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Abstract 

Breast cancer is a highly heterogeneous disease driven by multiple factors including genetic and 

epigenetic alterations. DNA methylation patterns have been shown to be altered on a genome-wide 

scale and previous studies have highlighted the critical role of aberrant DNA methylation on gene 

expression and breast cancer pathogenesis. Here, we perform genome-wide expression-methylation 

Quantitative Trait Loci (emQTL), a method for integration of CpG methylation and gene expression to 

identify disease-driving genes under epigenetic control. By grouping these emQTLs by biclustering 

we identify associations representing important biological processes associated with breast cancer 

pathogenesis such as proliferation and tumor infiltrating fibroblasts. We report hypomethylation at 

enhancers carrying transcription factor binding sites of key proliferation-driving transcription factors 

such as CEBP-β, FOSL1, and FOSL2, with concomitant high expression of cell cycle- and 

proliferation-related genes in aggressive breast tumors. The identified CpGs and genes were found to 

be connected through chromatin loops, together indicating that proliferation in aggressive breast 

tumors is under epigenetic regulation by DNA methylation. Interestingly, there was a significant 

correlation between proliferation-related DNA methylation and gene expression also within subtypes 

of breast cancer, thereby showing that varying proliferation may be explained by epigenetic profiles 

across breast cancer subtypes. Indeed, the identified proliferation gene signature was prognostic both 

in the Luminal A and Luminal B subtypes. Taken together, we show that proliferation in breast cancer 

is linked to hypomethylation at specific enhancers and transcription factor binding mediated through 

chromatin loops. 
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Introduction 

Epigenetic alterations, such as DNA methylation, have recently emerged as a hallmark of many cancer 

types including breast cancer. Previous studies have shown that changes in DNA methylation patterns 

are present already in pre-invasive lesions thereby suggesting that such alterations occur early during 

breast cancer carcinogenesis1-3. DNA methylation has been predominantly reported to be implicated in 

gene repression  through promoter methylation4, however, we have shown that DNA methylation at 

CpGs up to 100 kb away from gene transcription start sites could be associated with its expression5. 

Furthermore, a major portion of the aberrantly methylated DNA observed in breast cancers occurs in 

intergenic regions. Altogether, this suggests that DNA methylation at distal cis-regulatory regions such 

as enhancers may be an important contributor to breast cancer development and progression5,6. 

Enhancers are cis-acting DNA sequences involved in transcriptional regulation. This process is 

mediated by binding of cell type specific transcription factors (TFs) and formation of physical 

interactions between enhancers and promoters of their associated genes7,8. TFs are key proteins 

involved in regulation of gene expression and are linked to different functions dependent on where 

they bind in the genome. While some TFs activate gene transcription by directly interacting with the 

transcriptional machinery, some TFs known as pioneer factors may regulate gene expression by 

remodeling the chromatin landscape to control transcriptional activity9. The accessibility of TFs to 

DNA is strictly controlled by the dynamic interplay between DNA methylation at CpG sites and 

histone modifications in a cell-type specific manner10,11.  

Several studies have reported DNA methylation at distal enhancer regions to be implicated in gene 

regulation mainly by interfering with TF binding to enhancer regions12-14. Enhancer methylation is 

known to be highly dynamic and more tissue specific than promoter methylation thereby suggesting 

that enhancers may play a significant role contributing to cell phenotype15-17. As for promoters, DNA 

methylation at enhancers tends to be associated with transcriptional inactivity, while enhancer 

hypomethylation is often associated with TF binding followed by transcriptional activation8,18. 

However, the role of DNA methylation at enhancer regions and TF binding sites is still not fully 

understood. 

We previously presented the genome-wide expression-methylation Quantitative Trait Loci (emQTL) 

analysis and showed that estrogen receptor (ER) positive breast tumors display disease-specific 

hypomethylation of enhancers carrying binding sites of ERα, FOXA1, and GATA3, suggesting an 

epigenetic regulation of estrogen signaling in breast cancer19. The two strongest and visually most 

apparent clusters were reported: the described above ER cluster and a cluster related to varying 

immune infiltration. Here, we expand our analysis to include more patient samples and use formal 
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biclustering methods to characterize novel biclusters of emQTL associations. We discover a 

proliferation-related bicluster in breast cancer characterized by hypomethylation at enhancers carrying 

transcription factor binding sites (TFBS) of proliferation-driving TFs in ER negative tumors. The 

identified CpGs and genes were found enriched in enhancer regions and to be connected through 

chromatin loops, thereby indicating that proliferation in breast cancer is under epigenetic regulation.  

 

Results 

Expanded expression-methylation Quantitative Trait Loci (emQTL) analysis. Genome-wide 

correlations between the expression levels of all genes and the level of DNA methylation at all CpGs 

was performed using a similar approach to the one described by Fleischer, Tekpli et al.19 using a larger 

discovery cohort (OSL2 breast cancer cohort, n=277; Supp. Figure 1, see Material and Methods). 

Pearson’s correlations between CpGs with an interquartile range of more than 0.1 (n = 182,620) were 

tested against all genes (n = 18,586) for non-zero correlations. We identified 16,193,303 significant 

CpG-gene associations (Bonferroni corrected p-values < 0.05) from which 10,264,807 (63.4%) were 

validated in the independent The Cancer Genome Atlas (TCGA) breast cancer cohort (BRCA, n=558). 

The validated associations involved the expression level of 6803 genes and methylation level of 

64,439 CpGs. To focus on hub associations, the emQTL CpGs and genes with less than five 

associations were filtered out. The remaining CpGs (n = 44,263) and genes (n = 4904) with 

associations after filtering were included in downstream analyses. A significant correlation between 

the expression of a gene and methylation at a CpG is hereafter referred to as an emQTL. 

In order to identify emQTLs with similar biological features, we grouped the emQTLs using Spectral 

co-clustering20 of the inverse correlation coefficients values (correlation coefficient*-1; see 

Discussion) obtained from the genome-wide emQTL analysis. For comparison, biclustering of the 

absolute correlation coefficient values were also performed (Supp. Table 2a; see Discussion). Spectral 

co-clustering allows all emQTL-CpGs and genes included in the analysis to be assigned to biclusters 

while simultaneously allowing clustering of columns and rows, both of which have been considerable 

limiting factors with the previous approach.  

To determine the optimal number of biclusters for the spectral co-clustering algorithm, a mean square 

residual (MSR) score21 was estimated when the number of biclusters was set to be a number between 2 

and 20. A lower MSR score is associated with a stronger coherence exhibited by the biclusters and 

thereby indicates better biclustering. In order to obtain as many informative and biologically distinct 

emQTL biclusters we plotted the average MSR scores as a function of number of biclusters, and 

selected the elbow of the plot to be the number of biclusters (Fig. 1a). In this way, five biclusters were 

defined (Fig. 1b, Supp. Table 1a-b): Bicluster 1 (8641 CpGs and 1085 genes), Bicluster 2 (9398 CpGs 
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and 870 genes), Bicluster 3 (6910 CpGs and 936 genes), Bicluster 4 (10 564 CpGs and 1087 genes) 

and Bicluster 5 (8750 CpGs and 926 genes).  

