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ABSTRACT

The progression of cancer is a result of not only the growth of the malignant cells 

but also the behavior of other components of the tumor microenvironment (TME). 

Tumor-associated macrophages (TAMs) are key components of the TME that influence 

tumor growth and disease progression. TAMs can either inhibit or support tumor 

growth depending on their polarization to classically-activated macrophages (M1s) or 

alternatively-activated macrophages (M2s), respectively. Epigenetic regulation plays 

a significant role in determining this polarization and manipulating the epigenetic 

regulation in macrophages would provide a means for selectively targeting M2s 

thereby eliminating tumor-supporting TAMs while sparing tumor-inhibiting M1 TAMs. 

Many pharmacologic modulators of epigenetic enzymes are currently used clinically 

and could be repurposed for treating tumors with high TAM infiltrate. While much 

research involving epigenetic enzymes and their modulators has been performed 

in M1s, significantly less is known about the epigenetic regulation of M2s. This 

review highlights the field’s current knowledge of key epigenetic enzymes and their 

pharmacologic modulators known to influence macrophage polarization.

INTRODUCTION

Despite significant advancements over the years, 

cancer remains the second leading cause of death in the 

US with an estimated 600,920 cancer-related deaths and 

1,688,780 new cancer cases in the US in 2017 [1]. As our 

understanding of the disease improves, it has become clear 

that the progression of disease is dependent not only on 

the growth of the malignant cells but also on the behavior 

of all components of the tumor microenvironment (TME). 

The interactions between tumor cells and the TME are 

analogous to ecosystem interactions and crosstalk between 

tumor cells and non-malignant cells within the TME create 

supporting networks that are critical for determining 

disease severity [2–5]. Despite the effectiveness of 

current therapies which focus on targeting malignant cells, 

patients continue to recur. Research has suggested that the 

TME plays a critical role in recurrence [6, 7]. Thus, cancer 

research has expanded to include efforts to target TME 

components and supportive networks [8, 9].

The TME includes various immune cells referred 

to by pathologists as tumor inflammation. While 

inflammation describes the presence of immune cells, 

it does not provide information as the how these cells 

influence the tumor. Multiple types of inflammation exist 

including Th1 responses which fight bacterial infections 

and Th2 responses which promote wound healing. The 

inflammatory response within a tumor depends on the 

types and activation states of infiltrating immune cells. 

While the type of tumor inflammation can be critical for 

prognosis, pathology reports do not differentiate between 

the inflammatory cell activation states, thus creating a gap 

in knowledge between the clinic and tumor immunology 

research.
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The macrophage is one such immune cell that 

has drastically different effects on the tumor depending 

on its activation or polarization state [10]. Classically-

activated macrophages, or M1s, drive Th1 responses 

and are generally polarized by stimulants such as INFγ, 

LPS, and other Toll-like receptor ligands. Markers and 

secreted molecules associated with an M1 polarization 

include STAT1, STAT3, IRF4, NFκB, CIITA, CD80, 
CD86, major histocompatibility complex class II 

receptor (MHC-II), chemokines receptors (CXCs), 

chemokine ligands (CXCLs and CCLs) including CCL2 

(MCP1), COX-2, TNF, IFNγ, nitric oxide (NO), iNOS, 

reactive oxygen species (ROS), IL1β, IL12B, and IL6. 
Alternatively-activated macrophages, or M2s, drive Th2 

responses and are generally polarized by IL4, IL13, IL10, 

and glucocorticoids. Markers and secreted molecules 

associated with an M2 polarization include SOCS1, 

PPARγ, STAT6, GATA3, c-MYC, HIF-1α, LXR, CD206 

(MRC1), CD163, CD36, ARG1, IL10, TGFβ, matrix 

metalloproteases (MMPs), FIZZ1, and YM1 (Chi3l3). 

Macrophage phenotypes are plastic and it is recognized 

that macrophages exist across the polarization spectrum 

as they respond to new stimuli. Thus, the M1–M2 

model of macrophage polarization is an acknowledged 

oversimplification as altering the expression of M1 

markers does not necessitate the alteration of M2 marker 

expression and vice versa. Tumor-associated macrophages 

(TAMs) can exhibit either polarization phenotype and 

studies performed in multiple cancer types reveal a 

correlation between TAM polarization and prognosis  

[11–14]. Across all cancer types, higher M1 infiltrate 

correlates with a better prognosis and higher M2 infiltrate 

correlates with a poor prognosis. 

Epigenetic regulation plays a significant role 

in controlling macrophage polarization and can be 

manipulated by pharmacologic modulators or inhibitors, 

many of which are used clinically against cancer and other 

diseases. Extensive work has been done to understand 

epigenetic regulation of macrophages in the context of 

infectious and chronic inflammatory diseases largely 

involving M1s. Several exceptional reviews have been 

published on these topics [15–18]. However, a current 

perspective of the epigenetic regulation relating to 

TAMs or M2s, especially in relation to cancer, remains 

an unmet need. This review aims to communicate the 

current knowledge of macrophage epigenetics applicable 

to TAMs and highlight the implications of these regulatory 

mechanisms for combating cancer.

Epigenetic processes

Epigenetic regulation is the mechanism that allows 

genetically identical cells to differ phenotypically. This 

process is crucial for maintaining cell-type and tissue-

specific functions and recapitulating them to daughter cells 

after replication. Conventional epigenetic mechanisms 

include DNA methylation, histone methylation, and 

histone acetylation which remodel chromatin to allow 

differential gene expression.

DNA methylation involves the methylation of the 

5′-carbon on cytosine bases located in promoter CpG 
islands. This mark prevents transcriptional machinery 

from assembling on the altered promoter and silences gene 

transcription. Methyl groups are added to CpG islands by 

DNA methyl transferases (DNMTs) and removed by ten 

eleven translocation (TET) proteins.

Histone modification is important for activation 

state of both promoters and enhancers. Histones are 

modified on lysine and arginine residues on histone tails of 

primarily the H3 and H4 subunits. While histones can be 

modified with a number of post-translational modifications 

(PTMs) including phosphorylation and ubiquitination, the 

most important PTMs for controlling gene expression are 

methylation and acetylation. Histone acetylation marks 

promote gene transcription and are added to histones 

by histone acetyl transferases (HATs) and removed by 

histone deacetylases (HDACs). Histone acetylation marks 

are bound by bromodomain and extra-terminal motif 

(BET) proteins which initiate cellular processes such as 
transcription. Conversely, histone methylation marks can 

either activate or silence gene transcription depending on 

the residue modified, the number of methyl groups added 

to the residue, and the co-localization of the modified 

histone to an enhancer or promoter region of the regulated 

gene. Histone methylation is facilitated by histone methyl 

transferases (HMTs) and removed by histone demethylase 

(HDMs).

