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ABSTRACT 

Individuals of the same chronological age vary widely in the biological signs of ageing that 

they exhibit. Allostatic Load and ‘Epigenetic Clock’ measures both attempt to characterise 

the accelerated ageing of biological systems, but at present it is unclear the extent to which 

these measures are complementary or distinct. The present study examines the cross-

sectional association of Allostatic Load (AL) burden with Epigenetic Age Acceleration 

(EAA) in a sub-sample of 490 community dwelling older-adults participating in The Irish 

Longitudinal study on Aging (TILDA). A battery of 14 biomarkers representing the 

activity of 4 different physiological systems: Immunological, Cardiovascular, Metabolic, 

and Renal was used to construct the AL score. DNA methylation age was computed 

according to the algorithms described by Horvath, Hannum and Levine. The ‘epigenetic 

clock’ allows for estimation of whether an individual is experiencing accelerated or 

decelerated ageing by defining epigenetic age acceleration (EAA) as the difference between 

DNA methylation age and chronological age. Horvath, Hannum and Levine EAA correlated 

0.05, 0.03, and 0.16 with AL respectively. Disaggregation by sex revealed that AL was more 

strongly associated with EAA in men compared with women as assessed using Horvath’s 

clock but not Hannum’s or Levine’s. Metabolic dysregulation was a strong driver of EAA 

in men as assessed using Horvath and Levine’s clock, while metabolic and cardiovascular 

dysregulation were associated with EAA in women using Levine’s  clock. Results indicate 

that AL and the epigenetic clocks are measuring different age-related variance and 

implicate sex specific drivers of biological ageing.  

 

Key words: epigenetic age acceleration; allostatic load; Horvath; Hannum; Levine; sex 

differences  
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INTRODUCTION 

In its broadest sense, ageing describes all the biological changes that occur in the body from 

the moment of conception to the moment we die. The ageing process is characterised by the 

presence of high inter-individual variation between individuals of the same chronical age1, 

and this has prompted a search for biomarkers that better capture this heterogeneity in the rate 

at which we age. A number of candidate measures have been mooted at the clinical, 

physiological, and molecular level for quantifying age acceleration. Frailty is a clinical state 

characterised by a multi-dimensional loss of reserve (diminished strength, endurance, and 

physiological function) across a host of physical systems that gives rise to vulnerability and 

dependency2 and is commonly defined by a host of clinical deficits. Allostatic Load (AL) by 

contrast, is a sub-clinical composite index of cumulative biological dysregulation across 

multiple organ systems that is posited to quantify the physiological toll of life course 

stressors3 that anticipates hard clinical endpoints4,5. Going deeper, there are also a large range 

of molecular markers of accelerated aging including metabolomic-based predictors (e.g. 

Metabolome); proteomic-based predictors (e.g. Ige glycosylation); markers of cellular 

senescence (e.g. telomere length); and methylation-based predictors (e.g. epigenetic clocks)6.  

 

Of these, the latter hold arguably the most promise as candidate markers of biological ageing. 

The epigenetic clocks correlate strongly with chronological age, and have been shown to be 

associated with many chronic diseases of ageing and mortality7. Horvath’s clock8 is a multi-

tissue predictor that allows the age of most tissues and cell types to be estimated based on 

DNA methylation (DNAm) levels at 353 CpG sites, while Hannum’s clock, which can only 

be measured in blood is based on levels at 71 CpG sites. The residual resulting from the 

regression of DNA methylation age on chronological age has been touted as a measure of 

biological ageing, with a positive / negative residual denoting age acceleration / deceleration 
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relative to chronological age respectively.9 This is a fast moving field and the first of the 

second generation clocks are already beginning to appear. Levine’s10 clock was developed 

using clinical biomarkers (i.e. albumin, creatinine, glucose, CRP, lymphocyte percent, mean 

cell volume, red cell distribution width, alkaline phosphatase, white blood cell count), and 

optimised to capture CpG sites that exhibited differences in disease and mortality outcomes 

among same aged individuals; in addition to those CpG sites that exhibited changes in DNA 

methylation with age. The resulting DNAm Phenoage clock, which is based on DNAm at 513 

CpG sites has been shown to outperform the first generation of clocks in relation to the 

prediction of many age-related diseases7. 

 

What is currently unknown is the extent to which putative measures of biological ageing at 

different levels are complementary or distinct. The limited evidence that does exist does not 

provide very compelling evidence that they are tapping the same underlying construct. For 

one thing, telomere length and epigenetic clock measures correlate close to zero even though 

both have been mooted to measure the ticking rate of the biological clock11-13. For example, 

Marioni et al.13 found that Hannum age and telomere length correlated between -0.08 and 

0.19 in the 1921 and 1936 Lothian Birth Cohorts. The fact that the epigenetic clock and 

telomere length were independently associated with age and with mortality risk in separate 

multivariable regression models suggests that these two measures are tapping different age-

related processes.  

