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Abstract

Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of several malignancies of endothelial and B-cell origin.

The fact that latently infected tumor cells in these malignancies do not express classical viral oncogenes suggests that pathogen-

esis of KSHV-associated disease results from multistep processes that, in addition to constitutive viral gene expression, may

require accumulation of cellular alterations. Heritable changes of the epigenome have emerged as an important co-factor that

contributes to the pathogenesis of many non-viral cancers. Since KSHVencodes a number of factors that directly or indirectly

manipulate host cell chromatin, it is an intriguing possibility that epigenetic reprogramming also contributes to the pathogenesis

of KSHV-associated tumors. The fact that heritable histone modifications have also been shown to regulate viral gene expression

programs in KSHV-infected tumor cells underlines the importance of epigenetic control during latency and tumorigenesis. We

here review what is presently known about the role of epigenetic regulation of viral and host chromatin in KSHV infection and

discuss how viral manipulation of these processes may contribute to the development of KSHV-associated disease.
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Introduction

According to current estimates, at least 10% of all worldwide

cancer cases are attributable to viral infections [1]. Kaposi

sarcoma-associated herpesvirus (KSHV) is one of the eight

causative viral species that are presently recognized as class

1 or 2A human carcinogens [2, 3]. The virus was discovered in

1994 by Chang and colleagues [4] in biopsies from AIDS

patients suffering from Kaposi sarcoma (KS). KS, first de-

scribed in 1872 byMoritz Kaposi [5], is an angiosarcoma that

had been rare until it saw a dramatic increase in incidence in

the wake of the 1980s AIDS epidemic. The incidence has

since fallen due to the availability of combination antiretrovi-

ral therapies (cART) that efficiently control HIV, yet KS con-

tinues to be the most common neoplasm in HIV-positive

individuals [6] and remains a leading cause of morbidity and

mortality in sub-Saharan Africa. KS is a multifocal tumor with

lesions of a very heterogeneous cellular composition (see [7]

for a recent review onKS). The proliferating tumor cells in KS

lesions, commonly called spindle cells because of their elon-

gated shape, are thought to be of endothelial or mesenchymal

origin [8–10]. In addition to spindle cells, the lesions typically

also contain abundant inflammatory infiltrates as well as slit-

like neovascular spaces. So far, no continuously growing cell

line has been established from KS tumors. This may suggest

that KS spindle cells are not fully transformed and depend on

additional paracrine signals for continued growth.

In addition to KS, KSHV is also linked to two B-cell ma-

lignancies: primary effusion lymphoma (PEL) and the

plasmablastic form of multicentric Castleman disease

(MCD) [11, 12]. PEL is a fully neoplastic disease in which

100% of the tumor cells are monoclonally infected with

KSHV. Continuously growing cell lines can be readily

established from primary PEL material. These tumor-derived

cell lines efficiently maintain KSHV infection and serve as an

important model for the study of latency and reactivation

[13–15]. In contrast to PEL, plasmablastic MCD is a poly-

clonal tumor in which nearly all lymph nodes also harbor

KSHV-infected B cells that secrete high levels of
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inflammatory cytokines (reviewed in [16]). In addition to the

above cancers, KSHV is also associated with two non-neo-

plastic, systemic inflammatory diseases: KS immune reconsti-

tution syndrome (KS-IRIS) [17, 18] and KSHV-inflammatory

cytokine syndrome (KICS) [19, 20]. Like in MCD, cytokine

secretion by KSHV-infected B cells is thought to be at the root

of the disease.

Numerous molecular, immunological, and epidemiological

studies have provided overwhelming evidence that KSHV is

causally linked to the etiology of the above diseases.

However, KSHV’s precise contribution to tumorigenic pro-

cesses, especially regarding cellular transformation, remains

unclear. In contrast to some transforming and/or tumorigenic

viruses that encode potent oncogenes (e.g., the polyomavirus

Tantigens or the Epstein Barr Virus (EBV) LMP1 protein), no

individual KSHV gene product appears to transform primary

human cells by itself. Nevertheless, the ability of several viral

proteins and non-coding RNAs to inactivate cellular immune

or cell cycle check points (reviewed in [21–25]), together with

the fact that tumor-derived PEL cell lines depend on viral gene

expression for their survival [26–28], suggests that viral gene

products play a pivotal role in the pathogenesis of KSHV-

associated tumors. It is therefore most likely that the tumor

cells may acquire heritable changes that, in combination with

continued viral gene expression, result in malignant transfor-

mation. Proto-oncogene or tumor suppressor genes such as

TP53, KRAS, or MYC that are frequently mutated in cancers

are typically unaffected in PEL and KS tumors [13, 29–34].

Hence, it is an intriguing possibility that epigenetic changes

contribute to the pathogenesis of KSHV-associated disease.

Given that KSHV encodes many gene products which can

modulate host cell chromatin, one of its tumor-promoting ac-

tivities may be to either directly induce epigenetic alterations

or to increase the likelihood with which such changes may

occur. In addition, epigenetic modifications of viral chromatin

have recently been shown to control latent viral transcription,

suggesting that growth-promoting gene expression programs

may result from a specific epigenetic profile adopted by viral

episomes. We here will review the current knowledge regard-

ing chromatin-modifying activities of KSHV gene products

and discuss the role of epigenetic alterations in the viral life

cycle and their putative contribution to the pathogenesis of

KSHV-associated cancers.