To elucidate the biological role of the biclusters, gene set enrichment analysis (GSEA) was performed 

based on the genes of each bicluster using the Hallmark (H) and gene ontology (GO; C5) gene set 

collections (Fig. 1c and Supp. Table 1c) obtained from the Molecular Signatures Database 

(MSigDB22). As expected, we rediscovered the estrogen- (Biclusters 2/4) and immune cluster 

(Bicluster 5) first described by Fleischer, Tekpli et al.19. The majority of their immune cluster genes 

(94.5%) and CpGs (53.5%) were found in the newly discovered immune bicluster and the same was 

true for the estrogen cluster genes (53.9%) and CpGs (56.7%).  

In addition to rediscovering the immune- and estrogen clusters, we now identify two novel biclusters 

with distinct biological functions: cell cycle regulation (Bicluster 1) and epithelial-mesenchymal 

transition, extracellular matrix (ECM) and cell locomotion (Bicluster 3) as shown in Fig. 1c. To 

confirm that the identified biclusters were not artifacts of the selected seed parameter used by the 

spectral co-clustering algorithm, we performed a permutation test (100 permutations) using random 

seeds and comparing the results with the biclustering output from the initial biclustering analysis. For 

each run we performed GSEA for the gene list of each bicluster identified to define which biological 

functions they were related. We then calculated how many times the CpGs and genes from the initial 

biclustering analysis described above were found in biclusters with similar biological functions. The 

biclusters were found to be highly stable as only 15 genes and 113 CpGs were found less than 70% of 

the times within a bicluster of similar biological characteristic (Supp. Figure 2a-b). We hypothesize 

that these CpGs and genes may represent interactions between the gene regulatory networks 

represented in each bicluster. Nevertheless, the biclusters were found to be stable and the inclusion of 

these genes and CpGs will have a negligible effect on the analyses due to their small count. 

Enhancer methylation, TF binding and a proliferative phenotype of human breast tumors. To 

understand the functional link between DNA methylation at CpG sites and expression of genes in the 

cell cycle bicluster (Bicluster 1), we first aimed to characterize the functional role of the CpGs using 

ChromHMM segmentation data based on ChIP-seq of several histone modifications from breast 

cancer cell lines representing distinct subtypes23. According to ChromHMM, CpGs in the cell cycle 

bicluster were significantly enriched in active intergenic enhancer regions of breast tumors across all 

subtypes (Fig. 2a, Supp. Table 1d). Moreover, we found 46 % of the CpGs to overlap with at least one 

active intergenic enhancer region of another subtype (Supp. Figure 3) which therefore suggests that we 

are discovering mechanisms regulating genes associated with proliferation that are both subtype 

specific as well as common across subtypes.  

Having found the cell cycle bicluster-CpGs to be enriched in intergenic enhancer regions, we next 

sought to identify transcription factor binding regions (TFBR) significantly overlapping with cell cycle 
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bicluster-CpGs. We used TF-DNA interaction data obtained from UniBind24, which is a database 

storing direct TF-DNA interactions for 231 unique human TFs obtained from 1983 ChIP-seq datasets 

performed on 315 different cell lines and tissues. The cell cycle bicluster-CpGs were found enriched in 

the binding region of several TFs previously described to regulate proliferation in breast cancers 

including CEBP-β25 and several of the FOS family of proteins including FOS26, FOSL127,28, and 

FOSL229 (Fig. 2b, Supp. Table 1e). The TFBSs of these TFs stored in UniBind are based on ChIP-seq 

data from breast cancer cell lines among others. While the CEBP-β transcription factor binding sites 

(TFBS) have been mapped by ChIP-seq in both the estrogen receptor positive (ER+; MCF7) and ER 

negative (ER-; SUM159 and MDA-MB-231) breast cancer cell lines, FOSL1 and FOSL2 TFBS have 

been mapped in the ER- BT549 and ER+ MCF7 breast cancer cell lines by ChIP-seq respectively.  

We further investigated the level of DNA methylation of cell cycle bicluster-CpGs in regard to 

histopathological features including ER status and PAM50 subtype. Unsupervised hierarchical 

clustering of the DNA methylation level of the cell cycle bicluster CpGs (n=8641) was clearly 

associated to the breast cancer subtypes (Fig. 2c), and the CpGs in this bicluster showed lower levels 

of methylation in the Basal-like, Her2-enriched and Normal-like tumors in both the OSL2 (Fig. 2d) 

and TCGA (Fig. 2e) breast cancer cohorts. Moreover, DNA methylation at the cell cycle bicluster-

CpGs in TF binding regions of the top six most enriched TFs was found lower in the Basal-like and 

Her2-enriched breast tumors (Supp. Figure 4a-f). Altogether, these results show that CpGs in the cell 

cycle bicluster are enriched for enhancer regions overlapping TFBR of TFs associated with 

proliferation such as CEBP-β, FOSL1, and FOSL2. Moreover, their TFBR are found to be less 

methylated in Basal-like and Her2-enriched tumors.  

One of the most known markers of cell proliferation is the MKI67 gene that is a non-histone nuclear 

protein expressed during the active phase of cell cycle30. To assess the link between DNA methylation 

at the cell cycle bicluster CpGs and proliferation we correlated the average DNA methylation levels of 

the cell cycle bicluster CpGs with the expression of MKI67 and found a significant negative 

association within the ER negative tumors and for all breast tumors (Supp. Figure 5a-b). Interestingly, 

we also find MKI67 to reside within the cell cycle bicluster (Supp. Table 1b). This suggests a possible 

link between DNA methylation at the cell cycle bicluster-CpGs and proliferation. 

To assess the link between DNA methylation (at enhancers and TF binding regions) and gene 

expression in the cell cycle bicluster, we performed unsupervised clustering of the expression of these 

genes and observed that expression was higher in the subtypes known to have higher proliferation 

rates (Fig. 3a). Basal-like tumors showed the highest expression, followed by Her2-enriched and 

Normal-like, and Luminal A showed the lowest expression (OSL2 breast cancer cohort; Fig 3b). These 

observations were consistent with the data from the TCGA breast cancer cohort (Fig. 3c). Next, we 

performed correlation analysis between the average methylation and average expression of CpGs and 
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genes in the cell cycle bicluster. As expected, we observed a strong negative correlation between DNA 

methylation and gene expression (p-value 2.15e-60 and 1.08e-51; r-value = -0.79, -0.58 in OSL2 and 

TCGA, respectively), largely driven by the differences between ER positive and ER negative tumors 

(Fig 3d-e, black regression line). We also observed a significant (and validated) correlation between 

methylation and expression when performing the analysis separately within ER positive and ER 

negative (Fig 3d-e, blue and red regression line, respectively); however, the correlation was stronger 

within the ER negative tumors. Taken together, these results show a statistically significant association 

between enhancer methylation and expression of proliferation-related genes, and that ER negative 

breast tumors have low methylation at enhancers potentially driving proliferation. Varying degree of 

enhancer methylation may be related to the proliferative potential in ER negative tumors.  