As histones remodel to expose enhancers, lineage-

determining transcription factors (LDTFs) bind the open 

enhancers. These LDTFs determine a cell’s lineage and 

its response to various signals. When stimuli are applied, 

enhancer regions interact with promoter regions through 

bridges of scaffold proteins which include LDTFs and 

signal-dependent transcription factors (SDTFs) to initiate 

transcription. Well known LDTFs for myeloid cell 

lineages include PU.1 and C/EBP [15].

Epigenetic regulation of macrophage 

polarization

While there exists a significant body of work on 

macrophage epigenetic processes, most of this work has 

been performed using M1s. Detailed below is the field’s 

current knowledge of epigenetic regulation in macrophages, 

emphasizing M2 and TAM biology. The impacts of these 

epigenetic regulators on macrophage phenotype are also 

listed in Table 1 and depicted in Figure 1.

DNA methylation

As monocytes differentiate into macrophages, there 

is a net demethylation of promoter CpG islands [19]. 
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Table 1: Effects of epigenetic enzymes on macrophage polarization to M1 or M2

Epigenetic 

enzyme
Effect in M1s Effect in M2s

D
N

M
T

DNMT1 ↓ SOCS1 [21]

DNMT3B ↑ TNF [20] ↑ Pparɣ promoter 
methylation [20] 

↓ Arg1, CD206, Mgl-1, 
Pparg  [20]

T
E

T TET2 ↓ Il6 [24]

H
M

T

ASH1 ↓ Il6, Tnf [116]

EZH1 ↓ IL6, TNF, IFNb, TLR signaling [117]

EZH2 ↓ Ccl2, Ccl8 [118]

G9A 

(EHMT2)

↑ LPS tolerance [51] ↓ IL12B [119]; IFNb [16]

MLL1 ↑ CXCL10 [27]

MLL4 

(WBP7)
↑ Pigp, LPS signaling [120]

PRMT1 ↓ CIITA [26] ↑ PPARɣ [25]

SET7 ↑ TNF, CCL2, IL8 [121]

SETDB1 ↓ TNF [122]

SETDB2 ↓ Cxcl1, Il12b, Cxcl2, Ym1 [123]

SMYD2 ↓ Tnf, Il6, MHC-II, CD40/80 [124]

SMYD5 ↓ Tnf, Il1a, Il1b, Ccl4, Cxcl10 [125]

SUV39H2 ↓ IL6, TNF [126]

SUV40H1 ↑ Tnf, Cxcl10 [125]

SUV40H2 ↑ Tnf, Cxcl10, Phf2 [125]

H
D

M

AOF1 ↑ NFκB signaling [127]

JMJD2D ↑ Ccl22, Il12b [128]

JMJD3 ↑ TNF [30] ↑ Arg1, Ym1 [28, 29]; Irf4, 
Fizz1 [28]; CD206 [29]

LSD1 ↓ Il6 [33]

UTX 

(KDM6A)

↑ IL6, IFNβ [129]

H
D

A
C

HDAC1 ↑ IFN signaling, IRF3 activation [130] 
↓ IL6 [131]

HDAC2 ↑ IFN signaling, IRF3 activation [130] 
↓ IL6 [24], MHC-II [132]

HDAC3 ↑ IFNβ, Nos2, IL6 [40]; IL6, NO [62] 
↓ TGFβ [39]

↓ IL4 signaling [38]

HDAC4 ↑ TNF, IL6 [45]
↓ NFκB signaling [44]

↑ STAT6 signaling, Arg1 
[44]

HDAC5 ↑ TNF, CCL2, IL10 [133]

HDAC6 ↑ LPS activation [134]; IL10 [135, 136] 
↓ ROS [137]

HDAC7 ↑ TLR signaling [138]

HDAC11 ↑ antigen presentation, CD4+ T cell stimulation [42] 
↓ IL10 [42]; IL1 [43]

SIRT1 ↓ NFκB signaling [51]; Ccl2, Il1β, Il6, Nos2 [47]; 
TNF [47, 48]

SIRT2 ↓ NFκB signaling, TNF, IL6, CCL2, IL1β [46] ↑ Gata3, Arg1, Cd11c [46]

SIRT6 ↓ IL1β [16]

B
ET

↑ IL6, IL1b, IFNg, IL12B, Il1a, Ccl5, Cxcl10, 
Cxcl2/3 [50]



Oncotarget20911www.oncotarget.com

Figure 1: Epigenetic enzymes control macrophage phenotype. Epigenetic enzymes known to control (A) DNA methylation, 

(B) histone methylation, and (C) histone acetylation in macrophages are listed above the left side of the spectrum if they promote M1 

polarization and below if they inhibit M1 polarization. Those known to control M2 polarization are listed likewise on the right side of the 

spectrum.
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Removing this silencing mechanism presumably primes 

these genes for transcription.

DNMT3B is the only DNMT with a known role in 
M2 differentiation and phenotypic control. Knockdown of 

DNMT3B in RAW264.7 macrophages and mouse bone 
marrow-derived macrophages (BMDMs) induces M2 
polarization and prevents M1 marker expression, LPS-

induced TNF secretion, and migratory response to CCL2 

gradient [20]. Additionally, overexpression of DNMT3B 
prevents IL4-induced expression of Arg1 [20]. DNMT3B 
also methylates the promoter of Pparγ which is reduced in 

response to IL4 stimulation [20].

 In M1s, DNMT1 positively regulates the M1 

phenotype by silencing SOCS1 in LPS-stimulated 

RAW264.7 cells which induces TNF and Il6 expression 

[21]. If DNMT1 has similar suppressive functions of 

SOCS1 in M2s, then it likely suppresses the expression 

of M2 genes. However, functional studies of DNMT1 in 

M2s are required to implicate this enzyme as a negative 

regulator of M2 phenotype. Furthermore, DNMT1 is 

known to be the primary methyltransferase responsible 

for propagating DNA methylation marks during DNA 

replication [22]. This function suggests that DNMT1 has 

an essential role in regulating gene expression beyond 

SOCS1 in both M1s and M2s.

