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Abstract

Hypoxia is the major influence factor in physiological and pathological courses which are mainly mediated by
hypoxia-inducible factors (HIFs) in response to low oxygen tensions within solid tumors. Under normoxia, HIF
signaling pathway is inhibited due to HIF-α subunits degradation. However, in hypoxic conditions, HIF-α is activated
and stabilized, and HIF target genes are successively activated, resulting in a series of tumour-specific activities. The
activation of HIFs, including HIF-1α, HIF-2α and HIF-3α, subsequently induce downstream target genes which leads
to series of responses, the resulting abnormal processes or metabolites in turn affect HIFs stability. Given its
functions in tumors progression, HIFs have been regarded as therapeutic targets for improved treatment efficacy.
Epigenetics refers to alterations in gene expression that are stable between cell divisions, and sometimes between
generations, but do not involve changes in the underlying DNA sequence of the organism. And with the
development of research, epigenetic regulation has been found to play an important role in the development of
tumors, which providing accumulating basic or clinical evidences for tumor treatments. Here, given how little has
been reported about the overall association between hypoxic tumors and epigenetics, we made a more systematic
review from epigenetic perspective in hope of helping others better understand hypoxia or HIF pathway, and
providing more established and potential therapeutic strategies in tumors to facilitate epigenetic studies of tumors.
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Background
Low oxygen tension (hypoxia) arises from excessive oxy-

gen consumption to supports the demand of rapid pro-

liferation, and abnormalities in the structure and

function of blood vessels within solid tumors [1–4].

Mounting clinical and experimental evidences have re-

vealed that hypoxia-related oxygen pressure contributes

to higher metastasis and mortality rates [5–7]. Hypoxia

occurs in 90% of solid tumors, which has been regarded

as a hallmark of cancer [8–10]. In addition, hypoxia

often plays a key role in tumor progression and toler-

ance to targeted therapies [11, 12]. Massive efforts have

been brought about in investigating hypoxia due to its

significantly clinical implication.

Tumor-associated metabolic alterations at multi-steps

of metastasis have been observed in clinical samples via

ever-accelerated updating of molecular biological tools.

Particularly, it has become evident that adaptation in

metabolite-driven gene regulation may be a potent hall-

mark to measure tumorigenesis [13–15]. Hypoxia-

inducible factors (HIFs) are heterodimers composed of α

subunits and β subunits, where α subunits include HIF-

1α, HIF-2α, and the less studied HIF-3α [12, 16, 17].

Under normoxia, two prolines residues of HIF-1α and

HIF-2α are hydroxylated by prolyl hydroxylase domain

protein 2 (PHD2) and go through ubiquitin-mediated

proteolysis via binding to Hippel-Lindau tumor suppres-

sor (VHL) [18]. However, these ubiquitination processes

are inhibited due to enzyme inactivation within solid
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tumors, which leading to accumulating HIF-1α and HIF-

2α stability [19]. HIF-1, existing in the form of functional

heterodimer which consisting of α and β (aryl hydrocar-

bon receptor nuclear translocator, ARNT) isoforms, is a

primary sensor of oxygen limitation and its induction

supports cancer cells proliferation during hypoxia by eli-

citing several metabolic alterations [4, 20]. Likely, HIF-

2α/ARNT heterodimer, known as HIF-2, is sensible to

oxygen availability in tumors, and is also tightly con-

trolled by proteasomal degradation via prolyl hydroxy-

lases (PHDs) in both normoxic and hypoxic conditions

[21]. Moreover, HIF-2α promotes tumor progression via

macrophage lactate /HIF-2α/ATP6v0d2 axis [22], and

some lncRNAs may be its transcriptional targets within

solid tumors [21]. Role of HIF-3α has not yet been fully

understood, which has long been thought negatively as-

sociated with HIF-1α and HIF-2α expression and func-

tion to directly or indirectly regulate hypoxia-induced

pathological processes [23–25]. For example, TIMP2

(tissue inhibitor of metalloproteinases 2) blockade by

HIF-1α/miR-210/HIF-3α feed circuit often plays a sig-

nificantly role in regulating hepatocellular carcinoma

(HCC) metastasis, which is regard as associated with

poor prognostic effects [26].