 

Similarly, Belsky et al.11 examined the inter-relationships between 4 measures of molecular 

ageing (telomere length, Horvath, Hannum and Weidner epigenetic clocks), and 3 clinical-

biomarker composites (Klemera-Doubal method (KDM) biological age14, age-related 

homeostatic dysregulation, and pace of ageing15), among a sample of 800 participants in the 
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Dunedin longitudinal Study. Telomere length correlated near zero with the 3 epigenetic clock 

measures and with the 3 clinical biomarker composites measured cross-sectionally at 38 years 

of age. The 3 epigenetic clock measures were moderately inter-correlated (r = 0.32 - 0.52), as 

were the 3 clinical biomarker composites (r= 0.39 - 0.56) but the overlap between the 

epigenetic clocks and the clinical composites did not exceed 0.15. Breitling et al.12 also 

observed a non-significant association between Horvath’s EAA residual and telomere length 

in a large cohort of German participants (n=1820), but they did report a significant 

association between Horvath’s EAA and a 34 deficit frailty index. Adjusting for age, sex and 

leukocyte distribution, the frailty index increased by 0.25% for each additional year of EAA.  

 

Thus we have a number of candidate biological age predictors that seemingly share little in 

common. In a recent commentary, Shiels et al.1 speculated that: “The epigenetic component, 

which has the capacity to transmit both intergenerationally and transgenerationally, is 

particularly intriguing, as it may act as the body's hamartia in facilitating the spread of 

allostatic load across the whole organism”. If so, then one might expect to see substantial 

correlations between measures of epigenetic ageing and AL. To the best of our knowledge, 

no study has yet examined the extent to which these two measures are related or distinct, so 

the present study will help fill this deficit.  

 

METHOD 

Sample 

The Irish Longitudinal Study on Ageing (TILDA) is a large prospective cohort study 

examining the social, economic, and health circumstances of 8,175 community-dwelling 

older-adults aged 50 years of age and older resident in the Republic of Ireland. The sample 

was generated using a 3-stage selection process and the Irish Geodirectory as the sampling 
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frame. A detailed description of study design is available elsewhere.16 Briefly, respondents 

completed a computer-assisted personal interview (n = 8,175) in the home and a separate 

self-completion paper and pencil questionnaire (n = 6,915) that collected information on 

sensitive topics. All participants were invited to undergo a comprehensive clinical health 

assessment at one of two national centers using trained nursing staff and standard operating 

protocols.  

 

Epigenetic Sub-Sample 

This analysis uses a sub-sample of the TILDA cohort for whom we have DNA methylation 

data. The sample was selected on the basis of respondents’ life course social class trajectory 

using the cross-classification of father’s and respondent’s own social class. We purposefully 

selected 4 groups (stable low, stable high, upwardly mobile, downwardly mobile) comprising 

125 cases per group with random selection within each group in order to investigate the 

impact of life course (dis)advantage and mobility on later life health. The selection of the 

sample is described in detail elsewhere17. 

 

Measurement of Allostatic Load 

A battery of 14 biomarkers representing the activity of 4 different physiological systems: 

Immunological (C Reactive Protein (CRP), Interleukin 1 receptor-antagonist (IL1ra), 

Interleukin 6 (IL6), Interleukin 8 (IL8)), Cardiovascular (Systolic Blood Pressure (SBP), 

Diastolic Blood Pressure (DBP), Resting Heart Rate (RHR)), Metabolic (High Density 

Lipoprotein (HDL), Total cholesterol (TC), Waist-hip ratio (WHR), Body Mass Index 

(BMI), Glycated haemoglobin (HbA1c)), and Renal (Creatinine, Cystatin C) was used to 

construct the AL score. An overall AL score was calculated by computing the number of 

parameters for which a respondent fell within the highest risk quartile using sex-specific cut-
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offs. Following Seeman et al. (2014), we incorporated medication data into the calculation of 

our AL score. Medication use was recorded during the course of the household interview. 

Participants were classified as high risk in SBP if they were taking anti-hypertensive 

medication (C02, C03, C09), high risk in RHR if they were taking beta-blockers (C07) or 

calcium channel blockers (C08), high risk in glycated haemoglobin if taking any diabetes 

medications, including insulin (A10), and high risk in cholesterol if taking statins (C10AA, 

C10BA, C10BX). The overall level of missingness with respect to the AL biomarkers was 

very small. Only five people were missing on any biomarker and the maximum number of 

biomarkers for which any one person was missing was three or less. Following Castagne et 

al. (2018), a conservative approach (maximum bias imputation) was taken to those missing 

on any biomarker; by systematically classifying them as ‘not at risk’ if missing on the 

biomarker. 

 

CRP was measured using ELISA Kit (Cat No CYT298 Millipore), with sensitivity of 0.20 

ng/ml. A control serum from one donor and commercially available LiCheck control (Bio-

Rad, Ref. 591-596) were used as controls on all the plates. The inflammatory markers, IL1ra, 

IL6 and IL8 were measured by Luminex (Bio-Plex 200, Bio-Rad), and spiked serum as well 

as two concentrations of known samples were used as controls on each plate. Two 

measurements of seated SBP, DBP and RHR were obtained separated by a 1-min interval 

using an automatic digital BP monitor (OMRONTM, M10-IT). The means of the two 

readings were averaged to derive SBP, DBP and RHR. Respondents provided a non-fasting 

blood sample during the course of the health assessment and these were sent for immediate 

analysis (within 24 hrs) to derive a detailed lipid profile which included HDL, and TC. BMI 

was calculated from measured height and weight. Height was measured using a SECA 240 

wall mounted measuring rod and weight was measured using a SECA electronic floor scales. 
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WHR is a measure of distribution of body fat (both subcutaneous and intra-abdominal). The 

waist was defined as the point midway between the iliac crest and the costal margin (lower 

rib). The hip circumference was defined as being the widest circumference over the buttocks 

and below the iliac crest. HbA1c was analysed by reversed-phase cation exchange 

chromatography using an ADAMS HA-8180V analyser which is traceable to the 

internationally agreed standard developed by the International Federation of Clinical 

Chemistry. Cystatin C and Creatinine were measured simultaneously from frozen plasma. 