To investigate the functional relationship between DNA methylation and gene expression in the cell 

cycle bicluster we assessed the extent to which CpGs within this bicluster were located nearby (±10 

kb) any of the genes contained within the same bicluster. We found that 36% of the genes in the cell 

cycle bicluster were located nearby at least one CpG in the same bicluster suggesting that many genes 

in the cell cycle bicluster may be locally regulated by DNA methylation in enhancer regions at TFBR 

of the enriched TFs including CEBP-β, FOSL1, and FOSL2.  

Enhancers can promote gene expression of distant genes by interacting with promoter regions of their 

associated genes through chromatin loop formation7,8. Chromatin Interaction Analysis by Paired-End 

Tag sequencing (ChIA-PET) and Integrated Methods for Predicting Enhancer Targets (IM-PET) are 

methods used to identify such physical interactions on a genome-wide scale31,32. To more specifically 

assess the link between DNA methylation at enhancers and expression of their target genes, we 

obtained ChIA-PET Pol2 data31 from MCF7- (ER positive) and IM-PET interaction32 from the 

HCC1954 (ER negative) breast cancer cell lines, thereby allowing us to identify interactions between 

genomic loci that are located in proximity in 3D but may be separated by long distances. We found 

that the CpGs in the cell cycle bicluster in emQTL with cell cycle bicluster genes were significantly 

enriched in chromatin interaction loops as defined by ChIA-PET and in IM-PET datasets 

(hypergeometric test p-value = 5.097 x 10
-3 and 4.74 x 10

-4 respectively, Fig. 4a). Altogether, 59 

CpGs were experimentally confirmed by ChIA-PET to form physical interactions with 39 unique 

genes in the cell cycle bicluster (Supp. Table 1f), and 22 unique emQTL CpG-gene loops were 

confirmed by IM-PET (Supp. Table 1g). Altogether, these results suggest that emQTLs represent 

direct regulatory links between DNA methylation at enhancer regions targeted by proliferation 

associated TFs and the expression of the cell cycle bicluster-genes (Figure 4b). 

Identification of potential key drivers of proliferative signaling in breast cancer. Knowing that 

enhancer methylation at regions of TF binding is associated with the regulation of expression of genes 

linked to proliferation in the cell cycle bicluster and knowing which TFs that are involved, we may 
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refine the emQTL approach to more efficiently identify potential key drivers of carcinogenic 

signaling. The refined approach has several steps for identification of CpG-gene pairs: (1) The CpG-

gene pair must be on opposite sides of chromatin loops defined by ChIA-PET31 and/or IM-PET32 

loops. (2) A CpG must be in enhancers according to ChromHMM segmentation23 of either subtype. (3) 

The CpG must be in the binding region of the top enriched TFs as defined by UniBind24. Lastly, (4) 

the gene must be a part of a curated gene set associated with proliferation. Altogether, we identified 53 

strong candidates as potential proliferation-promoting alterations in DNA methylation in which the 

majority display strong negative correlations between DNA methylation and gene expression (Table 1, 

Supp. Table 1h). Figure 4c shows an example of a potential proliferation-promoting emQTL in which 

the CpG (cg00733115) is found experimentally to interact with the Pim-1 Proto Oncogene, 

Serine/Threonine Kinase (PIM1) gene found in the GO_CELL_CYCLE gene set from the MSigDB22. 

The CpG itself is located in a region with high abundance of active intergenic enhancer chromatin 

marks in Basal-like, Her2-enriched, and Luminal A subtype according to ChromHMM23. Moreover, 

the CpG overlaps with the binding region of several members of the FOS family proteins including the 

FOS, FOSL1/2 TFs. The TF binding region of FOS as indicated in Figure 4c are obtained from the 

breast epithelial MCF10A cell line. A negative correlation was observed between DNA methylation of 

cg00733115 and the expression of PIM1 in both ER negative and ER positive tumors (Fig. 4d). These 

results suggest that we identify strong potential proliferation-promoting alterations using the refined 

emQTL approach.   

Table 1. Top potential cancer-promoting alterations identified using the refined emQTL approach. The strength of the 

correlations and the Bonferroni corrected p-value is shown for the OSL2 (n=272) and TCGA (n=558) breast cancer cohort. 

The table is ordered by the strength of the negative correlation in OSL2. 

 

 Pearson’s correlation coefficient  Adjusted p-value  

emQTL ID OSL2 TCGA  OSL2 TCGA Method 

cg00733115_PIM1 -0.554 -0.318  1.36E-21 7.38E-13 ChIA-PET 

cg02976539_SLC9A3R1 -0.542 -0.520  2.02E-20 2.69E-38 IM-PET 

cg18037834_KRT18 -0.540 -0.514  3.14E-20 2.66E-37 ChIA-PET 

cg15880704_PDCD4 -0.539 -0.288  3.78E-20 2.00E-10 ChIA-PET 

cg04482712_SLC9A3R1 -0.535 -0.541  7.70E-20 4.59E-42 IM-PET 

cg00484122_RHOB -0.535 -0.421  8.75E-20 1.15E-23 ChIA-PET 

cg16729850_KRT18 -0.526 -0.510  5.44E-19 1.41E-36 IM-PET 

cg21359793_KRT18 -0.523 -0.503  9.20E-19 2.27E-35 IM-PET 

cg20812370_PBX1 -0.513 -0.389  6.70E-18 6.52E-20 ChIA-PET 

cg12610744_KRT18 -0.511 -0.508  8.58E-18 2.98E-36 IM-PET 

 

The cell cycle bicluster associates with prognosis. To investigate the prognostic impact of the 

identified genes, we performed survival analysis in the METABRIC breast cancer cohort (n=1904) 
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due to the long follow-up time. Survival analysis was performed using Kaplan-Meier estimator and 

log-rank tests. When stratifying tumors by PAM50 subtype and dividing the patients into two groups 

based on the median expression values of the genes in the cell cycle bicluster, we observe that high 

expression of the cell cycle bicluster-genes is associated with significantly worse prognosis within 

Luminal A, Luminal B and Normal-like breast tumors (Figure 5a-e, log rank p-value = 0.016, 0.0031, 

and 0.008 respectively). When performing the survival analysis independent of subtype, we observe a 

strong association between survival and the expression of genes in the cell cycle bicluster (Figure 5f, 

log rank p-value<0.0001). 