HIF signaling directly or indirectly get a tightly com-

mand of physiological and pathological functions of nu-

merous genes associated with carcinogenesis

mechanisms, which refer to the regulation of prolifera-

tion, cell death, radiotherapy and chemotherapy [24, 25,

27–30], tumor microenvironment [31–33], metastasis

[34–36], angiogenesis [37–40], and metabolic repro-

gramming [41–43] etc. within solid tumors. Epigenetics

refers to a heritable change in gene expression when

DNA sequence is not changed, that is, the genotype is

not changed but the phenotype is changed [44, 45]. It’s

an out-of-sequence form of inheritance. In addition to

the genetic information provided by DNA sequence, epi-

genetic information provides instructions on when,

where and how to apply genetic information such as

DNA methylation, histone modification, and nucleosome

positioning [44]. Epigenetic research has been an im-

portant part of cancer research providing accumulating

basic or clinical evidences for tumor treatments [46, 47].

In the present review, we put our eyes on the role of

HIF signaling and hypoxia-dependent regulator in tumor

progression from the perspective of epigenetics.

Canonical and non-canonical regulation of HIF
signaling
HIF family mainly mediates cellular oxygen tension-

dependent reactions via a basic helix-loop-helix struc-

ture with a significant implication in pathological pro-

cesses in tumors [4, 48]. It’s reported that HIF-1α and

HIF-2α are widely expressed in various cell types and

special tissues, respectively [49]. In the state of canonical

regulation, HIF signaling is activated transcriptionally by

the binding of HIF-1α or HIF-2α to their selective bind-

ing partner HIF-1β [4, 11]. In the normoxic case, the

oxygen-dependent degradation (ODD) domain within

HIF-1α confers instability for HIF-α function [50]. The

ODD module will be degraded via binding with VHL

which playing a role of E3 ubiquitin ligase complex in

part through ubiquitin-proteasome pathway. In detail,

prolyl hydroxylases (PHDs) catalyze the hydroxylation of

ODD domain which is recognized by VHL, eventually

leading to proteasomal degradation of HIF-α (Fig. 1a)

[51]. With that in mind, inactivation of VHL, including

mutations and other modifications such as methylation,

is associated with various illnesses such as clear-cell

renal cell carcinoma (ccRCC) due to aberrant VHL/HIF

axis and may also affects human phenotypes [52, 53].

VHL encodes two RNA (variant 1 and variant 2), three

different protein isoforms (pVHL213, pVHL160 and

pVHL172). The pVHL213 and pVHL160 is translated

from variant 1 through alternative splicing, and

pVHL172 from variant 2. Recently, relevant studies re-

vealed that pVHL172 is not involved in HIF signaling

other than pVHL213 and pVHL160 [54, 55]. Oxygen

concentration-dependent mechanism involving PHDs,

exhibits a canonical example to perform response to

hypoxia. In addition, under normoxia, an asparagine

residue in the C-terminal activation domain of HIF-1α

and HIF-2α is hydroxylated by factor inhibiting HIF

(FIH), resulting in the inability of the region to bind to

p300, thus weakening the activation of the HIF pathway.

However, in hypoxia, due to the inactivation of FIH,

HIF-1α and HIF-2α avoid being hydroxylated, and sub-

sequently translocate into the nucleus to bind with

ARNT and p300, leading to the activation of HIF target

genes [56]. The effect of FIH on the HIF-α further

deepens our understanding of the mechanisms govern-

ing the stability of HIF-α.

However, in mionectic cells, including hypoxic tumor

cells and stromal cells, condition is characterized by

non-canonical signaling pathway [11]. Metabolic repro-

gramming of tumor cells is characterized by the balance

of glycolysis and oxidative phosphorylation (OXPHOS),

and the interaction between the crosstalk and HIF sig-

naling, especially HIFs stability is largely unclear [57].