Cystatin C was measured using a second generation particle enhanced immunoturbidimetric 

assay (Roche Tina-quant™) on a Roche Cobas 701 analyzer. This assay has a measuring 

range of 0.40 – 6.80 mg/L and is traceable to the European reference standard material 

(ERM-DA471/IFCC) for Cystatin C. Creatinine was measured using an enzymatic method 

traceable to isotope-dilution mass spectrometry (Roche Creatinine plus ver.2, Roche 

Diagnostics, Basel Switzerland).  

 

Measurement of Epigenetic Age Acceleration 

For the microarray, DNA samples were extracted from buffy coats using the QIAGEN 

GENTRA AUTOPURE LS (Qiagen, Crawley, UK). Bisulphite conversion of 500 ng of each 

sample was performed using the EZ DNA Methylation-Lightning™ Kit according to the 

manufacturer’s protocol (Zymo Research, Orange, CA). Then, bisulfite-converted DNA was 

used for hybridization on the Infinium HumanMethylation 850k BeadChip, following the 

Illumina Infinium HD Methylation protocol. Briefly, a whole genome amplification step was 

followed by enzymatic end-point fragmentation and hybridization to HumanMethylation 

EPIC Chip at 48°C for 17 h, followed by single nucleotide extension. The incorporated 

nucleotides were labeled with biotin (ddCTP and ddGTP) and 2,4-dinitrophenol (DNP) 

(ddATP and ddTTP). After the extension step and staining, the BeadChip was washed and 
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scanned using the Illumina HiScan SQ scanner. The intensities of the images were extracted 

using the GenomeStudio (v.2011.1) Methylation module (1.9.0) software, which normalizes 

within-sample data using different internal controls that are present on the 

HumanMethylation 850k BeadChip and internal background probes. The methylation score 

for each CpG was represented as a β-value according to the fluorescent intensity ratio 

representing any value between 0 (unmethylated) and 1 (completely methylated). 

 

DNA methylation age was computed according to the algorithm described by Horvath 18, 

based on a set of 353 age-associated CpG sites, the one based on 71 blood-specific age-

associated CpG sites described by Hannum et al.(2013), and the one based on the 513 CpG 

sites described by Levine et al.10.  Out of the 889 age-related CpGs, (6 are in common 

between Horvath and Hannum, 41 between Horvath and Levine, and 6 between Levine and 

Hannum) we detected 867 (more than 96%). The CpGs missing are those that are not present 

in the new Illumina 850k methylation BeadChip. Briefly, the DNA methylation age is 

computed as a weighted average of the age-related CpGs, with weights defined using a 

penalized regression model (Elastic-net regularization) 18. The few missing values were 

imputed using the k-nearest neighboring (KNN) imputation algorithm implemented in the R 

Bioconductor package impute19. Epigenetic Age Acceleration (EAA) was defined as the 

difference between epigenetic and chronological age. Positive values of EAA (that is, 

epigenetic age is higher than the chronological age) indicate accelerated ageing and vice 

versa. Since EAA could be correlated with chronological age and white blood cell (WBC) 

percentage, we computed the so-called ‘intrinsic’ EAA20, defined as the residuals from the 

linear regression of EAA with chronological age and WBC percentages20. The latter were 

estimated using the Houseman21 algorithm. Intrinsic EAA is not dependent on age and WBC 
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by definition. Ten individuals were missing on epigenetic age and are excluded from the 

analysis resulting in a final case base of 490 individuals.  

 

COVARIATES 

We control for a number of demographic variables in the minimally adjusted models 

including: age (years), sex (male, female) and life course socio-economic trajectory (stable 

high, downwardly mobile, upwardly mobile, stable low) in order to control for characteristics 

associated with selection into the sample. We adjust additionally for smoking (never smoked, 

past smoker, current smoker), physical activity level (low, medium, high), and frequency of 

alcohol consumption (non-heavy vs heavy drinker) in the full multivariable adjusted models 

to take account of differences in lifestyle-related behaviours that may confound results by 

sex. Physical activity was assessed using the eight-item short form of the International 

Physical Activity Questionnaire (IPAQ)22. It measures the amount of time (mins) spent 

walking and engaged in moderate and vigorous physical activity, and the amount of time 

spent sedentary. We use a categorical variable representing low, medium and high levels of 

physical activity as per the IPAQ protocol (www.ipaq.ki.se). Frequency of alcohol 

consumption was assessed by asking respondents how often they have drunk alcohol in the 

past six months (almost every day, five or six times a week, three or four days a week, once 

or twice a week, once or twice a month, less than once a month, not at all in the past six 

months). Individuals who drank more than four days per week on average were classified as 

heavy drinkers.  Six individuals were missing on the physical activity measure and 38 

individuals were missing on the alcohol consumption measure so we coded these as ‘missing’ 

using dummy variables so that they would not be lost to the analysis.  

