 22-month-old mice or only
22-month-old UM-HET3 mice. We also compared the
epigenetic ages between treatments with their age-
matched controls from the same genetic background
using a t-test (Additional file 4: Treatment vs wild type
stats).

Principal component analysis
PCA was conducted using scikit-learn package with the
148 CpG sites used in the epigenetic clock. The first two
PCs separated age and treatment (Additional file 1:
Figure S3A). We assessed the significance of variables
that contributed to the variance along PC1 for each
genetic background using a multivariate linear regression
according to the following model:

Principal component 1∼ageþ treatment

where treatment was modeled as a categorical variable.
Results are shown in Additional file 5.

Hierarchical clustering
Hierarchical clustering was performed using python
SciPy with linkage method “average” and Euclidean dis-
tance [53]. Methylation values were transformed using
standard_scale = True and visualized using seaborn [54].
Hierarchical clustering was performed either using the
top 20 most variable CpG sites (determined from the
long-lived mice and wild-type mice) or all sites used by
the epigenetic-aging model.
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Additional file 1: Supplementary Figures S1–S3. Supplementary figures
accompanying main text and legends. (PDF 1263 kb)

Additional file 2: Descriptions of sequencing data used to construct a
mouse epigenetic-aging model. Tables describing the samples used to
train and test the mouse epigenetic-aging model, and detailed alignment
statistics corresponding to the samples used for analyses related to Figs 2
and 3. (XLSX 93 kb)

Additional file 3: Epigenetic-aging model with weights in the units of
log2(days) and nearest genes. The CpG sites displayed by chromosome:start:stop
(0-based) with associated weights and the intercept. These units are in log2(age
in days). The nearest genes, distance from nearest gene (bp), and/or overlapping
histone/chromatin features are reported. The directionality refers to upstream or
downstream relative to the reference sequence position. (XLSX 59 kb)

Additional file 4: Epigenetic age predictions of long-lived mice and
wild-type controls. Tables describing the predictions of epigenetic age for
long-lived mice and wild-type controls, including summary tables
describing statistical tests that were performed using this underlying data
(XLSX 51 kb)

Additional file 5: The effects of age and treatments on the variance of
PC1. The results of the multivariate linear regression for the independent
variables age and treatment against PC1 of the 148 CpG markers used for
UM-HET3 and Ames mice. (XLSX 9 kb)
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