KSHV: The virus

KSHV is a member of the Gammaherpesvirinae and, together

with EBV, forms the human branch of this herpesvirus sub-

family. Both EBV and KSHV can cause tumors or

hyperproliferative diseases, an ability which they share with

several other gammaherpesviruses. Gammaherpesviruses es-

tablish long-term reservoirs of infection in lymphocytes

(although other cell types, like epithelial cells or fibroblasts,

can typically also be infected). It is thought that these viruses

may promote host cell proliferation as a strategy to expand

latently infected lymphocyte pools and gain access to long-

lived memory lymphocyte compartments. In line with this,

gammaherpesviruses have been found to employ sophisticat-

ed mechanism to ensure latent genome maintenance in prolif-

erating cells, a feature which is also essential for the mainte-

nance of non-integrated episomes in tumor cells.

KSHV has a double-stranded DNA genome of approxi-

mately 170 kb. Most of the more than 90 genes encoded by

KSHV are required for productive replication. During this

phase of the viral life cycle, the so-called lytic genes are tran-

scribed in a cascading manner, resulting in massive amplifi-

cation of viral genomes, genome packaging, release of new

virions, and, ultimately, lysis of the host cell. Like all members

of the herpesviruses, KSHV is also able to establish latent

infections. Latently infected cells do not produce any viral

progeny and remain fully viable, thus allowing the virus to

evade host immune surveillance mechanisms and persist for

virtually indefinite periods of time. During canonical latency,

lytic genes are transcriptionally silenced, and the virus ex-

presses only a minimal set of genes that promote viral persis-

tence and host cell survival. Latent gammaherpesvirus ge-

nomes generally persist as non-integrated, fully chromatinized

episomes in the nucleus of the infected cells. Since such ele-

ments lack a kinetochore, one of the most important functions

of latency products is to ensure that viral episomes are prop-

erly segregated to daughter cells upon cell division. Indeed,

many (if not all) gammaherpesviruses encode latently

expressed nuclear proteins that tether viral episomes to mitotic

host chromosomes, which thus become piggyback vectors for

efficient episome partitioning. Additionally, some of these

factors have been demonstrated to directly recruit the cellular

replication machinery to viral episomes. In KSHV, these func-

tions are mediated by the multifunctional latency-associated

nuclear antigen or LANA. LANA binds via a carboxyterminal

domain to distinct binding motifs in the viral terminal repeats

(TRs), whereas an amino terminal region interacts with his-

tones H1, H2A, and H2B as well as several other chromatin

factors [35–45]. As discussed later, LANA and other latency

products can also affect local chromatin states to control cel-

lular gene expression.

In addition to ensuring episomemaintenance, KSHV laten-

cy products also can promote proliferation and survival of

infected host cells. For example, LANA has been reported to

interfere with p53, Rb, and β-catenin pathways [46–48].

During the normal viral life cycle, these functions are thought

to support expansion of latently infected lymphocyte pools,

but they are also likely to play an important role during tumor-

igenesis. Besides LANA, cells latently infected with KSHV

constitutively produce a viral cyclin D homolog (vCyclin), a

flice inhibitory-protein-like protein (vFlip), the Kaposin
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family of proteins, and several highly expressed microRNAs

(miRNAs). Like its cellular counterpart, vCyclin can mediate

cell cycle progression but is less sensitive to p27, p21, and p16

inhibition [49–52]. vFlip mediates potent antiapoptotic func-

tions via constitutive upregulation of the transcription factor

NF-κB [53–56], whereas Kaposins can stabilize AU-rich host

transcripts such as cytokine-encoding mRNAs. Finally, the

viral miRNAs [57–60] have been shown to antagonize expres-

sion of multiple pro-apoptotic, growth inhibitory, or antiviral

factors (reviewed in [61–63]). Like their cellular counterparts,

they are also able to alter the differentiation status of latently

infected cells [64–67].

All of the above genes are produced from alternatively

spliced transcripts that originate from a single promoter up-

stream of the LANA coding region [57–60, 68, 69], a promot-

er that is constitutively active in KSHV-positive tumor cells as

well as in all in vitro latency models studied so far. Besides

this core set of canonical latency genes, there are also some

genes that are latently expressed in a cell type-specific manner

or that are only expressed at low level or in a subfraction of a

latently infected population.

These include vIRF3 (also termed LANA2), a protein with

homology to human interferon-regulatory factors (IRFs) that

is expressed in latently infected B cells, and vIL-6, a viral

homolog of the pro-inflammatory cytokine interleukin 6 (IL-

6) which is highly expressed in MCD [26, 70–72]. vIRF3

interacts with several cellular IRFs and other transcription

factors to antagonize interferon pathways, promote prolifera-

tion, and inhibit apoptosis (reviewed in [73]), whereas vIL-6

can signal through the cellular IL-6 receptor even in the ab-

sence of its gp80 subunit to exert antiapoptotic and pro-

inflammatory functions in a paracrine manner [74].