As for demethylation, TET2 loss of function 

mutations are implicated in myeloid malignancies, 

though little is known about the impact of TET proteins 

on macrophage polarization. Studies involving TET2 

knockdown in mouse bone marrow-derived hematopoietic 

precursor cells revealed an increase in differentiation 

towards macrophage lineages implicating TET2 as 

a regulator of myelopoiesis [23]. Additionally, M1 

polarization by LPS-stimulation of human and mouse 

macrophages upregulates expression of TET2 which acts 

as a co-repressor of Il6 transcription alongside HDAC2 

[24]. While this information is important for understanding 

myeloid- and M1-specific epigenetic regulation, it does 

not offer insight as to the role of TET2 or TET proteins in 

M2 polarization.

Histone methylation

PRMT1 methylates the arginine located at residue 

3 on the tail of histone H4 (H4R3) and is implicated as a 

positive regulator of M2 phenotype through its induction of 

PPARg in IL4-stimulated mouse peritoneal macrophages 

[25]. Alternatively, a study using IFNg-stimulated 

RAW264.7 cells revealed PRMT1 negatively regulates the 

M1 phenotype by repressing CIITA. Additionally, it was 

observed that PRMT1 is downregulated by IFNγ signaling 

[26]. Thus, PRMT1 adopts opposing roles in epigenetic 

regulation of M1s and M2s with its expression driving an 

M2 polarization.

Another HMT, SMYD3, a H3K4 methyltransferase, 

is speculated to positively regulate M2 polarization. 

Its expression levels increase in human monocyte-

derived macrophages (HMDMs) with exposure to the 

combination of M-CSF, IL4, and IL13 (M-CSF + IL4 
+ IL13) and decrease with exposure to LPS + IFNγ 

[27]. Its upregulation coincides with methylation and 

transcriptional activation of ALOX15, a lipoxygenase 

M2 marker, which SMYD3 is known to regulate in other 

contexts [27]. However, functional studies are needed in 

order to make conclusions on these speculations about M2 

phenotypic regulation. Additionally, no functional studies 

have been performed to test its role in M1 polarization.

JMJD3 (KDM6B), an H3K27 demethylase, has been 
recognized as an essential regulator of M2 polarization 

through its induction of Irf4, Arg1, CD206, and other M2 

markers in IL4- stimulated [28]  and IL4 + IL13-stimulated 
[29] mouse BMDMs. While this study revealed JMJD3 
to be unnecessary for M1 polarization of TLR ligand-

stimulated mouse peritoneal macrophages, other studies 

involving IFNg-stimulated HMDMs [27] or LPS + IFNγ-

stimulated HMDMs from rheumatoid arthritis patients 

[30] detail its role in inducing pro-inflammatory cytokine 

expression. In addition to its upregulation in M2s, JMJD3 

is also upregulated in IFNγ-stimulated HMDMs [27, 31]. 

Due to its positive regulatory role in both M1s and M2s, 

JMJD3 is attributed as a regulator of general stimulus 

response in macrophages rather than specific polarization 

roles [31]. Notably, loss of JMJD3 does not lead to 

significant changes in H3K27 methylation indicating 

that JMJD3 may regulate macrophage phenotype through 

modification of proteins other than histones [27, 31].

Though JMJD3 is the only HDM with a known 

effect on M2 polarization, LSD1 (KDM1A) and JMJD1A 

(KDM3A) play critical roles in myeloid cells. LSD1, a 

H3K4 and H3K9 demethylase, is essential for myeloid 

cell differentiation through silencing of stem and 

progenitor cell genes [32] and is also involved in LPS 

tolerance-induced Il6 silencing in mouse BMDMs [33]. 
Additionally, JMJD1A, a H3K9 demethylase, represses 

Ccl2, Ccr1, and Ccr5 in mouse peritoneal macrophages 

and RAW264.7 cells under hypoxic conditions [34]. 

Furthermore, JMJD1A inhibition decreases macrophage 

infiltrate in subcutaneous A673 sarcoma tumors in mice 

[35]. These studies raise the possibility that JMJD1A 

plays a role in TAM biology and macrophage phenotype 

control especially in the context of a hypoxic tumor 

microenvironment.

Histone acetylation

Certain acetylation marks have been discovered 

to contribute to macrophage phenotypic control. H3 

acetylation is important for inducing IFNα, TNF, and IL6 

expression in THP-1 cells indicating the importance for 

H3 acetylation in expression of M1 phenotype [36]. More 

specifically, the H3K9 and H3K14 acetylation of Tnf, Il6, 

Nos2, and MHC-II promoters in LPS-stimulated mouse 
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microglia is integral to expression of these genes [37]. 

However, the importance of these marks on M2 phenotype 

in IL4- or IL13-stimulated macrophages has yet to be 

elucidated.

While currently investigations into the importance 

of HATs in macrophage polarization are lacking, extensive 

observations have been made concerning the role of 

HDACs with some of these studies examining their effects 

in M2s. 

HDAC3 negatively regulates M2 polarization by 

repressing IL4 signaling in mouse BMDMs [38] and 
TGFβ production in mouse peritoneal macrophages 

[39]. HDAC3 performs an opposing function in M1s by 

promoting M1 polarization in LPS-stimulated mouse 

BMDMs thereby proving critical for LPS signaling [40].
HDAC9 is another negative regulator of M2 

polarization as peritoneal macrophages from HDAC9-

deficient mice expressed higher levels of M2 genes and 

lower levels of M1 genes compared to wild type mice 

[41]. Additionally, the promoter acetylation levels and 

expression levels of Pparγ were significantly increased 

in the HDAC9-deficient mice. The observations implicate 

HDAC9 as a repressor of the M2 phenotype and inducer 

of the M1 phenotype with Pparγ promoter deacetylation 

acting as a key component of its regulatory mechanism. 

While HDAC11 has not been studied in M2s, its 

effects in M1s suggest it may act as a negative regulator 

of M2 phenotype. In RAW264.7 cells, HDAC11 represses 

IL10 expression [42]. Thus, if HDAC11 acts similarly 

in M2s as it does in M1s, then it likely opposes M2 

polarization. Apart from its effect on IL10, HDAC11 also 

represses IL1β in LPS-stimulated mouse BMDMs [43] and 
promotes antigen presentation and CD4+ T cell stimulation 

in RAW264.7 cells [42] thereby remaining ambiguous as 

to whether it promotes or inhibits M1 polarization.

HDAC4 induces STAT6 signaling and Arg1 

expression in IL4-stimulated mouse bone-marrow derived 

dendritic cells implicating it as a positive regulator of M2 

polarization [44]. In M1s, HDAC4 functions as both a 

negative and positive regulator. One study using LPS + 
IFNg-stimulated of mouse BMDMs revealed that HDAC4 
inhibited NFκB signaling [44] while another study using 
the LPS-stimulated mouse microglial BV2 cell line 
revealed that HDAC4 induces TNF and IL6 secretion [45].