Rediscovery of the immune- and estrogen response related biclusters. Both the immune and the 

estrogen biclusters were found to overlap with the immune and estrogen-related clusters first described 

by Fleischer, Tekpli et al.19. The immune bicluster-CpGs were found enriched in close proximity to TF 

binding regions of several TFs involved in immune cell homeostasis such as RUNX1, FLI1 and ERG 

(Supp. Table 1e). DNA methylation and gene expression levels of the rediscovered immune bicluster 

was associated with varying degree of immune infiltration (Supp. Figure 6a-b).   

Contradictory to previous findings, our emQTL-CpGs and genes associated with estrogen response 

separated into two biclusters (Figure 1c, Supp. Table 1a-b). This is likely due to the high 

predominance of estrogen response-related emQTL-CpGs and genes since the spectral co-clustering 

algorithm favors more equally sized biclusters. The CpGs in estrogen bicluster 2 and 5 were 

significantly less methylated in ER+ compared to ER- tumors (Wilcoxon rank sum test, p=1.06e-18 

and 1.48e-18 respectively). The estrogen-related genes in both biclusters were overexpressed in ER+ 

tumors compared to the ER- (Wilcoxon rank sum test, p=3.16e-24 and 9.25e-20). Moreover, the CpGs 

within each of the estrogen-related biclusters were enriched in enhancer regions and in genomic 

regions in close proximity to TF binding regions of several TFs associated with estrogen-response 

such as ERα, FOXA1, and GATA3 (Supp. Table 1d-e). This was observed in both estrogen biclusters 

which suggests that these two biclusters represent the same biological pathway. Altogether, these 

results are in concordance with the corresponding clusters first described by Fleischer, Tekpli et al.19. 

Bicluster 3 reflects varying degree of fibroblast infiltration. GSEA indicated that genes in bicluster 

3 were related to processes including EMT, ECM and cell locomotion (Supp. Table 1c). Contrary to 

the cell cycle bicluster, genes and CpGs in the EMT bicluster (bicluster 3) to seemed to a lesser extent 

segregated the breast cancer patients according to the PAM50 subtypes (Fig. 6a, Supp. Figure 7a). 

Fibroblasts are prominent cell types of the tumor microenvironment and carry out functions related to 

extracellular matrix remodeling while also being able to migrate33. We therefore hypothesized that this 

bicluster was linked to fibroblast infiltration. To examine this, we estimated the relative amount of 

fibroblasts for each tumor sample using the xCell34 deconvolution tool which is based on mRNA 

expression. By dividing the tumors into quartile groups based on the severity of fibroblast infiltration, 
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we found the EMT bicluster gene expression levels to be linked with fibroblast infiltration in OSL2 

and TCGA (Fig. 6b-c, Kruskal-Wallis test p-value = 1.74 x 10
-27 and 3.35 x 10

-20, respectively) i.e., 

high expression of the EMT bicluster genes is linked with high fibroblast infiltration. Altogether this 

suggest that the expression levels of these genes may be caused by a high expression of the EMT 

bicluster genes in tumor-infiltrating fibroblasts rather than the cancer cells themselves.  

Furthermore, we characterized the CpGs in the EMT bicluster and found them to be enriched in active 

intergenic enhancer regions, but to a lower extent than cell cycle bicluster CpGs (Supp. Table 1d). No 

significant enrichment of EMT bicluster-CpGs in emQTL with EMT bicluster genes were observed 

from the ChIA-PET Pol2 and IM-PET data (Supp. Figure 7b). TF enrichment analysis revealed 

significant enrichment of the CpGs close to TFBR of several TFs previously linked to EMT such as 

FOSL135, TEAD136, NFIC37 and TWIST138 (Supp. Table 1e). Average DNA methylation of CpGs in 

the EMT bicluster was associated with varying degree of fibroblast infiltration in OSL2 and TCGA 

(Figure 6d-e) i.e., increasing fibroblast infiltration was associated with decreased DNA methylation. 

DNA methylation data for the EMT bicluster-CpGs obtained from the EMT-associated PMC42-LA 

breast cancer cell line featured similar methylation levels to the tumors with low fibroblast infiltration 

(Figure 6d-e). Moreover, DNA methylation level at the CpGs in the PMC42-LA cell line displayed no 

pronounced difference after EGF-induced EMT (Figure 6d-e). Noteworthy, the EMT bicluster-CpGs 

display low methylation levels in human mammary fibroblasts which is the inverse observation of the 

one for the PMC42-LA breast cancer cell line. Taken together, these results show that DNA 

methylation and the expression level of genes in the EMT bicluster is caused by varying degree of 

fibroblast infiltration. 

Cell-type specific expression of genes in the emQTL-biclusters by scRNA-seq. Since the tumor 

microenvironment consist of a highly dynamic and heterogenous collection of cells, we used single-

cell RNA-seq (scRNA-seq) data from 14 breast cancer patients39 to investigate cell type-specific 

expression of a subset of genes from each bicluster. For the analysis we selected out 10 genes from 

each bicluster showing the strongest negative correlation with an associated emQTL-CpG within the 

same bicluster. We found most of the genes from the cell cycle bicluster to be cancer-specific 

compared to other cells types such as immune cells, fibroblasts and endothelial cells which are 

prominent cell types of the tumor microenvironment (Figure 7a-b). Moreover, these genes were highly 

expressed by cancer cells from tumors classified as Her2-enriched and TNBC subtypes compared to 

Luminal A and Luminal B (Figure 7c-f). Altogether, this supports the hypothesis that the cell cycle 

bicluster genes are important regulators of proliferation in breast cancers. Similarly, to the cell cycle 

bicluster, the estrogen-related genes were almost exclusively expressed by cancer cells from ER+ 

tumors (Figure 7b-d). Contrary, the genes associated the EMT- and immune biclusters were mainly 

expressed by fibroblasts and immune cells respectively (Figure 7b).  
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Discussion 

Cancer initiation and progression involves altered proliferation rates that play an important role in 

breast cancer pathogenesis40,41. Today, little is known about how DNA methylation contributes to the 

proliferative phenotype of breast tumors. By performing genome-wide emQTL analysis prior to 

spectral co-clustering of the correlation coefficients, we identify a previously unreported gene 

regulatory network involved in breast cancer carcinogenesis. In ER negative breast tumors, we observe 

hypomethylation at enhancers carrying TFBS of key proliferation-driving TFs with concomitant high 

expression of proliferation-related genes in tumor cells as confirmed by scRNA-seq. We show that the 

identified CpGs and genes were connected through chromatin loops. Taken together, we show that 

proliferation in breast cancer is linked to loss of enhancer methylation and TF binding through 

chromatin loops. The causal effects the candidates have on the observed associations regarding the 

cancer phenotype will be of great interest for future studies.  

Several approaches were used to identify the most optimal conditions for the biclustering algorithm in 

order to obtain high quality biclusters. Biclustering of the absolute correlation coefficients lead to the 

discovery of biclusters corresponding to the ones discussed in this paper in terms of biological 

characteristics such as estrogen- and immune response, cell cycle, and EMT (Supp. Figure 8, Supp. 