 

Statistical Analysis 

http://www.ipaq.ki.se/
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We used Stata, version 15.0 (Stata, College Station, TX) for all analyses. We examined the 

bivariate associations between AL and the EAA measures using Pearson’s product-moment 

correlation coefficients in the overall sample and separately by sex. As AL represents a count 

of deficits, we also calculated the non-parametric (Spearman’s) and polyserial correlations, 

but these were very similar to Pearson’s. We used the Fisher r-to-z transformation to assess 

the significance of the difference between the correlation coefficients for men and women. 

We estimated a series of multivariable linear regression models where each measure of EAA 

was regressed on AL adjusting for age, sex, and life course socio-economic trajectory in the 

basic adjusted model (model 1), and additionally for smoking history, physical activity, and 

alcohol consumption in the full multivariable adjusted model (model 2). We tested for effect 

modification by fitting a sex*AL interaction term which was significant with respect to 

Horvath’s, but not Hannum’s or Levine’s clock. We therefore report results for the overall 

sample and stratified by sex. The next step in the analysis involved estimating a series of 

multivariable linear regression models in which we regressed each measure of EAA 

separately on each of the 4 system components comprising the AL index (i.e. inflammatory, 

cardiovascular, metabolic, and renal burden), to determine whether some systems were more 

strongly associated with EAA than others. The final step in decomposing the relationship 

between AL and EAA involved estimating a series of linear regression models to examine the 

impact of being biologically dysregulated (i.e. highest quartile of clinical risk) in each of the 

14 biomarkers comprising the AL index on each measure of EAA.  

 

RESULTS 

Table 1 describes the characteristics of the sample. The mean age of the sample was 62.2 

years (SD = 8.3), and 49.8% were male. Table 2 shows the bivariate associations between 

chronological age, AL, and the three measures of EAA. In the overall sample, the correlation 



12 

 

between AL and the age acceleration residuals for the epigenetic clocks were close to zero: 

Horvath EAA (r=0.05), Hannum EAA (r = 0.03), and Levine (r=0.16).  Disaggregation by 

sex revealed that AL was more strongly associated with EAA in men using Horvath’s (r=0.16 

vs -0.05; Z=2.33; p=.002 two-tailed) but not Hannum’s (r=0.08 vs -0.02; Z=1.10; p=.271 two 

tailed), or Levine’s clocks (0.15 vs 0.16; Z= -0.11; p=0.91 two-tailed).  

 

Table 3 shows the results of the regression of each measure of EAA on AL burden adjusting 

for age, sex, and socio-economic trajectory in model 1, and additionally for smoking history, 

physical activity, and alcohol consumption in model 2. In the minimally adjusted models, a 

one unit increase in AL burden was associated with increased EAA using Levine’s clock, but 

not with Horvath’s or Hannum’s. Specifically, a one unit increase in AL was associated with 

0.35 (CI=0.16, 0.54; p<.001) years of EAA in the full sample using Levine’s clock; 0.31 

years for men (CI=0.03, 0.59; p=.029) and 0.39 years for women (CI=0.12, 0.66; p=.005). 

The significant association in men was rendered non-significant (B=0.23, CI=-0.05, 0.52) 

after adjustment for lifestyle factors in model 2.  

 

As AL is a multi-system composite index of physiological dysregulation, we decided to 

investigate further to establish whether there were system-specific components that were 

more strongly linked with EAA than others. Table 4 shows that metabolic dysregulation was 

closely associated with EAA in men with a one unit increase in metabolic burden associated 

with 0.99 (CI=0.23, 1.74; p=.011), 0.43 (CI= -0.34, 1.20; p>.05) and 0.59 (CI=0.05, 1.14; 

p=.033) years of EAA using Horvath’s, Hannum’s and Levine’s clocks respectively in the 

minimally adjusted models. Metabolic dysregulation continued to be strongly linked with 

EAA as assessed using Horvath’s clock when adjusted additionally for lifestyle factors in 

model 2 (B=1.03, CI=0.27, 1.80; p=0.008.). None of the other AL system components were 
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significantly associated with EAA in men. Women were characterised by a different pattern 

across the 3 epigenetic clocks (Table 4). In general, increases in inflammatory, cardiovascular 

and metabolic burden were unrelated to EAA in women when assessed using the Horvath and 

Hannum clocks in both the minimally and full multivariable adjusted models, but 

cardiovascular and metabolic dysregulation were associated with 0.87 (CI=0.15, 1.59; 

p=.019) and 0.61 (CI=0.05, 1.17; p=.032) years of EAA respectively using Levine’s clock in 

the minimally adjusted model (model 1); and these associations were not appreciably affected 

when adjusted additionally for lifestyle factors (model 2).  