The HDAC SIRT2 acts as another positive M2 

phenotype regulator by inducing Gata3, Arg1, and Cd11c 

expression in IL4-stimulated mouse BMDMs [46]. The 
same study discovered SIRT2 also represses the M1 

phenotype by downregulating NFkB signaling and IL1b 
and TNF secretion in LPS-stimulated mouse BMDMs [46].

SIRT1 has been tested against M2s but was found 

to have no impact on M2 polarization in IL4-stimulated 

mouse BMDMs [47]. It does, however, decrease 
expression of various M1 markers in LPS + IFNγ-

stimulated mouse BMDMs [47] and LPS-stimulated 
RAW264.7 cells [48].

General BET protein activity promotes inflammatory 
cytokine production in LPS-stimulated mouse BMDMs 
[49, 50], although further studies investigating BET 
proteins in macrophage polarization are lacking.

Epigenetic enzymes as targets for disrupting M2 

polarization

Of the enzymes described here, the most relevant 

for targeting TAMs are those that promote the M2 

phenotype, namely PRMT1, JMJD3, HDAC4, SIRT2, 

and potentially SMYD3. Inhibiting these enzymes in 

TAMs would prevent these macrophages from polarizing 

to M2s and supporting the tumor. It is important to note 

that histone modifying enzymes have secondary functions 

and act on proteins other than histones as well. Much of 

their macrophage-polarizing function is speculated to arise 

from modification of non-histone proteins especially since 

many histone modifying enzymes are known to act in the 

cytoplasm [15, 51]. Additionally, not all regulators have 

opposing function in M1s vs M2s and not all regulators 

have exclusively positive or negative effects on one 

polarization state. These discrepancies highlight the 

complexity of macrophage biology and the challenges of 

finding effective epigenetic targets in TAMs. There are 

several enzymes that have known functional roles in M1s 

but are not discussed here because they have not been 

studied in M2s. These enzymes and their effects on M1 

phenotype are included alongside the enzymes discussed 

above in Table 1 and Figure 1. This extensive list 

exemplifies the discrepancy between macrophage research 

in M1- and M2-related diseases. In order to progress our 

understanding of the TME’s influences on tumor growth, 

further investigations into mechanisms of M2 phenotypic 

control are needed.

Pharmacologic modulators and their effects in 

macrophages

There are many pharmacologic modulators of 

epigenetic enzymes, some of which target specific 

enzymes and others which broadly target multiple 

enzyme classes. Modulators of inhibitors that target 

DNMTs are commonly referred to as DNMTis, those that 

target TET proteins are referred to as TETis, and so on. 

Not all epigenetic modulators have been tested against 

macrophages and even less have been tested against M2s 

specifically. Discussed below are the pharmacologic 

modulators tested against macrophages and their effect on 

macrophage polarization. This information is also listed in 

Tables 2 and 3 and depicted in Figure 2.

DNMTis

Azacytidine (AZA) and decitabine (DEC), 

otherwise known as Vidaza® and Dacogen®, respectively, 
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are two well-established DNMTis used clinically to treat 

myelodysplastic syndrome (MDS) [52, 53]. Both are 
involved in clinical trials against various leukemias and 

solid tumors (Table 4) [52, 53]. The effects of AZA and 

DEC have not been investigated in M2s although many 

studies have examined the effects of these modulators in 

M1s and unpolarized macrophages. 

In M1s, AZA decreases M1 marker expression 

and increases M2 marker expression. AZA treatment 

lowers iNOS expression and NO production in LPS- or 

PGN-stimulated RAW264.7 cells [54], PGN-stimulated 

mouse BMDMs [55], and mouse peritoneal macrophages 
stimulated with LPS and IFNγ [56]. The mouse peritoneal 

macrophages also exhibited decreased TNF expression 

[56]. Additionally, in the PGN-stimulated RAW264.7 

cells, AZA increased expression of M2 markers Arg1 

and Fizz1 [55]. A similar effect was observed in mouse 

macrophages from a myocardial infarction mouse model 

with cardiac macrophages from untreated mice highly 

expressing iNOS while cardiac macrophages from AZA-

treated mice highly expressing ARG1 [55].

DEC has similar effects to AZA in M1s and 

unstimulated macrophages. DEC lowers expression of M1 

markers TNF, IL6, IL1a, IL1b, iNOS, and a number of 

chemokines including CCL2, CCL5, and CCL9 in various 

LPS-stimulated macrophage models and macrophages 

from atherosclerotic plaques in Ldl-deficient mice [57, 58]. 

DEC also increases expression of the M2 markers ARG1 

in lung macrophages from LPS-treated mice and CD206 in 

LPS-stimulated mouse BMDMs [58]. This study also found 
the effects of DEC on Nos2, Arg1, and CD206 expression 

to be accentuated when in combination with trichostatin 

A (TSA), an HDAC inhibitor [58]. Additionally, when 

used in combination with TSA in LPS-stimulated mouse 

BMDMs, DEC increases STAT3 phosphorylation which 
downregulates the M1 inflammatory response [58]. 

Furthermore, DEC increases promoter demethylation and 

expression of SOCS1 in LPS-stim RAW264.7 cells which 

promotes the STAT3 pathway [21] and PPARγ and LXRα 

in unstimulated RAW264.7 cells which causes a decrease 

in M1 markers TNF, IL6, CCL2, and CCL5, an effect that 

is reversed by PPARγ and LXRα knockdown [57].

Taken together, these studies suggest that these 

DNMT modulators would likely promote the M2-TAM 

phenotype if used in the context of cancer therapy, though 

no definitive conclusions can be made due to the lack of 

studies of these modulators in M2s or TAMs.

TETis

The TET protein inhibitor dimethyloxallyl glycine 

(DMOG) promotes M2 polarization by upregulating Arg1, 

Fizz1, and Ym1 in mouse peritoneal macrophages in vivo 

when exposed to chitin, an M2 stimulatory molecule, or 

in vitro when exposed to IL10 or IL4 + IL13 [59]. In M1s, 
DMOG downregulates the M1 phenotype by inhibiting 

LPS-induced NFkβ activity and iNOS expression but 

upregulates M2 marker IL10 expression [59]. Notably, 

in unstimulated mouse peritoneal macrophages, DMOG 

increases expression of the M1 marker iNOS as well as 

NFkβ activity [59]. These findings are significant for 

understanding the role of TET proteins in macrophages 

but suggest that using DMOG in a tumor would promote 

M2 polarization of TAMs.