Given the fact that most proliferating cells in

gammaherpesvirus-associated cancers are latently infected,

the viral latency program is generally considered the driving

force of tumorigenesis. However, despite the many potentially

proto-oncogenic functions described above, KSHV latency

products alone are unable to robustly transform cells in vitro

and also do not efficiently induce tumors in in vivo mouse

models. One possible explanation for this fact is that KSHV-

encoded latency genes may act in concert with lytic genes to

induce tumors. This may seem counterintuitive at first, con-

sidering that cells undergoing lytic replication are bound to

die. However, several KSHV-encoded factors are secreted

from lytic cells or can induce secretion of cellular signaling

molecules that can affect other latently infected (or uninfected)

cells in a paracrine manner. An important factor among these

is vGPCR, a constitutively active G–protein–coupled chemo-

kine receptor homolog [75] which triggers PI3K and p38

MAPK pathways to promote proliferation and angiogenesis

(reviewed in [76, 77]). In addition to such paracrine signals,

there is mounting evidence that the viral latency program may

not be as rigid as previously thought [78–82]. Indeed,

depending on the cellular background or the microenviron-

ment, several lytic genes can be expressed outside of the

replicative/productive cycle. For example, in vitro infected

primary lymphatic endothelial cell (LECs) can adopt a gene

expression profile that does not clearly correspond to either

canonical latent or lytic transcription programs [82]. Hence,

persistently infected cells may be able to adopt alternative

forms of viral latency, and conditional expression of alterna-

tive latency factors may be an important contributor to trans-

formation and tumorigenesis.

Epigenetic control in KSHV infection
and pathogenesis

The term “epigenetic” describes heritable phenotypic traits or

changes that do not result from alterations of the DNA se-

quence itself. On the molecular level, most epigenetic phe-

nomena are mediated via regulation of gene accessibility and

activity through methylation of DNA (which in mammals is

usually repressive and almost exclusively occurs at C-G dinu-

cleotides and therefore is also referred to as CpG methylation)

or by post-translational histone modifications (histone PTMs)

(see [83–88] for reviews). DNA methylation patterns can be

autonomously copied beyond replication forks. Due to their

mitotic inheritability, such patterns are thus epigenetic in the

stricter sense. Importantly, this is not generally true for histone

modifications. Although changes in histone PTMs are often

universally referred to as epigenetic, many histone PTMs (in-

cluding histone acetylation) only have a short half-life and are

not autonomously transmitted to daughter cells upon cell di-

vision. Hence, maintaining such patterns usually requires a

sustained trigger, such as continuous binding of a transcription

factor. The precise contingent of inheritable histone modifica-

tions is not yet known, but it is widely agreed that at least two

marks can be considered epigenetic: methylation of histone

H3 at lysine 9 or lysine 27 (H3K9 and H3K27, respectively)

[89, 90]. In their tri-methylated state, both marks are repres-

sive, but while H3K9-me3 is mainly found in constitutive

heterochromatin, H3K27-me3 is a more dynamic facultative

heterochromatin mark that is associated with transcriptional

repression by polycomb repressive complexes (PRCs)

(reviewed in [91–93]).

When considering the pathogenesis of KSHV-associated

tumors (see Fig. 1a for a model of KS), epigenetic control is

of interest in the context of viral as well as cellular gene reg-

ulation: Firstly, epigenetic mechanisms have been shown to

control the viral latency program [94–98]. How the latent viral

epigenome itself is established and regulated and to what ex-

tend alterations in its profile are directly responsible for the

adoption of alternate latency programs are areas of active re-

search. Secondly, several KSHV gene products have been

shown to directly or indirectly alter the cellular epigenome.

Semin Immunopathol (2020) 42:143–157 145



This not only includes canonical latency genes such as LANA

but also normally lytic genes that may be stably or transiently

expressed under certain conditions during latency. As depicted

in Fig. 1a, over time the accumulation of epigenetic alterations

in latently infected cells may contribute to the pathogenesis of

KSHV-associated tumors. Another potential role relates to the

Fig. 1 Epigenetic control in KS pathogenesis and latency establishment.

a Model of epigenetic control mechanisms in KS pathogenesis.

Following infection of a spindle cell precursor, KSHV establishes a

latent infection. In addition to constitutively expressed latent genes,

transient expression of lytic genes during the establishment phase or

lytic gene expression that may result from partial de-repression of the

viral genome may contribute to epigenetic alteration of host chromatin.

Additionally, paracrine signals (e.g., via vIL-6 secretion) received from

lytically infected cells may contribute to epigenome alterations. Over

time, accumulation of such changes may contribute to tumorigenesis.

Additionally, these changes may ensure survival of spindle cells that

have lost KSHV until they become re-infected by reactivated cells. b

Evolution of the viral epigenetic landscape after de novo KSHV

infection (adopted from [94], with permission). The heatmap shows

accumulation of activating and repressive (H3K4-me3 and H3K27-

me3, respectively) histone marks along the KSHV genome at 24-, 48-,

and 72-h post-infection. Arrows underneath the map of the KSHV long

unique region (LUR) symbolize transcripts encoding constitutive latency

genes or the lytic transactivator ORF50/Rta. Activating histone marks

(green) are established early in infection, while repressive marks (red)

evolve gradually over the 72-h period. Regions marked yellow, e.g., at

the ORF50 promoter, carry the hallmarks of bivalent chromatin

Semin Immunopathol (2020) 42:143–157146



fact that early KS lesions often contain KSHV-positive as well

as KSHV-negative spindle cells. It is thought that the latter

represent once-infected cells which have lost the virus [99].