OXPHOS damage is ever known to promote HIF-1α

stabilization in normoxia and hypoxia, however, a series

of studies noted that OXPHOS damage accompanied

with mitochondrial complex I (CI) dysfunction may re-

duce HIF-1α activity, and glycolysis reduced by 5′ AMP-

activated protein kinase (AMPK) is negatively associated

with HIF-1α activity due to ATP supply and reactive

oxygen species (ROS) production which promotes tumor

progression [58–61]. Besides the regulation of OXPHOS
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Fig. 1 Canonical and non-canonical regulation of HIF signaling. a Oxygen- dependent regulation of HIF-α. Under normoxic condition, the ODD
module within HIF-1α will be degraded via binding to VHL E3 ubiquitin ligase complex which consisting of pVHL, Cullin 2 (Cul-2) and Elongin B.
This process is mediated by ubiquitin-proteasome pathway, which α-ketoglutarate-dependent PHDs catalyze the hydroxylation of ODD domain
which is recognized by VHL, eventually leading to proteasomal degradation of HIF-α. More, factor inhibiting HIF (FIH) inhibits the binding of p300
to HIF-α by hydroxylating asparagine residue within C terminal domain, which play a role of inhibition on HIF-α activity. b Regulation of the HIF
pathway at mRNA and protein level. In hypoxic conditions, inhibition of PHDs promote the heterodimer formation consisting of HIF-α and ARNT.
Extracellular signaling TNF-α stimulates I-κB kinase (IKK) complex which is comprised of IKKα and IKKβ, and other normal TNF signaling (NIK),
which contribute to p65/50 complex and p52/RelB complex formation. Many other components NF-κB together activate target genes, including
HIF-α, and further induce inflammation. More, PI3K, PDK and PKB activation induced by growth factors (GFs) activates mTOR pathway results in
elevated HIF-α transcriptional activity. And phosphorylation of FoxO1 PI3K/PKB, which is transferred from the nucleus to the cytoplasm, prevents
FoxO1 from acting on HIF-α. G9a/GLP methylates HIF-1α protein and inhibits HIF-1α activity within solid tumors, making it unable to bind to the
hypoxic response element (HRE) of its target genes, resulting in inhibition of the downstream HIF pathway. More, HIF-1α acts on TIP60, which
leads to chromatin histone acetylation and then to the activation of polymerase II, which ultimately activates HIF-1α target genes transcription.
IκB, nuclear factor of κB inhibitor, alpha; IKK, IκB kinase; 4EBP1, eukaryotic translation initiation factor 4E-binding protein 1; eIF-4E, eukaryotic
translation initiation factor; GβL: G protein beta subunit-like; Grb2: growth factor receptor-bound protein 2; EPO: erythropoietin; PAI: plasminogen
activator inhibitor; iNOS: nitric oxide synthase; REDD1: regulated in development and DNA damage response 1; PGK: phosphoglycerate kinase
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genes, HIF-1 may be affected by many other factors, in-

cluding hormones, growth factors and cytokines etc. on

transcriptional and post-transcriptional level [62]. In-

creasing studies have elucidated that HIF genes could be

regulated in the NF-κB (nuclear factor kappa-B)

dependent manner. Some think that NF-κB pathway is

activated by TNF-α (tumor necrosis factor alpha) when

relevant components of this pathway translocated into

nucleus, and subsequent changes are performed on HIF-

1α level [63–65]. Others demonstrated that HIF-1β

would be modulated directly by TNF-α after the adapta-

tion of α subunit, all this finally led to changed HIF-2α

gene expression in the presence of inflammatory cyto-

kines, such as tat-associated kinase complex catalytic

subunit (TAK), I-kappaB kinase (IKK) and cyclin-

dependent kinase 6 (CDK6) [65–67]. More interestingly,

authentic study has noted that TNFSF14 (tumor necrosis

factor superfamily, member 14), as a non-canonical in-

ducer of NF-κB, could perform a direct alteration on

HIF-2α expression and activity. Mechanistically, TNFS

F14-induced p52 selectively binds with certain sites of

HIF-2α promoter leads to elevation of HIF-2α expres-

sion [68] v. In addition to the TNF signaling, PI3K/Akt/

mTOR pathway also play a significant role in regulating

HIFs activity, for example, phosphoinositide 3-kinase

(PI3K), pyruvate dehydrogenase kinase (PDK) and pro-

tein kinase B (PKB) activation induced by growth factors

activate mammalian target of rapamycin (mTOR) path-

way results in elevated HIF-α transcriptional activity.

And phosphorylation of forkhead box protein O1

(FoxO1), which is transferred from the nucleus to the

cytoplasm, prevents FoxO1 from acting on HIF-α (Fig.

1b) [19, 69]. Recent studies have shown that up-

regulated expression of interleukin-1β (IL-1β) secreted

by B cells promotes the activation of HIF-2α, and

HIF-2α activation further promotes the activation of

delta like canonical Notch ligand 4 (DLL4) signaling,

and finally interact with neurogenic locus notch

homolog (Notch) to form the IL-1β/HIF-2α/Notch 1

axis [70]. Collectively, various mechanisms drive HIF

signaling activation in low oxygen tensions to main-

tain the state of various cancer cell types, and TNF-α

interacts with HIF signaling provides a preferable and

typical example.

Epigenetic regulation of HIFs activity
Growing evidence has revealed that the transcriptional

activity of HIFs is regulated by epigenetic factors at mul-

tiple levels [71, 72]. The stability of HIF-α subunits are

the basis for biological function of HIF complexes and

regulates hypoxia-related phenotypes of tumor cells in

combination with other important epigenetic regulators

[73]. Lots of different epigenetic factors, including en-

zymes that play a role in methylation and acetylation,

and non-coding RNAs, are closely related to HIFs stabil-

ity and transcriptional activity [74].