HMTis

Few HMTis have been tested against macrophages. 

3-Deazaneplanocin (DZNep), an EZH2 inhibitor, inhibits 

TNF expression in LPS-stimulated RAW264.7 cells [60]. 

MI-2-2, an inhibitor of MLL-Menin interactions, decreases 

CXCL10 expression in IFNg-stimulated HMDM [27]. 

While these inhibitors downregulate M1 phenotype, they 

have not been tested against M2s.

On the other hand, methylthioadenosine (MTA), an 

HMT inhibitor, currently involved in clinical trials for oral 

health [61], has been tested against M2s. In IL4-stimulated 

mouse BMDMs, pretreatment with MTA upregulated the 
M2 phenotype by increasing Arg1 expression although it 

did not significantly affect M2 markers Fizz1, Ym1, Cdh1, 

and CD206 [62]. The same study found pretreatment 

with MTA partially downregulated the M1 phenotype 

by decreasing Tnf mRNA levels as well as TNF and IL6 

secretion in LPS + INFγ-stimulated mouse BMDMs while 

Table 2: Effects of pharmacologic modulators of DNA methylation on macrophage polarization to 

M1 or M2

Pharmacologic modulator Effect in M1s Effect in M2s

D
N

M
T

i

azacytidine (Vidaza®, AZA) ↑ Arg1, Fizz1 [55]
↓ iNOS, NO [54–56]; TNF [56]

decitabine (Dacogen®, DEC) ↑ ARG1, CD206, STAT3 activation [58]; SOCS1 [21]; 
PPARɣ, LXRα [57]
↓ TNF, IL6, IL1β, iNOS, CCL2, CCL5 [57, 58]; CCL9 
[57]; IL1α, CCL3, CCL4, CCL7, CCL10, CCL12, IL1RN 
[58]

T
E

T
i dimethyloxallyl glycine (DMOG) ↑ IL10 [59]

↓ NFκB activity, iNOS [59]
↑ Arg1, Fizz1, 
Ym1 [59]
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Figure 2: Pharmacologic modulators of epigenetic enzymes influence macrophage phenotype. Pharmacologic modulators 

known to influence (A) DNA methylation, (B) histone methylation, and (C) histone acetylation in macrophages are listed above the left 

side of the spectrum if they promote M1 polarization and below if they inhibit M1 polarization. Those known to control M2 polarization 

are listed likewise on the right side of the spectrum.
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increasing Il1b mRNA levels but exerting no effect on Il6, 

Nos2, and Stat1 mRNA levels [62]. Other studies which 

test MTA against M1s have found the same compound 

downregulates the M1 phenotype in IFNg-stimulated 

RAW264.7 cells [63] and LPS-stimulated mouse BMDMs 
[63, 64]. Though MTA has not been tested with in vivo 

tumor models, its promotion of the M2 phenotype makes 

it an unlikely candidate for targeting M2 TAMs.

AMI-1, a PRMT1 inhibitor [25], downregulates 

the M2 phenotype in M2s by decreasing expression of 

PPARγ and PPARγ-dependent genes CD36, CD206, 

CD209, and SOCS1 during IL4-induced differentiation of 

mouse peritoneal macrophages [25]. Though no studies 

have been performed with M1s, this is a promising 

compound for altering TAM phenotype since it inhibits 

normal M2 processes and thus carries the potential to 

Table 3: Effects of pharmacologic modulators of histone modification on macrophage polarization 

to M1 or M2

Pharmacologic modulator Effect in M1s Effect in M2s

H
M

T
i

3-deazaneplanocin (DZNep) ↓ TNF [60]
AMI-1 ↓ PPARɣ, CD36, CD206, CD209, 

SOCS1 [25]

methylthioadenosine (MTA) ↑ Il1β [62] ↓ TNF [62, 64]; IL6 [62]; iNOS [64]; 
CD69, CD86, MHC-II, NFκB signaling [63]

↑ Arg1 [62]

MI-2-2 ↓ CXCL10 [27]

H
D

M
i GSK-J4 ↓ TNF [30, 65] ↓ CD206 [65]

pargyline (Eutonyl, Eutron) ↓ TNF [62]; LPS tolerance-induced Il6 silencing 
[33]

H
A

T
i

C646 ↓ NFκB activation, TNF, IL8, IL12, iNOS, IL1β 
[76]

↑ Ym1, Cd36 [75] ↓ Fizz1, Mgl2 [75]; 
Arg1 [74, 75]; Ym1 [74]

curcumin ↑ PPARɣ, CD36 [82]; SOCS-1, SOCS-3 [84]
↓ TNF, IL6 [81, 82, 84]; IL12B [81, 82]; CCL2 
[83, 85]; NFκB activation [81]; ROS [85], COX-
2 [84]

↑ IL12 [78] 
↓ IL10, TGF-β, MMP2, MMP9, 
VEGF, STAT3 activation [78]

epigallocatechin-3-gallate (EGCG) ↑ Tnf [62] ↓ TNF [73]
garcinol ↑ TNF, IL6 [68–70]  ↓ COX-2, iNOS [69, 70]; 

NFκB, NO [69]
Histone Acetyltransferase Inhibitor II (HATi 

II)

↓ IL1β [43]

roscovitine ↓ COX-2, iNOS, NO, NFκB activation [66]

H
D

A
C

i

butyrate ↑ Cox-2 [89] ↓ Ccl7 [89]; NO, IL6, IL12B [98]
CAY10603 (BML-281) ↑ TNF, IL1β [93] ↓ IL12B, IL6 [93]
dacinostat (LAQ824) ↓ TNF, NFκB activation [109]; MCP-2, MCP-

3, CCL2, CCL15, CCL23, CCR1, CCR5, CD38 

[108]; IL10 [106]
entinostat (MS-275) ↑ TNF, IL1β, IL12B, NFκB activity [92]; Cox-2 

[89]; IL10 [92, 107] ↓ IL1β, iNOS, IFNɣ, IL17, 
MMP-9 [107]

givinostat (ITF2357) ↓ NO [62, 104]; IL6 [62]; TNF [104]
trichostatin A (TSA) ↑ Cox-2 [89]; Stat1 [62]; IL1β [43]; IFNβ [88]; 

ROS [137] ↓ Tnf [62, 88, 109]; Il6 [62, 88]; Cox-
2 [62]; NFκB activation [109]; Ccl7 [89]; IL12B 
[88, 89]; Ccl8, Ccl12, Cxcl10, Nos2, Irf7 [88]