 

Finally, figures 1a-1c display the EAA residual associated with being biologically 

dysregulated (i.e. highest risk quartile) in each of the 14 AL biomarkers separately for men 

and women across each of the 3 clocks in the full multivariable adjusted models. In general, 

we see that physiological dysregulation in the metabolic biomarkers carries a heavier EAA 

penalty for men compared with women as assessed using Horvath and Hannum’s clocks, and 

this effect was particularly pronounced for Hba1c. Dysregulation in HbA1c was associated 

with significant EAA in men across all 3 clocks: Horvath (B=3.29, CI=1.11, 5.48; p=0.003), 

Hannum (B=2.53, CI=0.30, 4.76; p=0.026) and Levine (B=2.36, CI=0.80, 3.92; p=0.003) 

while dysregulation in CRP was associated with significant EAA in men using Levine’s clock 

(B=1.91, CI=0.36, 3.45; p=0.016), and at the 10% level using Horvath (B=2.03, CI=-0.15, 

4.20; p=0.068) and Hannum’s clocks (B=2.09, CI=-0.11, 4.29; p=0.062). By contrast, none of 

the individual biomarkers were associated with EAA in women as assessed using Horvath’s 

or Hannum’s clocks. Dysregulation in SBP (B=1.60, CI=0.07, 3.12; p=0.040), DBP (B=2.48, 

CI=-0.88, 4.08; p=0.002) and WHR (B=2.51, CI=0.90, 4.12; p=0.002) were all associated 

with significant EAA in women using Levine’s clock. We tested formally for sex differences 

by fitting separate sex*biomarker interaction terms with respect to each of the 3 clocks; 
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however only two of the contrasts were statistically significant. Dysregulation in Hba1c was 

associated with significantly higher EAA in men compared with women using Horvath’s 

clock and dysregulation in DBP was associated with significantly higher EAA in women 

compared with men using Levine’s clock.  

 

DISCUSSION 

We found that the correlation between AL and the various measures of EAA were of small 

magnitude overall, and were higher for men compared with women, as assessed using 

Horvath’s clock. The small amount of overlap between AL and EAA suggests that the 

measures are tapping distinct rather than related biological ageing processes. Although one 

might intuitively expect that two putative measures of age acceleration would be positively 

correlated, it is consistent with the results of other studies that have shown minimal overlap 

between EEA and telomere length11-13, and between EEA and other clinical biomarker 

composites11,12. There is little doubt that the epigenetic clock tracks chronological age better 

than any other candidate biomarker. In this study the epigenetic clocks estimated from blood 

plasma correlated in the range 0.74 – 0.84 with chronological age, while AL was much more 

modestly correlated (r = 0.32) with chronological age; and was comparable in magnitude to 

the estimated correlation of 0.30 – 0.38 between telomere length and chronological age 

indicated by a recent systematic review23. What is more doubtful is whether the EAA residual 

resulting from the regression of DNA methylation age on chronological age represents the 

sine qua non of biological ageing.  

 

Marioni et al.24 failed to find an association between Horvath’s clock and walking speed in 

the 1936 Lothian Birth Cohort, although they did report a significant association with grip 

strength and lung function cross-sectionally. Notably, EAA did not predict change in function 
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in any of the measures over a 6-year follow-up. Maddock et al. (in submission) noted that 

Horvath and Hannum’s clocks were not associated with walking speed, grip strength, lung 

function, chair rises, or measures of cognition either cross-sectionally or at follow-up in a 

meta-analysis of the National Survey of Health and Development, the National Child 

Development Study, and Twins UK study. In a recent article, Horvath and Raj7 conceded that 

the first generation clocks exhibit only weak associations with clinical measures and that the 

second generation clocks may perform better in this regard. Consistent with this 

interpretation, McCrory et al17. (2019) found that Levine EAA was associated with slower 

performance on the timed-up-and-go task (TUG) and the Fried frailty phenotype, but not with 

activity limitations in cross-section, while Horvath and Hannum EAA were not associated 

with any of the outcome measures. By contrast, AL was associated with each of the 3 age-

related outcome variables under investigation, and more strongly than Levine’s clock. Thus 

while the first generation epigenetic clocks may well be tapping the ticking rate of the 

biological clock, which is seemingly strongly determined by early life factors25; they may not 

yet been fully capturing the biological age acceleration that is caused by extrinsic factors such 

as life course stressors.  

 

What explains the different pattern for men and women?  

AL burden was associated with EEA in men and women using Levine’s clock, but not with 

either Horvath or Hannum. The higher correlations of AL with Levine’s clock in all 

likelihood arises because Levine used some clinical biomarkers (CRP, creatinine, glucose) in 

the development of her clock that are also components of the AL index. Nevertheless, a 

striking feature of the data was the different results for men and women with respect to 

Horvath’s clock, where a one unit increase in AL burden was associated with a significantly 

heavier EAA for men compared with women in the minimally and full multivariable adjusted 
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models. Disaggregation of the AL index into its system specific components was instructive 

as it showed that metabolic dysregulation carried a heavier EAA penalty for men compared 

with women as assessed using Horvath’s clock, where a one unit increase in metabolic 

burden was associated with a ~1 year of EAA in men in the full multivariable adjusted 

models, while it was unrelated to EAA in women. By contrast, metabolic dysregulation was 

associated with EAA in men (~0.5 years) and women (~0.6 years) using Levine’s clock. We 

noted another important sex difference in that cardiovascular dysregulation was associated 

with EAA (~0.9 years) in women as assessed using Levine’s clock, but not in men. Indeed, 

the only consistent trend to emerge was that CRP and Cystatin C were in general associated 

with positive EAA in men and women across all 3 clocks.  