If so, it is an attractive hypothesis that virus-induced epigenet-

ic alterations may continue to support proliferation and sur-

vival of spindle cells even after the loss of KSHV, at least until

they become re-infected by virus particles that are produced

by other cells in the lesion.

Epigenetic regulation of latent gene
expression

As for all herpesviruses, the viral DNA found in KSHV vi-

rions is not wrapped in histones and completely free of CpG

methylation. Hence, genomes delivered to the nucleus of a

newly infected cell are epigenetically naïve, and latent chro-

matin must be re-established upon each round of infection.

Based on the observation that discrete loci of KSHV genomes

in PEL cell lines are methylated, it had originally been thought

that DNA methylation might be responsible for the silencing

of lytic genes during latency establishment. However, using

genome-wide analyses with methylated DNA and chromatin

immunoprecipitation (MeDIP and ChIP, respectively), we

were able to demonstrate that appreciable CpG methylation

patterns do not emerge until several weeks following a de

novo infection. Instead, viral episomes rapidly and globally

acquire H3K27-me3marks early in infection [95]. The enrich-

ment of H3K27-me3 is highly significant, and overall patterns

are very similar when compared between PEL cells and vari-

ous in vitro infected cell lines or primary cells [94–98]. Only a

few loci (including the major latency promoter upstream of

the LANA-coding region) escape PRC-mediated silencing

and insteadmaintain distinct peaks of activating histone marks

such as H3K4-me3 [95, 96]. Interestingly, whereas the acti-

vating marks are established within a few hours of infection,

repressive H3K27-me3 marks gradually evolve during the

first 48 to 72 h (see [94, 97] and heat map in Fig. 2b). This

observation suggests that early viral chromatin undergoes

stepwise maturation before the fully restricted latency state

is established. In line with this, previous studies have shown

that, during the first hours of a de novo infection, KSHV

exhibits a relaxed expression profile, which includes many

lytic genes [100]. Therefore, it is possible that combined ac-

tivities of latent and lytic gene products during early infection

may permanently affect the host cell via alteration of the host

epigenome.

An important feature of H3K27-me3-positive facultative

heterochromatin is that it is more dynamic when compared

to constitutive heterochromatin. Studies in various organisms

have shown that repression by polycomb complexes can be

overcome relative easily, and some PRC-bound genes in

mammals have been found to frequently switch between silent

and transcriptional active states [101]. These observations in-

dicate that polycomb repression may primarily serve to damp-

en transcription, rather than switching genes completely off.

The obvious benefit of adopting such a state during KSHV

latency is that lytic genes can be rapidly re-expressed once

conditions in the host cell become unfavorable. Indeed, the

promoter of the viral master switch lytic transactivator Rta

simultaneously maintains activating H3K4-me3 as well as re-

pressive H3K27-me3 marks [95, 96]. Such bivalent chromatin

states are typically found on differentiation-associated genes

in embryonic stem cells and are known to be poised for rapid

reactivation [102].

Given the above, it is likely that KSHV latency represents a

rather flexible instead of rigid transcriptional program. This is

in line with the observation that the signaling molecules K1

and K15, genes which are highly expressed during the lytic

cycle, can also be transcribed at low level in latently infected

cell populations [78–81, 103, 104]. Whether or not these tran-

scription signatures stem from weak but uniform transcription

in all cells or from transient switching of promoters to a fully

active state in a minority of the cells is not yet known.

Likewise, it is presently unknown to what extend alternative

latency modes may depend upon an altered epigenetic profile

of viral chromatin. Global anticorrelation of H3K4-me3 and

H3K27-me3 marks (Fig. 2b) and the observation that estab-

lishment of activatingmarks precedes that of H3K27-me3 [94,

96, 97] suggest that the early binding of (as of yet unknown)

transcription factors is able to create regions of constitutively

open chromatin that are protected from polycomb repression.

An altered or cell-type–specific spectrum of transcription fac-

tors would therefore be expected to result in altered epigenetic

profiles. Even in the absence of constitutive changes, the over-

all plasticity of polycomb-repressed chromatin indicates that

latent KSHV genomes may be able to fluctuate between fully

silenced and relaxed states, potentially allowing for stochastic

firing of lytic promoters. If so, similar to the early phase of

infection, there may be intermittent phases when both latent

and lytic genes are co-expressed and act upon host cell

chromatin.