Effects of DNA methylation and demethylases on HIF-α

activity

DNA methylation is an important event of epigenetic

regulation within hypoxic tumors [45]. DNA methylation

is a process in which S-adenosylmethionine (SAM) is

used as a methyl donor to transfer methyl groups to spe-

cific bases under the catalysis of DNA methyltransferase

[75, 76]. But in human cancers, DNA methylation occurs

mainly at cytosine of CpG sites to produce 5-

methylcytosine (5mC) [77, 78]. DNA methylation can

regulate HIFs stability, and subsequently influence HIFs

target genes expression [2]. Among them, promoter

hypermethylation could lead to tumor suppressor genes

silencing in cancer [79]. For instance, VHL hypermethy-

lation at promoter site increases transcriptional activa-

tion of HIF-1α and promotes HIF-1α target gene

activation such as carbonic anhydrase 9 (CA9) and glu-

cose transporter type 1 (GLUT1) [2, 80]. DNA demeth-

ylation is also associated with dynamic regulation of

HIF-1α. For example, HIF-1α promoter is demethylated

at CpG site within colon cancer, which promoting the

binding of HIF-1α protein to its own promoter and thus

affecting HIF-1α transcriptional activation and target

genes activation [2, 81]. DNA demethylation mediated

by ten-eleven-translocation 5-methylcytosine dioxy-

genases (TET) plays an important role in regulating

hypoxia-induced transcriptional program [82]. The 2-

oxoglutarate-dependent dioxygenases (2-OGDDs) is a

large family of about 70 members, of which the TET1-3

proteins are important members [83]. The TET proteins

has the function of hydroxylation, which converts the

5mC in DNA to 5-hydroxymethylcytosine (5hmC), 5-

formylcytocine, and 5-carboxylcytocine, leading to DNA

demethylation in the consecutive biochemical reactions

[84, 85]. However, it is the protein-protein interaction

between TETs and other proteins, rather than the de-

pendence of TET’s demethylase activity, that regulates

the functional activity of HIF-α [75]. For example, 5hmC

mediated by TET1 enzyme has been regarded as an im-

portant epigenetic DNA modification in brain, and can

interacts with HIF-1α protein to regulate the responses

induced by chronic restraint stress (CRS) in mice with

CRS-induced depressive phenotype [86, 87]. Cheng et al.

found that deletion of the TET1 gene resulted in CRS

resistance in mice, conversely, and that the stress-

induced hydroxymethylated loci (SI-DhMLs) were

enriched with HIF-1α binding regions via genome-wide

profiling [86]. Then, they identified that the elevated

HIF-1α binding under CRS is related to SI-DhMLs

through biochemical and chromatin immunoprecipita-

tion sequencing (ChIP-seq) [87]. Together, these results
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shows that TET1 enzyme regulates stress-induced re-

sponse by interacting with HIF-1α protein [87]. These

results suggest that TET1 can regulate biochemical reac-

tions by interacting with HIF-1α, rather than directly de-

pending on DNA demethylase activity of TET1 on HIF-

1α in non-tumor cells [87]. The interaction of TET1

with HIF-1α has also been further confirmed in neuro-

blastoma [88]. Hypoxia elevates global 5hmC level in

DNA, and high level of 5hmC is closely related to the

active expression of hypoxia-responsive target genes

[82]. Part of the 5hmC was colocated with the hypoxic

response element (HRE), promoting DNA demethylation

and HIF binding [2]. Hypoxia leads to transcriptional ac-

tivation of TET1 in HIF-1 dependent manner, and TET1

enzyme increases global 5hmC level [88]. These results

suggest that TET1-mediated 5hmC alterations play an

important role in the hypoxic response via HIF-1 bind-

ing rather than DNA demethylation of HIF-1α [88].

The m6A methylation of mRNA involves in epigenetic

regulation of HIF-α activity

To some extent, N6-methyladenosine (m6A) methylation

can also regulate the stability of HIF-α within tumor

cells. The m6A methylation on the 6th position of RNA

molecule adenine, is the most common post-

transcriptional modification of eukaryotic mRNA, occur-

ring in about 25% of transcripts at genomic level [89–

91]. For example, affects the methylation status of HIF-

2α mRNA. As the m6A site identifier and RNA-binding

protein, MTHFD2 is mainly involved in specific recogni-

tion of m6A-modified mRNAs in the cytoplasm, includ-

ing m6A methylation of HIF-2α mRNA [92, 93]. MTHF

D2 leads to increased stability of HIF-2α mRNA, which

further improve HIF-2α translation [92]. Increased HIF-

2α translation, in turn, elevates the transcriptional activ-

ity of MTHFD2 and finally results in a series of meta-

bolic alterations [92]. This suggests that other m6A

methylases may also be related to the stability of HIFs,

but the epigenetic mechanisms remain to be further

studied.