Table 2a). However, biclustering of these data were not considered optimal as it was observed a 

pronounced degree of spillover between all biclusters; subclusters of CpGs and genes were discovered 

for all biclusters with mixed functional characteristics. For instance, one subcluster of CpGs and genes 

in the cell cycle bicluster was strongly associated to cell cycle related functions, while the other CpG 

and gene subclusters were mixed with genes and CpGs related to both fibroblast infiltration and 

estrogen response (Supp. Figure 9-10, Supp. Table 2a). Similar observations could be made for all 

other biclusters. In a previous study19 we saw that DNA methylation was negatively associated with 

the activity of estrogen-related pathways and increased immune infiltration. We therefore decided to 

use the inverse correlation coefficients as input for the spectral co-clustering algorithm. Furthermore, 

the identification of potential key drivers of proliferative signaling in breast cancer at the end of the 

paper was not influenced by this choice as the identification pipeline was not restricted to any 

biclusters. The elbow method was used to determine the number of biclusters that was set to be 5, 

however improvement in the average MSR score was also observed for 8 and 12 biclusters. Biclusters 

with similar biological functions are also found when performing biclustering based on these 

parameters (Supp. Table 2b-c). However, increasing the number of biclusters to be a value >5 leads to 

excessive splitting of these biclusters representing the same biological pathways. Additional biclusters 

could also be discovered, however, enrichment of their genes in any gene sets were less significant. 
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The biclusters was more mixed regarding to biological functions and showed some degree of spillover 

from the other biclusters. 

The proliferation related CpGs were significantly enriched in active intergenic enhancer regions of all 

breast cancer subtypes, but most pronouncedly in Basal-like, Her2-enriched, and Luminal B tumors 

according to ChromHMM23, which are also the most proliferative subtypes. The CpGs in this bicluster 

were found enriched in chromatin loops in ER positive and ER negative breast cancer cell lines, 

thereby strengthening the hypothesis that the transcriptional network associated with proliferation 

could be regulated by DNA methylation independent of ER status. TF enrichment analysis showed an 

enrichment of the proliferation-related CpGs nearby TFBS of several TFs known to be implicated in 

breast cancer tumorigenesis including CEBP-β, FOSL1 and FOSL2. The CEBP family of TFs are 

known to be involved in regulating proliferation, and the CEBP-β member is commonly 

overexpressed in ER negative tumors compared to ER positive tumors and is positively associated 

with tumor grade25. Several of the Fos family TFs have also been implicated in proliferation. FOSL1 

binding have previously been found enriched at enhancers of triple negative breast cancers and 

positively associated with proliferation in ER negative and ER positive cell lines27. Furthermore, 

FOSL2 overexpression has been linked to proliferation in the triple negative MDA-MB-231 and Her2-

enriched SK-BR-2 breast cancer cell lines29. FOS have previously been shown to be an important 

regulator of proliferation in the MCF7 breast cancer cell line26. Here, we show that the CpGs in close 

proximity to the TFBS of these TFs were less methylated in the most proliferative tumor subtypes 

such as the Basal-like and Her2-enriched tumors. Altogether, we speculate that demethylation of the 

cell cycle bicluster-CpGs leads to more frequent binding of proliferation-related TFs and looping to 

their associated gene, thereby causing enhanced expression. The predictive and prognostic relevance 

of DNA methylation levels around the genomic regions binding CEBP-β, FOSL1 and FOSL2 

constitute interesting regions for further investigation. At present, there is a lack of ChIP data mapping 

genome-wide TF-DNA interactions. Therefore, there may be other TFs as well involved in TF binding 

at the specified enhancers that are not included here and might also be drivers of proliferation in breast 

cancer. 

By characterizing several aspects of the regulatory pathways associated with proliferation in breast 

cancers, we were able to identify potential downstream drivers of carcinogenic signaling relating to 

proliferation. The identified candidate gene with the strongest and most significant negative 

correlation was the PIM1 gene which belongs to the Serine/Threonine protein kinase family of 

proteins. PIM1 is known to be implicated in the cell cycle, and knockdown experiments in triple 

negative breast cancer cell lines have been shown to decreased proliferation and survival42. Another 

candidate was CDKL3 which is a CDK3 homolog belonging to the cyclin-dependent protein kinase 

(CDK) family of proteins. CDKL3 is known to be implicated in cell cycle progression from G1 to the 

S phase43,44. The methylation status of an emQTL-CpG located in a distal enhancer region was found 
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linked to the expression of the CDKL3 gene though chromatin looping defined by an experimentally 

defined ChIA-PET Pol2 loop. A previous study found CDKL3 upregulation to be associated with 

faster-growing HeLa cells derived from cervical cancer45. However, less is known about the influence 

of CDKL3 upregulation on proliferation in breast cancer. Another candidate such as MUC1, which is 

an oncoprotein, has been linked to proliferation in breast cancer cell lines upon siRNA knockdown 

experiments46. Cyclin D1 (CCND1) is involved in progression of several cancer types including 

breast, lung, esophagus and bladder cancers. CCND1 is associated with proliferation by regulating the 

G1/S-phase transition47. Knockdown of CCND1 using siRNA have been shown to decrease 

proliferation rates in the MCF7 breast cancer cell line48. Altogether, this indicates that our identified 

proliferation-promoting candidate genes play key roles in proliferation-related processes in breast 

cancer. 

Previous studies have linked increased proliferation rates with prognosis in breast cancers40,41. Here, 

we report the expression of the proliferation-related genes in the cell cycle bicluster to be associated 

with poorer prognosis within the established breast cancer subtypes, including Luminal A and Luminal 

B. We are thereby identifying subgroups of patients which may benefit from more aggressive 

treatment, and equally importantly, we identify a subgroup of patient that may benefit from less 

treatment. 

Fibroblasts, also known as cancer-associated fibroblasts (CAFs) in a tumor setting, are among the 

most abundant cell types of the tumor microenvironment involved in functions related to ECM 

remodeling49,50. They also play a key role in promoting tumorigenesis51. An increasing number of 

studies have emphasized a possible link between infiltration of CAFs and epigenetic changes in tumor 

cells. One of the most characterized CAF-secreted factors, TGF-β, can mediate epigenetic changes 

through SOX4 activation, which in turn modulates the EZH2 histone methyltransferase in cancer 

cells52. Moreover, aberrant DNA methylation can occur on a genome-wide scale in tumor cells treated 

with TGF-β53,54. Fibroblast infiltration has been associated with treatment response and metastatic 

potential of cancer cells55-58. By using the xCell34 deconvolution tool which is based on gene 

expression data, we found strong associations between fibroblast infiltration versus expression and 

methylation levels of genes and CpGs in the EMT bicluster in OSL2 and TCGA (Figure 6b-e). Lower 

DNA methylation at the EMT bicluster-CpGs was associated with higher fibroblast infiltration and 

fibroblasts were unmethylated at these CpGs compared to tumor tissue. The emQTL analysis 

highlights how DNA methylation and gene expression levels may reflect infiltration levels in the 

tumor microenvironment. Even though the EMT bicluster is significantly associated with fibroblast 

infiltration, there may be a less pronounced EMT-related signal from the tumors themselves 

represented in the EMT bicluster caused by fibroblast infiltration or other factors. Therefore, a more 

detailed study of the epigenetic effects of crosstalk between fibroblasts and tumor cells regarding the 

EMT bicluster would be of future interests. 
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In this study, we provide genome-wide evidence that DNA methylation at intergenic enhancer regions 

is a key regulator of proliferation in breast cancers. The CpG sites involved were proximal to TFBSs 

of CEBP-β, FOSL1, and FOSL2, which are TFs associated with proliferation in breast cancers. 