↑ c-Myc [87]; Cdh1 [62] ↓ Arg1, 
Fizz1, Ym1 [62]

tubastatin A ↑ ROS [137] ↓ phagocytosis [137]; TNF, IL6, 
NO [139]; apoptosis [105]

valproic acid (Depakene®, VPA) ↑ IL10, CD86 [102] ↓ CD40, CD80 [102]; IL12B 
[88, 102]; iNOS, TNF, IL6 [88]

vorinostat (Zolinza®, SAHA) ↑ Cox-2 [89]; Il1β [92]; ROS [137] ↓ NO [90]; 
TNF, IL6, IL12B [88]; Ccl7 [89]

↓ TAM infiltration in tumors [90, 91]

B
ET

i

GSK 525768A (I-BET-762) ↓ Il6, Ifnβ, Il12α, Cxc19, Ccl12 [50]
I-BET151 ↑ PPARɣ, LXR [112]

↓ IL6 [111]; NFκB signaling [112]; CXCL10, 
CXCL11, IFNβ [110]

↓ PPARɣ, ENPP2, MS4A4A, IL7R, 
ABIN3 [110]

JQ1 ↓ TNF, IL6 [49, 113]; CCL2 [49]; Il1β [113]; 
Nos2 [114]; PD-L1 [115]
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Table 4: Clinical applications of pharmacologic modulators tested against macrophages

Pharmacologic 

modulator

Approved clinical indications a Clinical trial cancer indications 

(total # of trials for cancer) b

D
N

M
T

i azacytidine (Vidaza®, 

AZA)

acute myeloid leukemia, chronic myelomonocytic 

leukemia

various hematologic and solid tumor 

cancers (520)

decitabine (Dacogen®, 

DEC)

acute myeloid leukemia, chronic myelomonocytic 

leukemia, myelodysplastic syndrome

various hematologic and solid tumor 

cancers (241)

T
E

T
i dimethyloxallyl glycine 

(DMOG)

H
M

T
i

3-deazaneplanocin 

(DZNep)

AMI-1

methylthioadenosine 

(MTA)

lung cancer and sarcoma (2)

MI-2-2

H
D

M
i GSK-J4

pargyline (Eutonyl, 

Eutron)

hypertension c

H
A

T
i

anacardic acid (AA)

C646

curcumin various hematologic and solid tumor 

cancers (55)

epigallocatechin-3-

gallate (EGCG)

various solid tumor cancers (28)

garcinol

Histone 

Acetyltransferase 

Inhibitor II (HATi II)

roscovitine breast cancer, non-small cell lung 

cancer, advanced solid tumors (3)

H
D

A
C

i

butyrate various hematologic and solid tumor 

cancers (114)

CAY10603 (BML-281)
dacinostat (LAQ824)

entinostat (MS-275) various hematologic and solid tumor 

cancers (47)

givinostat (ITF2357) various hematologic cancers (6)

trichostatin A (TSA) various hematologic and solid tumor 

cancers (8)

tubastatin A

valproic acid 

(Depakene®, VPA)

epilepsy, migraine, schizophrenia, seizures, acute 

manic episodes

various hematologic and solid tumor 

cancers (82)

vorinostat (Zolinza®, 

SAHA)

cutaneous T-cell lymphoma various hematologic and solid tumor 

cancers (242)

B
ET

i

GSK 525768A 

(I-BET-762)
breast cancer, prostate cancer, 

hematologic cancers, NUT midline 

carcinoma (4)

I-BET151
JQ1

aInformation acquired from www.drugbank.ca.
bInformation acquired from clinicaltrials.gov.
cAll FDA-approved drugs have been discontinued [140].
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attenuate immunosuppressive, tumor-promoting function 

of M2-TAMs.

HDMis

Two HDMis, pargyline and GSK-J4, have been 

tested against macrophages, including M2s. Pargyline, 

a monamine oxidase and pan-HDM inhibitor previously 

sold as Eutonyl or Eutron, did not significantly affect the 

expression of M2 markers Arg1, Fizz1, Ym1, Cdh1, and 

CD206 in IL4-stimulated mouse BMDMs. Alternatively, 
the same study found that although pargyline decreases 

TNF secretion in LPS-challenged mouse BMDMs, it does 
not significantly affect expression of M1 markers Tnf, Il6, 

Nos2, Stat1, and Il1b in IFNγ + LPS-stimulated mouse 
BMDMs [62]. Thus, it appears that pargyline has weak 
control over macrophage polarization. A separate study 

found that pargyline prevents LPS tolerance-induced Il6 

silencing in mouse BMDMs [33].
GSK-J4, which targets JMJD3 and other KDM6 

enzymes, reduces CD206 expression in IL4-stimulated 

HMDMs [65] and inhibits expression of TNF and other M1 

inflammatory cytokines in LPS-stimulated [30] and IFNγ-

stimulated [65] HMDMs. These effects are consistent 

with expectations for a JMJD3 inhibitor due to JMJD3’s 

vital role in both M1 and M2 polarization. Regardless 

of its effects on M1s this inhibitor may be a promising 

compound for decreasing the immunosuppressive and 

tumor-promoting functions of TAMs.

HATis

Several HATis have been tested in M1s or 

unstimulated macrophages with various effects 

observed to the M1 phenotype. The M1 phenotype was 

downregulated in M1s by Histone Acetyltransferase 

Inhibitor II (HATi II) which decreased IL1b secretion 

[43] and by roscovitine which decreased COX-2 and 

iNOS expression, NO production, and NFκB activation 
[66]. However, roscovitine, a p300 inhibitor, is better 

known for its CDK-inhibiting functions [67]. Thus, these 

effects on macrophage polarization may be due to its 

influence on cell cycle regulation rather than epigenetic 

regulation. Garcinol, another p300 inhibitor, has mixed 

results on M1s; it increases TNF and IL6 expression 
while decreasing iNOS expression, NO production, COX-

2 expression, and NFκB activation in LPS-stimulated 
RAW264.7 cells [68–70]. Another HATi, anacardic acid 

(AA), has a negative effect on the M2 phenotype as it 

decreases IL4 and IL10 secretion when tested against 

unstimulated macrophages [71]. In these same cells, it has 

mixed effects on the M1 phenotype as it increases NFκB 
phosphorylation, migration, phagocytosis, and secretion 

of NO, IL6, and TNF [71]. Though these results are 

informative for a number of inflammatory diseases, none 

of these HATis have been tested against M2s. Therefore, 

inferences as to these modulators’ efficacy against TAMs 

cannot be drawn with the potential exception of AA which 

appears to inhibit the M2 phenotype.