 

These differential findings with respect to men and women raise an important theoretical 

question as to whether there are different drivers of biological ageing in men and women, or 

whether the epigenetic clock estimators are confounded by other biological processes 

correlated with ageing such as differences in endogenous hormone levels, experience of 

menopause, or use of prescribed medications (e.g. hormone replacement therapy). Previous 

studies have shown that synthetic hormones (HRT) can affect the epigenetic clock26,27, that 

HRT is associated with reductions in fasting glucose, insulin resistance, and type 2 diabetes 

risk28 and that DNAm is increased in breast tissue29 (i.e. a very hormone responsive tissue). 

Women also have about 4 times the amount of endogenous estrogens compared with men30, 

which is important because estrogens possess potent anti-inflammatory and anti-oxidative 

properties which may help buffer host resistance against many age-related diseases.  

 

Unfortunately, we do not have any measures of endogenous hormone levels for participants 

in our sample, but it is entirely plausible that differences in hormone levels help account for 
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the sex differences we have observed. Less discussed but still plausible is that changes in 

androgen levels (i.e. testosterone) accelerate ageing related processes in men. Men have 

about 25 times the amount of testosterone compared with women and beginning around the 

age of 35-40 years testosterone decreases by approximately 1-3% per year.30 Moreover, 

testosterone deficiency is associated with insulin resistance and may predispose older men to 

the metabolic syndrome or type 2 diabetes31,32. Future studies should be designed to address 

these possibilities by examining which genes the CpG sites are located at, and whether they 

have a link to metabolism near estrogen or androgen regulated genes. 

 

The finding that metabolic dysregulation is associated with EAA in men and women using 

Levine’s clock adds to a growing corpus of research implicating adiposity as a major 

determinant of cellular ageing. Horvath33 has previously reported that BMI correlated 0.42 

with EAA in liver tissue but not in blood, which may help explain the null finding with 

respect to Hannum’s clock. Moreover, there is accumulating evidence that adiposity may 

drive epigenetic changes in DNA methylation patterns rather than the reverse34-36, but it 

remains to be established whether these epigenetic changes represent an intermediate stage 

between adiposity and age-related diseases37 or whether they merely serve as a marker of 

cumulative biological insults at the cellular level without necessarily being a cause of disease 

per se.  

 

Limitations 

The sample design was selective, which may have led us to underestimate the potential 

association between AL and EAA that we might observe in the full sample. We feel this is 

unlikely however, as previous studies that were less selective also showed minimal overlap 

between the epigenetic clocks and a range of clinical biomarker composites that bear a close 
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resemblance to AL11. A further limitation is that our measure of AL does not include 

measures of sympathetic-adrenal medullary (e.g. epinephrine, norepinephrine) or 

hypothalamic-pituitary-adrenal axis (e.g. cortisol, DHEAS) activation which are hypothesised 

to play a primary role in the physiological cascade that drives secondary organ damage (i.e. 

immune, cardiovascular, metabolic), that in turn is hypothesised to precipitate earlier disease 

and morbidity. Indeed, some recent studies suggest DNAm levels may help regulate gene 

expression of cortisol in particular stress related genes38,39. Perhaps the correlation with AL 

would have been higher if these measures were part of our AL index.   

 

Strengths 

These limitations are balanced by a number of strengths. We have measures of AL burden 

and 3 epigenetic clocks for a relatively large sample of community-dwelling older persons 

which allowed us to examine the empirical overlap between different biomarkers of ageing. 

Each participant also completed a comprehensive clinic-based health assessment 

administered by trained nurses using standard operating protocols which allowed us to 

examine the association of each of the biological age measures with indices of physical health 

and functioning in later life that anticipate hard clinical end-points.  

 

CONCLUSIONS 

In a recent review of biological age predictors, the epigenetic clock was mooted to represent 

the most promising candidate biomarker of ageing that we currently have6. The results of this 

study, while not conclusive, calls for some re-evaluation of whether the age acceleration 

residual from the epigenetic clocks actually represents “biological ageing” and further 

investigation of the extent to which they are confounded by sex.  
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Table 1: Descriptive characteristics of the Sample 

 

 All Sample 

(n=490) 

Men 

(n=244) 

Women 

(n=246) 

 Mean (SD) or 

 n (%) 

Mean (SD) or 

 n (%) 

Mean (SD) or 

 n (%) 

Age 62.2 (8.3) 61.9 (8.1) 62.5 (8.5) 

    

Horvath EAA 0.0 (7.4) 0.12 (7.2) -0.12 (7.5) 

Hannum EAA 0.0 (7.3) 0.07 (7.2) -0.07 (7.4) 

Levine EAA 0.0 (5.2) 0.25 (5.1) -0.25 (5.3) 

    

Allostatic Load 4.06 (2.58) 4.10 (2.43) 4.02 (2.71) 

- Inflammatory 0.97 (1.03) 0.96 (1.00) 0.99 (1.05) 