Altogether, we establish an association between DNA methylation and tumor phenotype reflecting the 

proliferative potential of breast cancer tumors. 

 

Material and methods 

Patient material. The OSL2 breast cancer cohort59,60 has collected material from breast cancer 

patients with primary operable disease (T1 - T2) in several south-eastern Norwegian hospitals. Patients 

were included between 2006 and 2019. All patients have provided written consent for use of the 

material for research purposes. Clinical data including PAM50 classification and mRNA expression 

data can be obtained from GEO with accession number GSE5821560 and DNA methylation data is 

available at GEO with the accession number GSE8420719 (n=277).  

The Cancer Genome Atlas Program (TCGA) breast cancer cohort has previously been described61. 

Level 3 gene expression and DNA methylation data were downloaded from the TCGA Data portal 

(https://tcga-data.nci.nih.gov). CpGs and genes with more than 50% missing values were excluded and 

the remaining missing methylation values were imputed using the pamr R package (function 

pamr.knnimpute) with k = 10. Only breast cancer tumor samples with gene expression and DNA 

methylation data were included for validation of emQTLs in TCGA (n=558). 

The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) has previously 

been described62. METABRIC is a large gene expression cohort with long follow-up time widely used 

for investigation of breast cancer diseases. Gene expression data is available from the European 

Genome Phenome Archive (DOI: EGAS00000000083, n=1980).   

Statistical compution and bioinformatical analyses. All computational analyses were performed 

using the R software version 3.5.163 unless otherwise specified. The emQTL analysis R code can be 

found at https://github.com/JorgenAnkill/emQTL. 

Results were considered statistically significant if the adjusted p-value was < 0.05. Bar plots 

displaying ChromHMM and UniBind enrichment results were generated using the R package 

ggplot2
64. Kaplan-Meier estimators and log-rank tests were performed using the survival R package 

v3.2.3 (functions Surv and survfit). Survival plots were made using the survminer R package (v0.4.8). 

Upset plot was generated using the UpSet R-package version 1.4.065. 

Genome-wide correlation analysis. The DNA methylation level of all CpGs with interquartile range 

of more than 0.1 (n=182,620) were correlated by Pearson correlation with the expression of 18,586 
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genes in the OSL2 breast cancer cohort resulting in more than three billion tests. CpG-gene 

associations with a Bonferroni corrected p-value of less than 0.05 (nominal p-value < 1.47 x 10
-11) 

were considered significant. The significant CpG-gene associations in OSL2 were subsequently 

validated in the TCGA breast cancer cohort (n=558). The significant associations were considered 

validated if the Bonferroni corrected p-value was less than 0.05 (nominal p-value < 6.70 x 10
-11). Of 

the 5,928,496 non-validated emQTL pairs, 28,523 associations could not be tested due to missing 

DNA methylation or expression data in TCGA. Only validated associations were included in the 

subsequent analyses. Probes and genes with less than 5 associations were filtered out. The remaining 

CpGs and genes with associations were kept in the following analyses. Prior to the analysis, gene 

symbols for expression data in the discovery and validation cohort were harmonized using the R 

package HGNChelper version 0.7.1 (function checkGeneSymbols).  

Biclustering of the emQTL correlation coefficients. The inverse correlation coefficients (r*-1) from 

the emQTL analysis were biclustered using Python (version 3.7.9) by applying the 

SpectralCoclustering algorithm contained within the scikit-learn library66. For the initial spectral co-

clustering analysis, the random_state parameter was set to 0. Spectral co-clustering was performed 

using the inverse correlation coefficients (correlation coefficient*-1) values obtained from the OSL2 

discovery cohort. Python code used for biclustering is available from 

https://github.com/JorgenAnkill/emQTL. 

Gene set enrichment analysis. Gene sets used for gene set enrichment analysis were downloaded 

from the Molecular Signatures Database v7.1 (MSigDB)22. Enrichment was determined by 

hypergeometric testing (R function phyper) using the H and C5 gene set collections. P-values were 

corrected for multiple testing using Benjamini-Hochberg procedure (R function p.adjust). 

Hierarchical clustering of DNA methylation and gene expression levels. Hierarchical clustering of 

the DNA methylation- and gene expression levels was performed using the R package pheatmap using 

Euclidean distance and ward.D2 cluster agglomeration method. For visualization purposes, gene 

expression values were centered and scaled by rows by dividing the centered rows by their standard 

deviations (R function scale).  

Genomic segmentation and annotation. ChromHMM segmentation data from cell lines representing 

different breast cancer subtypes were obtained from Xi et al.23, which included MCF7 and ZR751 

(Luminal A), UACC812 and MB361 (Luminal B), HCC1954 and AU565 (Her2+), HCC1937 and 

MB469 (Basal-like). ChIP-seq peaks for key histone modifications including H3K4me3, H3K4me1, 

H3K27me3, H3K9me3, and H3K36me3 were used to predict chromatin states across the genome of 

the cell lines. The genomes were annotated into thirteen distinct chromatin states including: active 

promoter (PrAct), active promoter flanking (PrFlk), active transcription (TxAct), active transcription 

flanking (TxFlk), active intergenic enhancer (EhAct), active genic enhancer (EhGen), bivalent 
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promoter (PrBiv), bivalent enhancer (EhBiv), repressive polycomb domain (RepPC), weak repressive 

domain (WkRep), repeat/ ZNF genes (RpZNF), heterochromatin (Htchr) and quiescent state / low 

signals (QsLow). Subtype specific ChromHMM annotations were made by collapsing the 

ChromHMM annotations from cell lines of similar subtype and keeping the ones that were common.  

Enrichment of CpGs in a ChromHMM defined functional region was measured as the ratio between 

the frequency of cell cycle bicluster-CpGs found in a specific segment type over the frequency of 

CpGs from the Illumina HumanMethylation450 array found within the same segment type. P-values 

were obtained by hypergeometric testing with the Illumina 450k array probes as background 

(n=485,512). P-values were corrected for multiple testing using Benjamini-Hochberg procedure.  