How are PRCs attracted to KSHV episomes and to what

extend is this process controlled by the virus? Our own recent

data suggest that the composition of the viral genome se-

quence itself favors rapid silencing by PRCs [98]. There are

two major forms of polycomb repressive complexes, PRC1

and PRC2. PRC2 catalyzes tri-methylation of H3K27 via its

EZH2 component, while PRC1 can bind to resulting H3K27-

me3marks and cooperate with PRC2 tomediate repression. In

the canonical recruitment pathway, primary targeting is there-

fore mediated by PRC2. However, whereas discrete PRC2

recruitment elements exist in insect cells, similar signals in

mammalian genomes have long remained elusive (reviewed

in [105]). Instead, it is now becoming increasingly clear that

high density of unmethylated CpG motifs, in particular in
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Fig. 2 Examples of interactions between viral proteins and cellular

epigenetic pathways. a Selected epigenetic or chromatin-associated

functions of LANA (see text for further details). Top right: LANA

interacts with BRD4 and other BET family members, presumably to

tether viral episomes to euchromatic regions. Lower right: LANA leads

to hypermethylation of the CDH13 promoter, likely via recruitment of

Dnmt3A. Lower left: LANAbinds to the promoter of interferon-regulated

genes (IFRG) and prevents activation, presumably by interfering with

Stat1 binding. Upper left: LANA induces sumoylation of Sp100,

resulting in relocalization of chromatin-bound Sp100 into the insoluble

matrix (likely to ND10 bodies) and accelerated accumulation of H3K27-

me3 marks on viral genomes. b Left: miR-K12-4-5p inhibits expression

of Rbl2, a repressor of Dnmt expression. Right:miR-K12-11-3p represses

expression of Jarid2, a conditional component of PRC2 complexes. c The

viral lncRNA Pan recruits the H3K27-specific demethylases JMJD3 and

UTX (not shown) as well as the H3K4 methyltransferase MLL2 to

activate promoter of the gene encoding Rta (ORF50). d vIL-6 and

vIRF3 upregulate Dnmt1 expression via Stat3 activation or p53

inhibition, respectively
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CpG islands, represents a major mammalian factor for direct

recruitment of PRC1 as well as PRC2 [105–114]. This is of

interest since KSHV genomes are very CpG rich molecules

that enter the nucleus in a completely unmethylated state.

Indeed, the entire KSHV genome effectively resembles one

contiguous CpG island [98]. In accordance with this, we could

recently demonstrate that KDM2B, a PRC component that

directly binds to non-methylated CpGs [110, 111, 113], asso-

ciates with KSHV genomes very early during infection. In

contrast, a related herpesvirus with a substantially lower

CpG density did not show evidence of KDM2B binding and

consequently did also not acquire repressive H3K27-me3

marks [98]. In addition to these cis-acting sequence features,

there is also evidence that latent KSHV gene products favor

PRC recruitment. For example, LANA has been found to

directly bind to PRC2 complexes, which may potentially fa-

vor polycomb repression via increasing the local concentra-

tion of PRC around viral genomes [115]. While this activity

requires binding to viral chromatin, other LANA functions

such as upregulation of EZH2 or re-localization of Sp100

(discussed in the next section) may be more pleiotropic and

therefore may ultimately also affect the cellular epigenome

[94].

Viral manipulation of the host epigenome

The investigation of KSHV-induced cellular epigenome

changes, especially in relevant primary cell types, is still a

relatively young research field. In large part, this is due to

the limited availability of suitable infection systems. Primary

lymphocytes are largely refractory to KSHV infection in vitro,

a fact that greatly complicates the study of potential B-cell-

specific mechanisms. In contrast, primary endothelial cells or

mesenchymal stem cells (thought to be potential precursors of

KS spindle cells) can be infected in vitro, yet long-term inves-

tigation of such cultures is difficult because they are not effi-

ciently immortalized by KSHVand furthermore tends to lose

the virus after only a few cell doublings. Most studies have

therefore used de novo infection or ectopic expression of viral

genes in fully transformed cell lines instead. Hence, a potential

caveat is that some of the observations made in these systems

could represent artifacts resulting from the use of heterologous

cell lines or ectopic overexpression. We will discuss some of

the activities which may contribute to the pathogenesis of

KSHV-associated disease in the following. In Table 1, we

furthermore present an overview of known interactions be-

tween KSHV gene products and epigenetic or chromatin reg-

ulatory pathways, together with the model systems in which

they were observed.

Given its constitutive expression and close association with

chromatin, LANA is one of the factors which are most likely

to influence the cellular epigenome (see Fig. 2a for a graphical

illustration of selected LANA-associated functions). Indeed,

LANA has been found to positively or negatively influence

expression of many human genes, and in some cases, this

regulation has been linked to changes in histone modification

or DNA methylation patterns. For example, LANA has been

reported to inhibit TGF-β signaling by inducing DNA meth-

ylation at Sp-1 binding sites within the promoter of the TGF-β

type II receptor (TβRII) [120]. Methylation had first been

detected in PEL cell lines and was subsequently demonstrated

in LANA-expressing telomerase-immortalized umbilical-vein

endothelial (TIVE) cells. The observation that treatment with

demethylating agents sensitizes PEL lines to apoptosis and

that primary cases of PEL, KS, and MCD also exhibited de-

creased levels of TβRII strongly suggests that epigenetic si-

lencing of the TβRII promoter contributes to the pathogenesis

of KSHV-associated tumors [120]. In another study, constitu-

tive LANA expression in telomerase-immortalized microvas-

cular endothelial (TIME) cells was found to lead to methyla-

tion and repression of the promoter of CDH13, the gene

encoding H-cadherin (a protein with growth inhibitory func-

tions) [121]. The promoter was also found to be methylated in

PEL lines, and since LANAwas furthermore demonstrated to

interact with the de novo DNA methyltransferase (Dnmt) 3a,

it was suggested that LANA may mediate repression by di-

rectly targeting Dnmt3a to the CDH13 (and other) cellular

promoters. It seems likely that such a mechanism is also re-

sponsible for TβRII silencing; however, this has not been

formally demonstrated so far.