Histone methylation and demethylation affect HIF-α

activity

At present, histone methylation has been gradually rec-

ognized as an important regulatory factor driving malig-

nant transformation of hypoxic tumors [94]. For

example, G9a and G9a-like protein (GLP), as histone ly-

sine methylases, regulate HIF-1α transcriptional activity

and drive hypoxic-induced genes regression (Fig. 1b)

[94, 95]. G9a, encoded by euchromatic histone lysine

methyltransferase 2 (Ehmt2) mRNA, is an epigenetic

regulator that methylates histone H3 lysine 9 (H3K9)

and leads to condensed chromatin [96]. Since G9 is gen-

etically down-regulated in a variety of tumors and can

inhibit the expression of tumor suppressor genes, it plays

an important role in carcinogenesis [2, 95]. The stability

of G9a protein is increased due to the reduction of pro-

lyl hydroxylation, which reducing the interaction be-

tween G9a and pVHL and subsequent proteasomal

degradation [95]. A subset of genes which are necessary

for hypoxic tumor suppression, are repressed due to in-

creased H3K9 methylation by G9a [95]. And an G9a in-

hibitor, BIX01294, decreases the levels of PHD2, pVHL

and vascular endothelial growth factor (VEGF), leading

to increased stability of HIF-1α protein and reduced an-

giogenic activity [97]. However, the direct regulatory ef-

fects of G9a on HIF-1α and even HIF-2α remain

unclear. GLP generally plays a synergistic epigenetic

modification function with G9a in tumors [94, 98]. For

example, H3K9 methylation mediated by G9a and GPL

enzymes depends on the functional activity of FIH.

Under normoxic conditions, G9a and GLP were hydrox-

ylated by FIH at the Asn779 and Asn867, respectively.

After hydroxylation, G9a and GLP lost the function of

methylating H3K9 [99]. Under hypoxic conditions, G9a

and GLP proteins were not hydroxylated, thus maintain-

ing stability, resulting in H3K9 methylation with inhibi-

tory effect on genes, and finally realizing the epigenetic

regulation of FIH-G9a/GLP signaling axis on the inva-

sion and metastasis of ovarian cancer [99]. FIH also has

similar regulatory effects on HIF-1α and HIF-2α in

physiological and pathological conditions [56]. Whether

this indicates that G9a/GLP has direct effects on HIF-α

activities via epigenetic regulation are still unknown.

What we know is that G9a/GLP bind directly to HIF-1α

protein in hypoxic tumors, both in vitro and in vivo, and

catalyze monomethylation and dimethylation of HIF-1α

at lysine 674, thereby inhibiting the transcriptional activ-

ity of HIF-1α and the expression of its downstream tar-

get genes [72]. For histone demethylases, the Jumonji

domain (JMJD) containing protein and lysine-specific

demethylase 1 (LSD1) involved in regulation of HIF sta-

bility [100]. The proteins of the Jumonji C (JmjC) con-

taining family are mainly composed of 2-oxoglutarate

(2OG)- and Fe2+-dependent histone demethylase, of

which JMJD6 is an important member [101]. In recent

years, JMJD6 has been thought to be related to the oc-

currence and development of a variety of tumors, in-

cluding breast cancer, melanoma, oral cancer,

glioblastoma, hepatocellular carcinoma, colon cancer,

ovarian cancer and neuroglioma [101–110]. For instance,

in ovarian cancer, Zheng et al. found that JMJD6 was

highly expressed in tumor cells by tissue microarray im-

munohistochemical staining, and the high expression

was associated with poor prognosis of patients [108]. Ac-

cording to the crystal structure characteristics of JmjC,

they designed a JMJD6 inhibitor SKLB325, and tested

the efficacy of the drug in vitro and in vivo, the results
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showed that the efficacy was good [108]. LSD1 is an fla-

vin adenine dinucleotide (FAD)-dependent histone lysine

demethylase, which can remove monomethyl or di-

methyl from lysine 3 and lysine 9 of the histone 3 [100].