TF enrichment analysis in UniBind defined TF binding sites. Enrichment of CpGs in TF binding 

sites was assessed using data obtained from the UniBind 201824 database. Maps of direct TF-DNA 

interactions were downloaded from the UniBind website (https://unibind2018.uio.no) for prediction 

model PWM. The genomic positions of all CpGs from the Illumina 450k array were lifted over from 

hg19 to hg38 using the LiftOver webtool from UCSC genome browser (https://genome.ucsc.edu) and 

were extended with 150 bp upstream and downstream. Since each TF can have binding sites derived 

from multiple ChIP-seq experiments, we merged the TF binding sites for all ChIP-seq experiments for 

each TF. Enrichment of CpGs in proximity to TF binding sites was computed using hypergeometric 

testing (R function phyper) with IlluminaMethylation450 Bead Chip CpGs as background. False 

discovery rate was estimated by Benjamini-Hochberg correction using the R function p.adjust. 

Cell line data. Illumina 450k methylation data from the epithelial-like PMC42-LA breast cancer cell 

line before and after EGF-induced EMT were obtained from GEO with accession number GSE97853. 

Human mammary fibroblasts Illumina 450k array data was obtained at GEO with accession number 

GSE7487767. DNA methylation data for the ER positive MCF7 and ER negative MDAMBA453 cell 

lines were obtained from GEO with accession number GSE6911868 and GSE12436869. 

scRNA-seq data. Count matrix of single cell RNA-seq obtained from Qian et al.39 were analyzed 

using the Seurat R package version 3.2.170 to obtain UMAP. In brief, the count matrix was already 

filtered for dying cells by the authors. It was further normalized and scaled regressing out potential 

confounding factors (number of UMIs, number of gene detected in cell, percentage of mitochondrial 

RNA). After scaling, variably expressed genes were used to construct principal components (PCs). 

PCs covering the highest variance in the dataset were selected based on elbow and Jackstraw plots to 

build the UMAP. Clusters were calculated by the FindClusters function with a resolution between 0.8 

and 1.8, and visualized using the UMAP dimensional reduction method. 

Four main cell types were identified on these UMAP, combining both the information obtained from 

the UMAP clustering and cell type annotation from the authors. The main cell types were immune-, 

cancer-, endothelial cells and fibroblasts.  
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xCell analysis. The xCell34 algorithm was used to deconvolute the cellular composition of the tumor 

samples. xCell is a powerful machine learning framework trained on 64 immune and stromal cell 

datasets used to generate cell-type-specific enrichment scores and adjusting them to cell type 

proportions. The algorithm uses 10,808 genes as signatures to identify specific cell types from bulk 

tissue. The cell type enrichment scores were calculated for the OSL2 cohort (n=272) using the xCell34 

web tool (http://xcell.ucsf.edu/). Gene names from the expression data of the OSL2 cohort were 

harmonized with the gene list provided by the xCell tool prior to the analysis using the HGNChelper 

v0.7.1 R package. Pre-calculated xCell scores for TCGA tumor samples were downloaded from 

http://xcell.ucsf.edu/xCell_TCGA_RSEM.txt. 

Chromatin interaction mapping. ChIA-PET data defining long-range chromatin interactions in the 

ER positive MCF7 breast cancer cell line was obtained from ENCODE (Accession number 

ENCR000CAA31). Only in cis loops were included in the analysis. An emQTL was considered to be in 

a ChIA-PET Pol2 loop if the CpG and transcription start site (TSS) of its associated gene were found 

within the genomic intervals of two opposite feet of the same loop. Enrichment of CpGs in ChIA-PET 

Pol2 loops were calculated using hypergeometric test (R function phyper) with all possible in cis pairs 

between CpGs and genes of the Illumina HumanMethylation 450 Bead ChIP array as background. 

Computational chromatin interactions predicted by the IM-PET algorithm for the ER negative 

HCC1954 breast cancer cell line was retrieved from the 4Dgenome data portal71. BEDTools v2.27.172 

was used to intersect the CpG and gene positions with the genomic intervals defining the feets of the 

chromatin loops for the ChIA-PET and IM-PET data. Chromatin interaction plots were made using the 

Gviz (v1.32.0)73 and GenomicRanges (v1.40.0)74 R packages. Genome interaction tracks were made 

using the R package GenomicInteractions (v1.22.0)75.  
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enrichment; emQTL: Expression-methylation Quantitative Trait Loci Analysis; GEO: Gene 

Expression Omnibus; GSEA: Gene set enrichment analysis; IM-PET: Integrated Methods for 

Predicting Enhancer Targets; METABRIC: The Molecular Taxonomy Breast Cancer International 

Consortium; MSigDB: Molecular Signatures Database; PCs: Principal components; scRNA-seq: 

Single-cell RNA-sequencing; TCGA: The Cancer Genome Atlas; TF: Transcription factor; TFBR: 

Transcription factor binding region; TFBS: Transcription factor binding site; TNBC: Triple-negative 

breast cancer; UMAP: Uniform Manifold Approximation and Projection. 

 

Supplementary Tables 

Supplementary Table 1. Table of all the validated emQTL (a) CpGs (n=44,263) and (b) genes (n=4.904) obtained by 

spectral co-clustering of the inverse correlation coefficients from the OSL2 cohort by bicluster. Genomic locations shown in 

the tables are based on the hg19 genome assembly. (c) GSEA of the genes in Bicluster 1 (n = 1085), Bicluster 2 (n = 870), 

Bicluster 3 (n = 936), Bicluster 4 (n = 1087) and Bicluster 5 (n = 926) using the MSigDB H and C5 gene set collections. (d) 

Enrichment of CpGs in ChromHMM23 defined regulatory regions by bicluster. (e) Enrichment of CpGs in UniBind24 defined 

TFBS (±150 bp) by bicluster. Intra-bicluster in cis ChIA-PET Pol2 loops (f) and IM-PET loops (g) for all the five identified 

biclusters. (h) shows the identified potential proliferation-promoting candidates. In order for the proliferation-promoting 

candidate to be considered valid, the CpG had to be in opposite sides of ChIA-PET and IM-PET loops of a proliferation-

related gene and be located in an active intergenic region of either breast cancer subtype according to ChromHMM23. The 

CpG had to be found in the TFBR of one of the significantly enriched TFs from the TF enrichment analysis for the bicluster 

1-CpGs in UniBind24.  