Several other studies have employed ChIP-seq techniques

to investigate the interaction of LANAwith host cell chroma-

tin in endothelial cells and PEL cell lines on a more global

level [118, 139, 140]. Although there is not necessarily a large

overlap between the identified sites, all studies agree on sev-

eral points: Firstly, LANA was found to bind a significant

number (hundreds to thousands) of host sites. Secondly, de

novo infection experiments suggest that LANA predominant-

ly binds to sites that are already in an open chromatin forma-

tion prior to infection, an observation which may reflect the

interaction of LANAwith BET proteins [44, 127, 141] or the

H3K4 methyltransferase hSET1 [118]. It is therefore possible

that the tethering function of LANA may preferentially target

viral episomes to euchromatic host loci, perhaps to prevent

abrogation of latent gene expression. Thirdly, most genes that

were located close to LANA binding sites did not exhibit

significant transcriptional changes. This observation suggests

that silencing of gene expression via recruitment of DNA

methyltransferases is not the universal outcome of LANA

binding but instead may be restricted to a few host genes such

as TβRII and CDH13 [120, 121], perhaps in a context-

specific manner (of note, these two sites were not recovered

in the three ChIP-seq studies, but this may be due to the higher

sensitivity of the specific PCR that was used in the previous

studies). While LANA binding therefore seems to be indolent
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Table 1 Interplay between latent and lytic KSHV gene products and host epigenetic pathways

Viral Factor Reported Function(s) Model system(s)

LANA

(latent)

LANA recruits NAP1L1 to viral terminal repeats to regulate

nucleosome assembly and gene expression [116]

PEL cell lines (BCBL-1, BC-3); ectopic expression (HEK293T,

HEK293L)

LANA interferes with the interaction between CIITA and

RFX components, resulting in reduced MHC-II promoter

activity [117]

PEL cell lines (BCBL-1, BC-3); ectopic expression (HEK293T,

HEK293L, BJAB, THP-1, and DG75)

LANA interacts with the H3K4 methyltransferase complex

hSET1, binds preferentially to viral and cellular chromatin

at H3K4me3-positive loci [118]

PEL cell lines (BCBL-1, BC-3); in vitro infection (TIVE);

ectopic expression (HEK293, BJAB)

LANA localizes to heterochromatic regions within the

nucleus [119]

PEL cell lines (BCBL-1, BC-1); in vitro infection (ECV, K562)

LANA downregulates viral lytic genes, recruits PRC2 to viral

episomes during de novo infection [115]

In vitro infection (SLK, iSLK, TIME); ectopic expression

(HEK293T)

LANA facilitates PRC2-recruitment to viral episomes via

relocalization of Sp100 into insoluble matrix fractions [94]

PEL cell lines (BCBL-1, HBL6, Cro-AP/2); in vitro infection

(SLK, HDF, HUVEC, EA.hy 926); in vitro transfection with

bacmid DNA (SLK); ectopic expression (EA.hy 926, HeLa)

LANA downregulates TGF-ß signaling by increasing DNA

methylation at the TßRII promoter [120]

PEL cell lines (BCBL-1, BC-1, BC-2, BC-3, BC-5); in vitro

infection (TIVE); ectopic expression (BJAB)

LANA recruits DNMT3a and increases DNA methylation at

cellular promoters (e.g., CCND2 and CDH13) [121]

PEL cell lines (BCBL-1, BC-3, JSC-1); ectopic expression

(TIME, HEK293T)

LANA interacts with the H3K9me1/2 demethylase KDM3A

[122]

PEL cell line (BCBL-1); ectopic expression (HeLa, HEK293T);

in vitro infection (Vero, HEK293T)

LANA interacts with the H3K9 methyltransferase SUV39H1

at the terminal repeats [123]

PEL cell line (BC-3); ectopic expression (HEK293, Vero)

LANA interacts with HP-1 [123, 124] Ectopic expression (HEK293T, C33A)

LANA recruits KAP1 to the viral genome, resulting in

decreased gene expression [125]

PEL cell lines (BCBL-1, JSC-1, BC-3); in vitro infection

(HeLa); ectopic expression (HEK293T, HeLa)

LANA alters the higher organization of host cell chromatin [126] PEL cell lines (BCBL-1, BC-1); ectopic expression (MCF7,

HeLa, Saos-2, A9, L, NIH3T3)

LANA interacts with members of the BET protein family (BRD2,

BRD3, and BRD4) and can release BRD4-mediated cell

cycle arrest [127]

PEL cell lines (BCBL-1, JSC-1, BCP-1, CroAP-5); ectopic

expression (HEK293T, BJAB)

LANA association with BRD2 and BRD4 is critical for viral

latency, treatment with BET-inhibitors results in lytic

reactivation [128]

PEL cell lines (BCBL-1, BC-1, BC-3, JSC-1); in vitro infection

(BJAB, SLK)

LANA prevents Bub1-mediated phosphorylation of H2A at

position T120 to influence Sgo1 localization, resulting in

chromosomal instability [129]