Abnormal LSD1 expression can be seen in a variety of

cancers, such as blood, neuronal, thyroid, prostate, lung,

colorectal, pancreatic, and breast cancers, suggesting

that LSD1 can be developed as a molecular target for

cancer [111, 112]. Instead of directly promoting the tran-

scriptional activity of HIF, LSD1 has been reported to

regulate the ubiquitin-degradation pathway of its pro-

tein, thereby affecting its activity [112]. In papillary thy-

roid carcinoma (PTC) tissues, high expression of LSD1

stabilizes HIF-1α to avoid its proteasomal degradation,

and database prediction shows that HIF-1α is enriched

near the miR-146a promoter region [112]. In vitro ex-

periments, HIF-1α increased the expression level of

miR-146a, and upregulated miR-146a inhibited the ex-

pression of target gene GABPA, finally leading to further

malignant transformation of PTC [112]. The nude

mouse model also further verified that LSD1 could up-

regulate the expression of miR-146a [112]. LSD1 also

has the function of non-histone lysine methylation [113],

which is not discussed here. In addition, many recent

studies have shown that LSD1 can be an important mo-

lecular target for the treatment of acute myeloid

leukemia [114, 115], but therapies directly associated

with HIFs activity need to be further explored.

Histone acetylation and deacetylation are associated with

HIF-α activity

p300/CBP and TAT-interactive protein 60 (TIP60)

have acetylase activities that affect the transcriptional

activity of HIF-1α, while HDAC4-6 in histone deace-

tylases (HDACs) regulate the stability of HIF-1α [2,

116, 117]. p300 and cyclic AMP response element-

binding protein (CBP) are transcriptional coactivators

with strong histone acetylase activity, which can regu-

late chromatin structure and make it more accessible

to epigenetic regulators [118, 119]. p300 and CBP are

tumor suppressor genes, and their mutations are in-

volved in a variety of cancer pathways, affecting the

development of tumors [118, 120, 121]. They bind to

transcriptional activation regions of HIF-1α and HIF-

2α genes, and acetylase activity of the p300/CBP com-

plex, along with other deacetylases, is responsible for

70% target genes activation of the HIF pathway down-

stream [122]. Under nomorxia, FIH-mediated hydrox-

ylation of an asparaginyl residue inhibited HIF-α

recruitment of p300/CBP, thus affecting the further

activation of the HIF pathway [123]. The acetylation

of HIF-1α at lysine 709 by p300 increases the stability

of HIF proteins, and SIRT1 deacetylates the p300

/CBP-associated factor (PCAF)-mediated lysine

acetylation state of HIF-1α at lysine 674 to prevent

p300/CBP recruitment and hypoxic-induced gene acti-

vation [124, 125]. And several studies have shown

that inhibiting the functional activity of p300/CBP

with inhibitors can be a potential target for tumor

therapy [121, 123, 126]. TIP60 is a histone lysine

acetylase that is involved in oncogenic pathways and

affects the development and progression of tumors in

a variety of ways [127]. TIP60 acts as a transcriptional

coactivator of HIF-1α, affecting chromatin structure

and regulating HIF target genes in colorectal cancer

[128–130]. HIF-1α interacts with the component of

the TIP60 complex, promoting TIP60 recruitment to

chromatin (Fig. 1b) [128]. HIF-1α acts on TIP60,

which leads to chromatin histone acetylation and then

to the activation of polymerase II, which ultimately

activates HIF-1α target genes transcription [128]. This

suggests that TIP60 acts as a mediator, linking HIF-

1α to HIF-1α target genes. In human cells, the 18

deacetylases are divided into four classes [131]. The

class II is divided into two subclasses, IIa (HDAC4,

HDAC5, HDAC7 and HDAC9) and IIb (HDAC6 and

HDAC10), among which HDAC4, HDAC5 and

HDAC6 are thought to be related to the regulation of

HIF functional activity [2, 131, 132]. Within VHL-

positive cancer cell lines, HDAC4 inhibition by

shRNA increases HIF-1α protein acetylation levels,

while HDAC4 overexpression decreases HIF-1α

acetylation levels [133]. More, stable inhibition of

HDAC4 in VHL-positive cells can not only reduce

the transcriptional activity of HIF-1 and the expres-

sion of HIF-1 target genes, but also reduce the level

of glycolysis [133]. Nucleus accumbens-associated

protein-1 (NAC1), a member of the BTB/POZ gene

family, can also interact with HDAC4 [134]. Intracel-

lular accumulation of HDAC4 leads to reduced

acetylation of HIF-1, but NAC1 binding to HDAC4

inhibits phosphorylation of HDAC4 at serine 246 and

prevents nuclear export that leads to cytoplasmic deg-

radation of HDAC [134]. In this context, the tran-

scriptional activity and stability of HIF-1α was

enhanced via NAC1-HDAC4-HIF-1α pathway [134].