Supplementary Table 2. GSEA of the genes in each of the five biclusters identified by spectral co-clustering of the absolute 

correlation coefficient values obtained from the emQTL analysis in OSL2 for the 44,263 and 4904 validated emQTL-CpGs 

and genes respectively (a). GSEA of the genes in each bicluster when performing spectral co-clustering of the inverse 

correlation coefficients when the number of biclusters k were set to be 8 (b) or 12 (c). 
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Figure 1. Identification and characterization of the emQTL biclusters. (a) Line chart showing the average
MSR score for the biclusters obtained by spectral co-clustering of the inverse correlation coefficients obtained form
the initial emQTL analysis OSL2 when the number of biclusters k were set to be a number between 2 and 20. (b)
Heatmap displaying the five biclusters identified by spectral co-clustering when k was set to be 5. The biclusters
will have a higher average value than the other rows and columns. Columns represents genes (n = 4904) and rows
(n = 44,263) represents CpGs. Blue points indicate strong negative correlations between the variables while red
points represent positive correlations. White points indicate little or no correlation. (c) GSEA of the genes in
Bicluster 1 (n = 1085), Bicluster 2 (n = 870), Bicluster 3 (n = 936), Bicluster 4 (n = 1087) and Bicluster 5 (n = 926)
using gene sets obtained from the MSigDB (H and C5 gene set collections). The length of the bars represents the
log-transformed Benjamini-Hochberg corrected p-values obtained by hypergeometric distribution. Red bars
indicate Hallmark gene sets while GO biological process, GO molecular function and GO cellular compartment
GO gene sub-collections are colored in orange, green and blue, respectively. Overlap between the gene list of the
bicluster and each MSigDB gene set is annotated within each bar.
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Figure 2. Functional characterization of the emQTL-CpGs in the cell cycle bicluster. (a) Bar plot showing enrichment of
the cell cycle bicluster-CpGs in ChomHMM23 defined genomic regions by subtype. The length of the bars represents the log-
transformed Benjamini-Hochberg corrected p-values. The color gradient of the bars represents fold enrichment in which a red
color indicates FE close to 3.5 while white bars are genomic regions by subtype with FE close to 0. An enrichment was
considered to be significant if the BH-corrected p-value was less than 0.05. (b) Bar plot representing enrichment of the cell
cycle bicluster-CpGs at the binding site of specific TFs according to UniBind24. Bar length display the log-transformed BH-
corrected p-value obtained by hypergeometric testing for each TF. Red color indicates FE close to 3.5 while a white color
indicates FE close to 0. (c) Unsupervised hierarchical clustering of DNA methylation levels of the 8641 cell cycle bicluster-
CpGs for the tumor samples in OSL2 with PAM50 status available (n=272). Rows represents CpGs and columns represent
histopathological features including PAM50 subtype and ER status of the tumor samples. Red points indicate methylated
CpGs while blue points represent unmethylated CpGs. Boxplots showing the average DNA methylation of the cell cycle
bicluster-CpGs in (d) OSL2 (n=272) and (e) TCGA (n=562) by PAM50 subtype. For TGCA, DNA methylation for adjacent
normal samples are also included (n=97). Kruskal-Wallis test p-values are denoted in the lower left corner.
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Figure 3. Expression of genes in the cell cycle bicluster. (a) Unsupervised clustering of the expression levels of the 1085
genes in the cell cycle bicluster for the tumor sin the OSL2 breast cancer cohort (n = 272). Rows represents genes and columns
represents samples annotated with histopathological features including PAM50 subtype and ER status. Red color indicates high
expression levels and blue color indicates low. Boxplots showing the average expression of genes in the cell cycle bicluster in
the (b) OSL2 (n = 272) and (c) TCGA (n = 981) breast cancer cohorts. Kruskal-Wallis test p-values are denoted. Scatterplots
showing the association between average DNA methylation of the cell cycle bicluster-CpGs versus average expression of the
genes contained within the same bicluster by ER status in the OSL2- (d) and TCGA (e) breast cancer cohorts. Pearson
correlation coefficients and p-values are denoted and colored by ER status.
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Figure 4. DNA methylation at enhancers facilitates target gene expression through enhancer-promoter interactions. (a)
Bar plot showing the enrichment of emQTL-CpGs in ChIA-PET Pol2 loops and IM-PET loops for the ER+ MCF7 and ER-
HCC1954 breast cancer cell lines, respectively. Bar height represents the enrichment level measured as the ratio between the
frequency of emQTLs (CpG-gene pairs) found in the head and tail of a loop over the expected frequency if such overlaps were
to occur at random. Enrichments that are statistically significant (hypergeometric test, Benjamini-Hochberg corrected p-value <
0.05) are marked with an asterisk. (b) Enhancers regulating proliferation-associated genes are hypomethylated which allows
TF binding and transcriptional activation of the enhancer target gene through physical enhancer-promoter interaction by
chromatin looping. (c) Example of a potential proliferation-promoting alteration in which the CpG (cg00733115) have been
found in one foot of a ChIA-PET Pol2 loop (red arc) and a gene associated with proliferation (PIM1) is found in the other.
Annotations for active intergenic enhancer regions and active promoters according to ChromHMM23 that are conserved across
the cell lines of similar subtype are shown in green and blue color respectively by breast cancer subtype. The binding sites of
FOS, FOSL1/2 are also shown. (d) Scatterplot showing the association between DNA methylation at the emQTL-CpG
cg00733115 and its associated gene (PIM1) by ER status. Pearson’s correlation coefficients and p-values are colored by ER
status.

a b

Expression OFF Expression ON

d

Active intergenic enhancer

Promoter

c

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439799doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439799
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5. The expression levels of genes in the cell cycle bicluster is associated with prognosis. Kaplan-Meier survival
curves for the cell cycle bicluster in METABRIC cohort, for Luminal A (a), Luminal B (b), Basal-like (c), Normal-like (d),
Her2-enriched (e) and all breast cancer subtypes (f). Tumors were divided into two groups based on the median expression of
genes in the cell cycle bicluster. P-values obtained by log-rank test are denoted.
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Figure 6. The EMT bicluster highlights an association between DNA methylation and fibroblast infiltration. (a)
Heatmap showing the unsupervised clustering of the expression levels of the 936 genes contained within the EMT bicluster
for 272 tumor samples from the OSL2 cohort. Rows represents genes and columns represent tumor samples annotated by
histopathological features including PAM50 subtype and ER status. The tumor samples were divided into quartile groups
based on fibroblast infiltration severity according to the relative amount of fibroblast in the tumor samples estimated by
xCell32. Difference in expression of the EMT bicluster genes between the quartile groups are shown for the OSL2 (b) and
TCGA (c) cohorts. Each quartile group consisted of 68 tumor samples in OSL2 and 139 samples in TCGA. Boxplots showing
the average DNA methylation at the 6910 CpGs contained within the EMT bicluster according to fibroblast infiltration score
in (d) OSL2 (n=272) and (e) TCGA (n=556). Average DNA methylation values for these CpGs for in the PMC42-LA before
and after EGF induced EMT. Fibroblasts, and the ER+ MCF7 and ER- MDAMB436 breast cancer cell lines are also included.
Kruskal-Wallis test p-values are denoted in the bottom left corner.
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Figure 7. Cell-type specific expression of the emQTL-bicluster genes. Combined UMAP plot for all 14 breast
cancer samples annotated by cell type (a). Dot plots showing the expression of the selected genes for each bicluster for
b all patients and for patients with a (c) Luminal A, (d) Luminal B, (e) Her2-enriched and (f) TNBC. The size of the
dot depicts the percentage of cells within each class and the intensity of the color shows the average expression level
of each class.
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