PEL cell lines (BC-3, JSC-1); in vitro infection (BJAB,

HT1080); ectopic expression (BJAB, HEK293, HT1080)

LANA & vFLIP

(latent)

LANA and vFlip cooperatively upregulate EZH2 in a NF-kB

dependent manner to induce angiogenesis [130]

In vitro infection (SLK, BOEC); ectopic expression (BOEC)

miRNAs

(latent)

miR-K12–11 targets JARID2 [67] PEL cell line (BCBL-1); ectopic expression in vitro (NIH 3 T3,

HEK293T); transgenic expression in vivo (C57BL/6 mice)

miR-K12–4-5p targets RBL2, thereby increasing DNMT levels

[131]

In vitro transfection/infection (HEK293); ectopic expression

(HEK293)

vIRF3

(latent/ lytic)

vIRF3 reduces HDAC5 phosphorylation which plays a role in viral

induced angiogenesis [132]

In vitro (Bac16) infection (LECs); ectopic expression (LECs,

BECs, TREx-BCBL-1, HeLa)

vIL6

(latent/ lytic)

vIL6 upregulates the DNA methyltransferase DNMT1, resulting in

an increase of global DNA methylation [133]

Ectopic expression (EA.hy926)

vIRF1

(lytic)

vIRF1 upregulates DNMT1 via downregulation of p53 to increase

DNA methylation in the miR-218 promoter [134]

In vitro (KSHVwt and Bac16) infection (HUVEC);

ectopic expression (HUVEC)

PAN RNA

(lytic)

PAN RNA interacts with several histone modifying enzymes

(MLL2, UTX, and JMJD3) and can transcriptionally activate viral

genes (e.g., RTA) [135]

PEL cell lines (TREx/BCBL-1 RTA); in vitro transfection

(HEK293L); ectopic expression (HEK293L)

PAN RNA regulates several host pathways (e.g., cell cycle) by

binding to host as well as to viral chromatin and interacts with

members of the PRC2 complex [136]

PEL cell lines (TREx/BCBL-1 RTA); in vitro infection

(PBMC); in vitro transfection with bacmid DNA (HEK293);

ectopic expression (BJAB, Jurkat, THP1, RPE)

PAN RNA interacts with several host proteins like histones H1 and

H2A [137]

PEL cell lines (BCBL-1); ectopic expression (HEK293, BJAB)

RTA

(lytic)

RTA binds to GMNN, a protein involved in cell cycle and chromatin

remodeling [138]

PEL cell lines (TRExBCBL1-3xFLAG-RTA); in vitro infection

(iSLK); ectopic expression (HEK293T, BJAB, iSLK)
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at most sites, it is interesting that one study observed LANA-

binding peaks which partially overlapped with Stat1-binding

sites in the promoters of gamma interferon (IFNγ) regulated

genes. Indeed, IFNγ treatment demonstrated that LANA

could counteract activation of a subset of these genes, suggest-

ing that some of the chromatin changes associated with KSHV

infection may conditionally alter gene expression only after

activation of specific pathways [140].

In addition to site-specific effects, LANA may also affect

host chromatin in a more indirect manner. For example,

LANA was found to efficiently release Sp100, a component

of ND10 nuclear bodies, from the soluble chromatin fraction

and re-localize it into the insolublematrix [94]. The fact that this

phenotype can be observed in de novo infected cells as well as

PEL cell lines suggests that permanent re-localization of Sp100

is a general feature of KSHV latency. Since Sp100 depletion

results in accelerated acquisition of H3K27-me3 by viral epi-

somes, the re-localization likely serves to favor latency estab-

lishment.Whether or not the permanent removal of Sp100 from

soluble chromatin fractions also has epigenetic consequences

for the host genome has not been explored so far. LANA has

also been shown to cooperate with vFlip in the transcriptional

upregulation of EZH2, the H3K27-specific methyltransferase

of PRC2 complexes [130]. In accordance with this finding, the

protein was demonstrated to be highly expressed in KS tissues,

and upregulation of EZH2 by KSHV was found to be required

for the induction of tube formation in infection blood outgrowth

endothelial cells (BOECs). Although H3K27-me3 levels in

BOECs were generally increased, however, it is presently un-

known whether silencing of specific target genes by PRC2 is

responsible for the phenotype.

Lastly, a recent publication found that LANA interacts with

Bub1, a component of the spindle checkpoint complex, to

inhibit phosphorylation of histone 2A at residue T120

(H2AT120) [129]. LANA-dependent inhibition of H2AT120

phosphorylation resulted in dislocation of Sgo1, a protein

which protects centromere integrity, and induction of aneu-

ploidy. Thus, LANAmay promote tumorigenesis by inducing

epigenetic alterations as well as chromosomal instability.

Besides LANA and vFlip, KSHV-encoded miRNAs have

also been found to affect the cellular epigenome (Fig. 2b).