HDAC5 has been found to promote transcriptional

activation of HIF-1α and nuclear accumulation of

HIF-1α [135]. The molecular chaperone Hsp70 acts

as a substrate for HDAC5, and its deacetylation medi-

ated by HDAC5 promotes the interaction of HIF-1

with Hsp90 [135]. HDAC6 plays an important role in

hypoxic-induced reactions [136, 137]. HDAC6 is sig-

nificantly down-regulated in liver cancer tissues, and

low expression of HDAC6 is closely associated with

poor prognosis [137]. HDAC6 promotes cell prolifera-

tion of hepatocellular carcinoma and HIF-1α and

VEGFA expression, thereby promoting HIF-1-
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mediated angiogenesis in hypoxic conditions [137].

Multiple HDACs inhibitors can reverse the

stabilization of HIF by HDACs, suggesting that

HDACs, and specifically HDAC4-6, may be a molecu-

lar target for cancer therapy [138–141].

Non-histone lysine acetylation is associated with HIF-α

activity

HIF-α activity is also regulated by protein acetylation.

For instance, lysine residue 532 (Lys-532) and lysine

residue 709 (Lys-709) of HIF-1α protein can be acety-

lated in cancer cells [125, 142]. Arrest-defective protein

1 (ARD1) is functionally active as both N-terminal α-

protein and ε-protein acetyltransferase activities in yeast,

and was reported to be overexpressed in lung cancer,

breast cancer, colorectal cancer and hepatocellular can-

cer [142, 143]. The lysine 532 of HIF is acetylated by

ARD1, making HIF-1 more likely to interact with VHL

for degradation [144]. Although ARD1 transcripts and

proteins do decrease in hypoxic tumors, it still affects

HIF-1α stability [142]. More, lysine 709 of HIF-1α is spe-

cifically acetylated by p300, enhancing HIF-1α stability

and decreasing poly-ubiquitination within hypoxic tu-

mors [125]. And HIF-1α K709A mutant protein were

more stable and less p300 dependent than wild-type pro-

tein, suggesting that the interaction between HIF-1α and

p300 is enhanced by HIF acetylation under hypoxia

[125]. NAA10 usually has no acetylase activity [145].

However, it shows N-terminal acetylase activity similar

to that of ARD1 when NAA10 is hydroxylated by FIH

[142, 146]. In the aerobic condition, hydroxylated

NAA10 acetylates HIF-1α protein and induces the pro-

tein destability [146], which suggesting that NAA10 mu-

tation may contribute to tumor progression.

Non-coding RNAs mediates epigenetic regulation on HIFs

activity

Non-coding RNAs, mainly microRNA and lncRNA, play

an important role in affecting HIF activity. Some

lncRNAs have gradually become important regulators in

the development of hypoxic tumors [147]. In nasopha-

ryngeal carcinoma cells (NPC), both lncRNA PVT1 and

lncRNA DANCR can interact with HIF-1α to influence

NPC progression [148, 149]. Plasmacytoma variant

translocation 1 (PVT1) is the first lncRNA gene discov-

ered in Burkitt’s lymphoma, and its lncRNA that has

been reported to play a role in promoting tumor pro-

gression [147]. PVT1 activates the acetyltransferase

KAT2A, and then recruits TIF1β to promote the tran-

scription of NF90 [148]. This improves the stability of

HIF-1α protein and mRNA, and promotes further

hypoxia-induced malignant phenotype of NPC [148].

Differentiation antagonizing non-protein coding RNA

(DANCR) was identified as cancer-promoting gene in

NPC cells, and was responsible for poor prognosis [149].

DANCR interacts with NF90/NF45 to stabilize HIF-1α

mRNA and promote NPC development [149]. In breast

cancer, miRNA-181c has an effect on the stability of

HIF-1α [150]. Nuclear factor erythroid 2-like-2 (NRF2),

an important regulator of genes related to oxygen pres-

sure, increases miR-181c level in colon cancer cells

[151]. Increased miRNA-181c led to a decrease in mito-

chondrial oxygen consumption rate and ATP production

in cancer cells with NRF2 mutation, leading to HIF-1α

destability [150]. It shows that down-regulation of HIF-

1α mediated by miRNA-181c results in the inhibition of

hypoxia-induced metabolic alterations within tumor cells

with NRF2-silencing [150]. More, in pancreatic cancer,

miRNA-646 and LncRNA-MTA2TR are also involved in

the regulation of HIF-1α stability, respectively, thereby

affecting HIF-1α accumulation in cancer cells [152, 153].