- Cardiovascular 1.11 (0.97) 1.16 (0.97) 1.07 (0.98) 

- Metabolic 1.50 (1.23) 1.51 (1.21) 1.50 (1.26) 

- Renal 0.47 (0.72) 0.47 (0.70) 0.47 (0.73) 

    

Life course trajectory    

- Stable high 123 (24.7) 64 (26.2) 59 (24.0) 

- Upwardly mobile 125 (25.1) 62 (25.4) 63 (25.6) 

- Downwardly mobile 121 (24.7) 58 (23.8) 63 (25.6) 

- Stable low 121 (25.5) 60 (24.6) 61 (24.8) 

    

Smoking history    

- Never smoked 193 (39.4) 91 (37.3) 102 (41.5) 

- Past smoker 211 (43.1) 109 (44.7) 102 (41.5) 

- Current smoker 86 (17.6) 44 (18.0) 42 (17.1) 

    

Physical Activity    

- Lowest 142 (29.0) 55 (22.5) 87 (35.4) 

- Intermediate 175 (35.7) 85 (34.8) 90 (36.6) 

- Highest 167 (34.1) 101 (41.4) 66 (26.8) 

- Missing 6 (1.2) 3 (1.2) 3 (1.2) 

    

Heavy drinker     

- No 393 (80.2) 189 (77.5) 204 (82.9) 

- Yes 59 (12.0) 36 (14.8) 23 (9.4) 

- Missing 38 (7.8) 19 (7.8) 19 (7.7) 
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Table 2: Zero-order correlations between chronological age and the biological age 

predictors estimated using Pearson’s product-moment correlation 

 

All Sample Age Horvath’s 

clock  

Horvath 

EAA 

Hannum’s 

clock 

Hannum 

EAA 

Levine’s 

clock  

Levine 

EAA 

Horvath’s clock  0.74***       

Horvath EAA 0.00 0.67***      

Hannum’s clock 0.74*** 0.92*** 0.56***     

Hannum EAA 0.00 0.55*** 0.83*** 0.67***    

Levine’s clock  0.84*** 0.66*** 0.05 0.66*** 0.04   

Levine EAA 0.00 0.06 0.10 0.06 0.09 0.54***  

Allostatic Load 0.32*** 0.26*** 0.05 0.25*** 0.03 0.35*** 0.16*** 

        

Men Age Horvath’s 

clock  

Horvath 

EAA 

Hannum’s 

clock 

Hannum 

EAA 

Levine’s 

clock  

Levine 

EAA 

Horvath’s clock  0.78***       

Horvath EAA 0.13 0.72***      

Hannum’s clock 0.77*** 0.92*** 0.62***     

Hannum EAA 0.08 0.57*** 0.81*** 0.69***    

Levine’s clock  0.85*** 0.72*** 0.20** 0.70*** 0.15*   

Levine EAA 0.04 0.14* 0.18** 0.13* 0.16* 0.56***  

Allostatic Load 0.23*** 0.26*** 0.16* 0.22** 0.08 0.27*** 0.15* 

        

Women Age Horvath’s 

clock  

Horvath 

EAA 

Hannum’s 

clock 

Hannum 

EAA 

Levine’s 

clock  

Levine 

EAA 

Horvath’s clock  0.70***       

Horvath EAA -0.11 0.63***      

Hannum’s clock 0.72*** 0.92*** 0.51***     

Hannum EAA -0.09 0.54*** 0.85*** 0.64***    

Levine’s clock  0.83*** 0.59*** -0.09 0.61*** -0.06   

Levine EAA -0.03 -0.02 0.02 0.00 0.03 0.52***  

Allostatic Load 0.39*** 0.27*** -0.05 0.29*** -0.02 0.42*** 0.16* 

 

*** significant at the 0.001 level; **significant at the 0.01 level; *significant at the 0.05 level 



27 

 

Table 3: Epigenetic age acceleration (years) associated with a one unit increase in 

allostatic load burden in baseline and multivariable adjusted models 

 

 HORVATH EAA HANNUM EAA LEVINE EAA 

 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

 B (95% CI) B (95% CI) B (95% CI) B (95% CI) B (95% CI) B (95% CI) 

All Sample 0.11 

(-0.16, 0.38)  

0.15 

(-0.13, 0.43) 

0.06 

 (-0.21, 0.33) 

0.09 

(-0.19, 0.37) 

0.35*** 

(0.16, 0.54) 

0.32*** 

(0.13, 0.51) 

Men 0.33 

(-0.06, 0.71) 

0.36 

(-0.05, 0.76) 

0.12 

(-0.27, 0.52) 

0.20 

(-0.22, 0.61) 

0.31* 

(0.03, 0.59) 

0.23 

(-0.05, 0.52) 

Women -0.03 

(-0.43, 0.36) 

0.03 

(-0.36, 0.43) 

0.04 

(-0.35, 0.42) 

0.08 

(-0.32, 0.47) 

0.39** 

(0.12, 0.66) 

0.40** 

(0.13, 0.68)  

 

Model 1: Adjusted for age, sex, and socio-economic trajectory 

Model 2: Model 1 + smoking, physical activity, alcohol consumption 

*** significant at the 0.001 level; **significant at the 0.01 level; *significant at the 0.05 level 
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Table 4: Epigenetic age acceleration (years) associated with being dysregulated in each 

of the four systems comprising the allostatic load index in baseline and multivariable 

adjusted models 

 