Currently, only three HATis have been tested 

against M2s: epigallocatechin-3-gallate (EGCG), C646, 

and curcumin. EGCG, which is involved in a number 

of clinical trials for indications such as type 2 diabetes, 

obesity, and various cancers [72], does not significantly 

affect expression of M2 markers Arg1, Fizz1, Ym1, Cdh1, 

and CD206 in IL4-stimulated mouse BMDMs [62]. 
Additionally, its effects on M1s are ambiguous. The same 

study found that EGCG increases Tnf expression without 

affecting expression of Il6, Nos2, Stat1, and Il1b in LPS 

+ IFNγ-stimulated BMDMs [62] whereas another study 
found EGCG inhibits TNF expression in LPS-stimulated 

HMDMs [73]. Due to this ambiguity and lack of effect 

on M2 polarization, EGCG exhibits little promise as a 

targeting agent against M2 TAMs.

Studies implicating C646, a second p300 inhibitor, 

in macrophage polarization have produced slightly more 

conclusive results. In M-CSF + IL4-stimulated mouse 
BMDMs, C646 downregulates Arg1 and Ym1 expression 

[74]. Another study also found C646 downregulates Arg1, 

Fizz1, and Mgl2 expression but conversely upregulates 

Ym1 and CD36 in IL4-stimulated mouse BMDMs [75]. 
In M1s, C646 decreases NFkB activation and expression 
of TNF, IL8, IL12B, iNOS, and IL1b [76]. C646’s effects 
on M2s is somewhat ambiguous but suggests that it might 

decrease the tumor-promoting functions of M2 TAMs 

within the context of a tumor.

Curcumin is another p300 inhibitor that is often used 

therapeutically for various cancers, parasitic infections, 

inflammatory diseases, & other indications [77]. In a study 

involving nanoparticles containing the synthetic curcumin 

derivative hydrazinocurcumin (HC), HC exposure 

altered the phenotypes of RAW264.7 cells previously 

co-cultured with 4T1 breast cancer cell line cells. After 

co-culture but before HC exposure, the RAW264.7 cells 

exhibited an IL10hi, IL12lo, TGF-βhi M2-like phenotype 

with high STAT3 activity and high expression of STAT3 

downstream genes MMP2, MMP9, and VEGF. After HC 

exposure, these cells exhibited an IL10lo, IL12hi, TGF-

βlo M1-like phenotype with low STAT3 activity and 

expression of STAT3 downstream genes MMP9, MMP2, 

and VEGF [78]. These HC-exposed RAW264.7 cells 

also decreased 4T1 cell proliferation and migration when 

co-cultured and prolonged survival and reduced tumor 

burden when administered in vivo to mice co-injected 

with RAW264.7 cell and 4T1 cells subcutaneously [78]. 

Others have observed results similar to this with increased 

levels of Stat4 and Il12 as well as decreased levels of 

Stat3, Il10, and Arg1 in tumor and spleen tissue of mice 

with subcutaneous 4T1 breast cancer cell line tumors 

suggesting a shift from M2- to M1-prominent TAM 

populations [79]. This study also observed reduced tumor 

volume and weight with curcumin treatment. Notably, 
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this study analyzed cytokine secretion of whole tissue 

rather than isolated macrophages, therefore it cannot be 

concluded that the change in cytokine levels is due to a 

shift in macrophage phenotype. However, studies using 

unstimulated macrophages also found curcumin promoted 

an M2 phenotype with curcumin-treated RAW264.7 cells 

expressing higher levels of IL4, IL13, CD206, ARG1, 

PPARg, and phosphorylated STAT6 [80]. Alternatively, 

studies testing curcumin against M1s show it decreases 

M1 phenotype by downregulating NFκB activity, ROS 
production, and expression of TNF, IL6, IL12B, CCL2, 
and COX-2 while increasing expression of the M2 

markers PPARγ and CD36 [81–85]. Similar observations 

have been made in renal tissue of mice with daunorubicin-

induced nephrotoxicity [86]. In vivo curcumin treatment 

in this model increased M2 markers Il10, CD163, and 

CD36 while decreasing M1 markers CD80, CD86, IFNγ, 

IL6, TNF, TNF-R1, COX-2, and ICAM-1 expression 

and NFκB activation [86]. While various macrophage 
studies and models produce deviating effects, the in vivo 

tumor model experiments suggest that curcumin may be 

an effective pharmacologic modulator for targeting M2 

TAMs.

HDACis

HDACis are the most extensively studied epigenetic 

modulator in macrophages, however, nearly all of this work 

has been performed in M1s in the context of infectious or 

inflammatory disease. Trichostatin A (TSA) is one of a 

few HDACis tested against M2s. In IL4-stimulated mouse 

BMDMs, TSA inhibited Arg1, Fizz1, and Ym1 expression 

while increasing Cdh1 expression without affecting Cd206 

expression [62]. Additionally, it was found to upregulate 

c-Myc, an important regulator of the M2 phenotype, in 

GM-CSF-stimulated mouse BMDMs [87]. Because of 
these opposing effects on M2 phenotype, it is difficult to 

predict whether TSA would successfully target M2s in 

the tumor. TSA has mixed effects in M1s across multiple 

studies reporting decreased expression of some M1 markers 

such as Tnf and Il6 with increased expression of other 

markers such as Stat1, IFNb, and a number of chemokine 

ligands [62, 88]. Additionally, a number of these studies 

report conflicting results regarding Cox-2, IL1b, and iNOS 

expression [43, 62, 88, 89]. These discrepancies in TSA’s 

influence on LPS-induced effect may be attributed to 

variations in concentration as has been reported [89]. As 

mentioned previously, the immunomodulatory effects of 

TSA in M1s is enhanced by combination treatment with 

the DNMTi AZA [58].

Another prominent pan-HDACi, vorinostat, 

otherwise known as Zolinza® or suberoylalanide 

hydroxamic acid (SAHA), is clinically used to treat 

cutaneous T cell lymphoma (Table 4). SAHA has yet to 

be tested using in vitro M2 models but has been used 

in mouse tumor models. In PyMT mice, SAHA delays 

tumor growth and reduces tumor burden and inhibits 

TAM infiltration of estrogen receptor-negative (ER-) 

mammary tumors while decreasing M-CSF and MMP-9 

levels in these tumors [90]. Additionally, SAHA inhibits 

the increase of F4/80+ and ARG1+ macrophages in mouse 

pancreatic cancer tumors [91] making it a promising agent 

for targeting M2 TAMs. SAHA has been studied much 

more extensively in M1 models and has been found to 

generally inhibit LPS- and IFNγ-induced signaling and 

polarization [90, 92–95].