Strikingly, infection with a mutant virus unable to express

the miRNAs resulted in an almost complete loss of DNA

methylation within the viral as well as the cellular genome

[131]. A potential explanation for this observation is that ex-

pression of one of the KSHV miRs (miR-K12-4-5p) can in-

hibit expression of Rbl2, a known repressor of Dnmts, thereby

leading to upregulation of Dnmt1, − 3a and – 3b. Another

KSHV miRNA, miR-K12-11, represents a viral mimic of

the human miR-155, an evolutionary conserved proto-

oncogenic miRNAwhich is overexpressed in many lympho-

cyte malignancies [64, 65, 67]. Among the targets shared by

miR-K12-11 and miR-155 is Jarid2, a conditional component

of PRC2 [67]. Interestingly, Jarid2 inhibition by miR-155 has

been found to activate cytokine expression in TH17 cells

[142]. The epigenetic consequences of miR-K12-11-induced

repression of Jarid2 in KSHV-infected B cells, however, have

not yet been investigated.

In addition to the above latency genes, several lytic gene

products can affect viral and host chromatin (see Table 1 and

Fig. 2b–d). For example, the nuclear PAN RNA is a long non-

coding RNA (lncRNA) which is very strongly expressed in

lytic cells, but that can also be detected at lower levels during

latency [136]. PAN has been found to bind to several viral and

host loci and to not only interact with the PRC2 components

EZH2 and Suz12 but also with the H3K27-specific

demethylases UTX and JMJD3 and the H3K4-me3 methyl-

transferase MLL2 [135–137]. Thus, PANmay promote as well

as counteract PRC repression, a hypothesis which is in line

with the observation that Pan supports lytic KSHV gene ex-

pression while also repressing many immune regulatory genes.

Hence, like other lncRNAs, PAN may act as a molecular scaf-

fold to mediate epigenetic changes to up- or downregulate gene

expression in a context-dependent manner. The mechanisms

mediating specific targeting of PAN and associated epigenetic

modifiers to promoters, however, remain unknown. Two other

studies showed that vIL-6 and vIRF1, two predominantly lytic

factors that are also weakly expressed during latency, can me-

diate upregulation of Dnmt1 (the DNA methyltransferase re-

sponsible for maintaining methylation patterns during cell di-

vision) to promote cell proliferation, migration and invasive-

ness [133, 134]. For vIL-6, upregulation is dependent upon

Stat3 activation, whereas vIRF1 induced Dnmt1 via p53 inhi-

bition. In accordance with increased Dnmt1 expression, vIRF1

expression was also shown to result in hypermethylation of the

pre-miR-218-1 promoter, which in turn leads to increased ex-

pression of the miR-218-5p targets high mobility group box 2

(HMGB2) and cytidine/uridine monophosphate kinase 1

(CMPK1), two proteins that are upregulated in various tumors

[134].

Of note, a study of global DNA methylation patterns in

BJAB cells (an EBV-negative Burkitt’s lymphoma cell line)

that had been infected with a recombinant KSHV also ob-

served transcriptional changes that correlated with methyla-

tion changes in the promoters of several genes [121].

Approximately 70% of a total of 452 differentially expressed

genes were transcriptionally repressed and hypermethylated,

indicating that de novo KSHV may favor increased DNA

methylation overall.

Although the above findings very strongly suggest that

epigenome alterations have a profound effect on viral gene

expression and infection-associated tumorigenesis, all hitherto

discussed observations have been made in in vitro systems.

What is the evidence that such changes also matter in vivo?

An interesting study by Naipauer and colleagues [143] has

demonstrated that KSHV-infected mesenchymal stem cells
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can form tumors in nude mice but only if they are grown in

KS-like (i.e., cytokine-rich) medium prior to injection. Indeed,

these cells adopt a relaxed expression profile that includes

expression of many lytic genes, apparently accompanied by

global decrease of H3K27-me3 on viral genomes. At the same

time, KSHV-infected cells exhibit changes of H3K27-me3

levels in the promoters of many host genes involved in path-

ways relevant to KS pathogenesis (e.g., VEGF, p53, Toll-like

receptor of IFN signaling). While many questions remain, this

study suggests that mesenchymal stem cells represent a very

attractive in vivo model to not only study the influence of

environmental clues on epigenetic control of viral gene ex-

pression but also host epigenome alterations that may be

caused by expression of an extended repertoire of viral genes.

Conclusion

There is profound evidence that control of latent KSHV infec-

tion is intricately linked to epigenetic regulation. Although

some of the mechanisms which shape the epigenetic landscape

of viral genomes have been discovered, important questions

regarding viral epigenome dynamics and adoption of alternate,

potentially tumor-promoting latency programs remain. This is

particularly true because constitutive latency genes may coop-

erate with transiently expressed lytic factors to induce stable

and heritable changes of the cellular epigenome. Studying the

combinatorial effects of such genes, especially in relevant pri-

mary cell models, represents a promising direction for future

research. In addition to existing in vitro models of endothelial

cell infection, newly developedmesenchymal stem cell systems

may provide novel opportunities for in vivo studies. Since the

majority of PELs also harbors EBV, another interesting yet

unexplored aspect is the effect of combined KSHV and EBV

gene expression on viral and host epigenomes that can be stud-

ied in recently established B-cell models of co-infection [144].

The availability of these systems, together with recent technol-

ogy advances that allow epigenomic and transcriptomic analy-

sis at single cell resolution, represents new and exciting possi-

bilities to study the role of epigenetics in infection and the

pathogenesis of virus-associated cancers.
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