 HORVATH EAA HANNUM EAA LEVINE EAA 

 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

All Sample B (95% CI) B (95% CI) B (95% CI) B (95% CI) B (95% CI) B (95% CI) 

Inflammatory 0.11 

(-0.53, 0.76) 

0.20 

(-0.45, 0.86) 

0.15 

(-0.49, 0.80) 

0.24 

(-0.41, 0.89) 

0.41 

(-0.04, 0.87) 

0.33 

(-0.13, 0.79) 

Cardiovascular -0.29 

(-0.99, 0.41) 

-0.29 

(-1.00, 0.41) 

-0.22 

(-0.92, 0.47) 

-0.21 

(-0.92, 0.49) 

0.52* 

(0.03, 1.01) 

0.44 

(-0.05, 0.94) 

Metabolic 0.42 

(-0.13, 0.97) 

0.43 

(-0.12, 0.97) 

0.19 

(-0.35, 0.74) 

0.20 

(-0.34, 0.75) 

0.60** 

(0.22, 0.99) 

0.56** 

(0.18, 0.95) 

Renal 0.39 

(-0.60, 1.38) 

0.66 

(-0.34, 1.67) 

0.21 

(-0.77, 1.20) 

0.39 

(-0.62, 1.39) 

0.58 

(-0.12, 1.28) 

0.54 

(-0.17, 1.25) 

Men       

Inflammatory 0.45 

(-0.47, 1.36)  

0.41 

(-0.54, 1.35) 

0.41 

(-0.51, 1.33) 

0.53 

(-0.43, 1.48) 

0.43 

(-0.23, 1.08) 

0.29 

(-0.39, 0.97) 

Cardiovascular -0.26 

(-1.21, 0.69) 

-0.28 

(-1.25, 0.68) 

-0.37 

(-1.32, 0.58) 

-0.31 

(-1.29, 0.67) 

0.21 

(-0.48, 0.89) 

0.06 

(-0.63, 0.75) 

Metabolic 0.99* 

(0.23, 1.74) 

1.03** 

(0.27, 1.80) 

0.43 

(-0.34, 1.20) 

0.51 

(-0.27, 1.29) 

0.59* 

(0.05, 1.14) 

0.51 

(-0.04, 1.05)  

Renal 0.40 

(-0.99, 1.79) 

0.60  

(-0.86, 2.07) 

-0.01 

(-1.41, 1.39)  

0.17 

(-1.31, 1.65) 

0.55 

(-0.45, 1.55) 

0.40 

(-0.64, 1.45) 

Women       

Inflammatory -0.11 

(-1.03, 0.82) 

0.01 

(-0.93, 0.94) 

-0.03 

(-0.95, 0.89)  

0.04 

(-0.89, 0.97) 

0.41 

(-0.24, 1.06) 

0.36 

(-0.31, 1.02) 

Cardiovascular -0.18 

(-1.21, 0.86) 

-0.06 

(-1.10, 0.99) 

0.05 

(-0.97, 1.07) 

0.12 

(-0.92, 1.16) 

0.87* 

(0.15, 1.59) 

0.91* 

(0.18, 1.65) 

Metabolic -0.08 

(-0.87, 0.72) 

-0.04 

(-0.83, 0.76) 

0.01 

(-0.77, 0.80) 

0.03 

(-0.77, 0.82) 

0.61* 

(0.05, 1.17) 

0.66* 

(0.10, 1.23) 

Renal 0.36 

(-1.04, 1.77) 

0.64 

(-0.77, 2.06) 

0.41 

(-0.97, 1.80) 

0.59 

(-0.83, 2.01) 

0.61 

(-0.38, 1.60) 

0.64 

(-0.37, 1.65) 

 

Model 1: Adjusted for age, sex, and socio-economic trajectory 

Model 2: Model 1 + smoking, physical activity, alcohol consumption 

*** significant at the 0.001 level; **significant at the 0.01 level; *significant at the 0.05 level 
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Figures 1a: Horvath epigenetic age acceleration (years) associated with being in the highest quartile of clinical risk across each of the 14 

allostatic load biomarkers separately by sex 

 

 

 

Error bars represent the 95% confidence intervals 

Model 1: Adjusted for age, and socio-economic trajectory 

Model 2: Model 1 + smoking, physical activity, and alcohol consumption 
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Figures 1b: Hannum epigenetic age acceleration (years) associated with being in the highest quartile of clinical risk across each of the 14 

allostatic load biomarkers separately by sex 

 

 

 

Error bars represent the 95% confidence intervals 

Model 1: Adjusted for age, and socio-economic trajectory 

Model 2: Model 1 + smoking, physical activity, and alcohol consumption 
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Figures 1c: Levine epigenetic age acceleration (years) associated with being in the highest quartile of clinical risk across each of the 14 

allostatic load biomarkers separately by sex 

 

 

 

Error bars represent the 95% confidence intervals 

Model 1: Adjusted for age, and socio-economic trajectory 

Model 2: Model 1 + smoking, physical activity, and alcohol consumption 

 