Butyrate, a pan-HDACi involved in clinical trials for 
schizophrenia [96], increases expression of M2 markers 

Arg1, Fizz1, Ym1, and CD206 & STAT6 phosphorylation 

in unstimulated mouse BMDMs [74]. Additionally, oral 
administration reduces progression of atherosclerosis by 

reducing migration and adhesion of macrophages [97]. 

Experiments using in vitro M1 models found decreased 

LPS-induced Ccl7 and pro-inflammatory mediator 

expressions in butyrate-treated M1s [89, 98]. Butyrate also 
decreases expression of M1 markers NO, IL12B, and IL6 
without affecting TNF or CCL2 in RAW264.7 cells co-

cultured with 3T3-L1 adipocytes [99]. Because it generally 
inhibits the M1 phenotype and promotes the M2 phenotype, 

it would likely fail as a M2 TAM-targeting agent.

Valproic acid (VPA), also known as Depakene®, 

is another pan-HDACi used to clinically treat seizure 

disorders, mania, and migraine headaches and is involved 

in multiple clinical trials for neurological indications 

(Table 4). Its effects on M2s have not been elucidated 

although it has been shown to inhibit tumor growth 

enhancement induced by decoy receptor 3 which promotes 

M2 TAM infiltration [100]. Additionally, in a nitrogen 

mustard-induced lung injury model, VPA decreases 

iNOS+CCR2+ macrophages and increases CD68+, CD163+, 

and ATR-1a+ macrophages in lung tissue [101]. In M1 in 

vitro models, VPA has been shown to generally decrease 

M1 markers and phenotype [88, 102, 103]. However, 

VPA’s promotion of M2 polarization in vivo makes it a 

poor M2 TAM-targeting agent.

Several other selective HDACis and pan-HDACis 

including CAY10603 (BML-281), dacinostat (LAQ824), 
entinostat (MS-275), givinostat (ITF2357), and tubastatin 

A have been tested against macrophages, however, these 

have only been tested against M1s. Givinostat, tubastatin 

A, and CAY10603 decrease the pro-inflammatory 

phenotype [62, 93, 104, 105] while entinostat and 

dacinostat both reduce and enhance the M1 phenotype 

[89, 91, 92, 106–109]. Additionally, of note, dacinostat 

decreases IL10 expression in LPS-stimulated mouse 

peritoneal macrophages [106].

BETis

Of the three BETis tested against macrophages, only 
I-BET151 has been tested against M2s. I-BET151 inhibited 
expression of M2 marker genes PPARγ, ENPP2, MS4A4A, 



Oncotarget20920www.oncotarget.com

IL-7R, and ABIN3 in HMDMs stimulated with IL4 or IL10 
[110] implicating it as a promising M2 TAM-targeting 

agent. In M1s, I-BET151 decreases M1 marker expression 
[110–112] similar to the other BETis tested against M1s, 
GSK525768A (I-BET-762) [50] and JQ1 [49, 113–115].

Epigenetic modulators as TAM-targeting agents

Of the pharmacologic modulators described, the 

most promising as M2 TAM-targeting agents are those 

that inhibit M2 polarization or decrease TAM infiltrate, 

namely, HMTi AMI-1; HDMi GSK-J4; HATis C646, 
curcumin, and potentially AA; HDACis SAHA and 
potentially TSA; and BETi I-BET151. Many epigenetic 
modulators have been and are being tested in clinical 

trials to treat various cancers. These modulators are listed 

in Table 3 alongside their approved clinical indications 

and clinical trial indications. While these pharmacologic 

modulators undoubtedly target the malignant cells, they 

also likely impact the rest of the tumor microenvironment 

including TAMs. The effect of these epigenetic modulators 

on the TME as a whole and TAMs in particular remains 

largely undetermined and it is possible that a significant 

portion of their anti-tumor effect is a result of modulating 

TAM tumor-promoting support networks. Understanding 

pharmacologic modulators in the context of their effect on 

all cells within the tumor microenvironment may expand 

their scope as anti-cancer agents.  Their indications, for 

example, could be expanded to include cancers that are 

supported by TAM infiltration and not just cancers with 

significant epigenetic dysregulation.

CONCLUSIONS

The epigenetic mechanisms controlling macrophage 

polarization are complex. There has been much progress 

in elucidating these mechanisms in inflammatory 

macrophages but TAMs have largely been overlooked. 

It is clear that pharmacologic modulators of epigenetic 

enzymes have effects that are not cell-specific affecting all 

cells in the TME and throughout the body and conferring 

therapeutic effects as well as different levels of toxicity. 

However, many of these modulators have already been 

tested clinically and deemed safe for therapeutic use. 

Therefore, epigenetic modulators provide a promising 

method for targeting TAMs and, due to their current 

clinical availability, can easily be repurposed for cancers 

with high M2 TAM infiltrate. Exploiting the differences in 

M1 and M2 biology using these modulators would provide 

a means for targeting M2 TAMs thereby eliminating these 

key tumor-supporting cells from the TME.

Abbreviations

AZA = azacytidine; BET = bromodomain and extra-
terminal motif; BETi = BET protein modulator/inhibitor; 

BMDM = bone marrow-derived macrophage; DEC = 
decitabine; DNMT = DNA methyltransferase; DNMTi = 
DNMT modulator/inhibitor; EGCG = epigallocatechin-3-
gallate; HATi = HAT modulator/inhibitor; HATi II = Histone 
Acetyltransferase Inhibitor II; HC = hydrazinocurcumin; 
HDAC = histone deacetylase; HDACi = HDAC modulator/
inhibitor; HDM = histone demethylase; HDMi = HDM 
modulator/inhibitor; HMDM = human monocyte-derived 
macrophage; HMT = histone methyltransferase; HMTi = 
HMT modulator/inhibitor; LDTF = lineage-determining 
transcription factor; MHC-II = major histocompatibility 
complex class II receptor; MMP = matrix metalloprotease; 
NO = nitric oxide; PTM = post-translational modification; 
ROS = reactive oxygen species; SAHA = suberoylalanide 
hydroxamic acid (otherwise known as vorinostat or 

Zolinza®); SDTF = signal-dependent transcription factor; 
TAM = tumor-associated macrophage; TET = ten eleven 
translocation; TETi = TET protein modulator/inhibitor; 
TME = tumor microenvironment; TSA = trichostatin A; 
VPA = valproic acid.
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