Migration and invasion inhibitory protein (MIIP) is iden-

tified as oncogenic blocker in pancreatic cancer [152].

miRNA-646 leads to reduced stability of MIIP mRNA

and inhibition of MIIP gene expression [152, 154]. HIF-

1α indirectly inhibits MIIP expression by activating

miRNA-646 transcription, however, MIIP also has the

ability to reduce the activity of histone deacetylase 6

(HDAC6) and thus promote HIF-1α acetylation and deg-

radation [152]. It suggests that miRNA-646 indirectly in-

duces HIF-1α stability via HIF-1α/miR-646/MIIP [152].

In addition, metastasis associated protein 2 (MTA2) is

an metastasis-associated gene, and its lncRNA MTA2TR

was overexpressed in gastric cancer and pancreatic can-

cer [153, 155]. MTA2 has nucleosome remodeling and

histone deacetylase (NuDR) complex, and thus has the

function of deacetylation [156]. lncRNA MTA2TR tran-

scriptionally elevates MTA2 expression to increase the

stability of HIF-1α protein through deacetylation [153].

The epigenetic regulation of these regulators on the

functional activity of HIF-α involve the stability of HIF-α

mRNA, the stability of HIF-α protein, and epigenetic re-

programming. Epigenetic factors that influence HIF-α

stability are discussed here, but other factors that influ-

ence HIF-α activity, such as ATP-dependent chromatin

remodelers, have been discussed in detail in other arti-

cles. Epigenetic modifications at the DNA, RNA and

protein levels play an important role in HIFs availability,

whether it’s methylation, acetylation or their reverse re-

actions, understanding the accurate mechanisms may

help us establish drug reaction which will be discussed

below, and exploring the pathological networks that

haven’t found yet.

Influence of intracellular metabolites on HIF-α
stability through epigenetic regulation
The stability of HIF-α is the basis of its activity [116]. In

the previous section, we discussed a number of
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epigenetic factors affecting HIF activity in hypoxic tu-

mors. However, metabolites produced by hypoxic tu-

mors during metabolism also play an important role in

the stability of HIF-α [157]. Here, the epigenetic regula-

tion of metabolites on the stability of HIF is discussed

on the basis of genetic regulation.

Effects of intracellular metabolites under genetic

regulation on the stability of HIF-α

In the past few years, numerous studies have shown that

metabolism is passive, subordinate to the metabolic

needs of the tumor, driven by the activation of onco-

genes and the inactivation of tumor suppressor factors

[158]. HIF-driven tumor metabolic remodeling activates

multiple metabolic pathways, including pyruvate de-

hydrogenase kinase 1 (PDK1), BHLH Transcription Fac-

tor (MYC), pyruvate kinase M2 (PKM2), tumor protein

P53 (TP53) [159, 160]. Many HIF target genes encode

special enzymes, in turn, metabolites, including succin-

ate, fumarate, pyruvate, lactate and oxaloacetate etc.

affect HIF proteins stability due to loss-of-function of

PHD (Fig. 2) [161–163]. For example, three succinate

dehydrogenase (SDHB, SDHC and SDHD) and fumarate

hydratase are reported to response to hypoxia, and aber-

rant function of these enzymes inhibit the process of

mitochondrial respiratory [164]. Their mutation lead to

increased ROS, and altered intracellular metabolites of

TCA cycle as messengers to induce HIF stability [165].

In detail, inhibition of SDH genes coding aberrant en-

zymes lead to the loss-of-function PHDs with increased

amount of succinate. As we discussed above, PHDs are

responsible for the ubiquitylation leading to degradation

of HIF-α, therefore the inhibition of PHDs leads to the

accumulation PHDs substrates, above all HIF-α subunits

[164]. Interestingly, among the accumulated substrates,

succinate and fumarate could also contribute to HIF sta-

bility [165]. The recent study confirms this opinion that

the FIH in concert with PHD/VHL in rapidly response

to hypoxia, in turn, altered metabolites lead to HIF sta-

bility [56]. And authentic study speculated that lipopoly-

saccharide produced by gram-negative bacteria potently

enhance the TCA-cycle intermediate metabolites succin-

ate, performing a role of stabilizing HIF-1α accompanied

with increased interleukin-1β, which finally mediating

Fig. 2 Impacts of intracellular metabolites on HIF-α stability through epigenetic regulation. In hypoxic tumors, rapid proliferation requires lots of
intracellular metabolites to build macromolecules, including nucleotides and proteins. Up-regulated glycolysis sustains the demands of tumor
cells for intracellular metabolites. HIF target genes encoding special enzymes are activated to produce various enzymatic proteins, such as PDK1/
2, enolase 1 (ENO1), hexokinase 2 (HK2) and so on, which leading to elevated intracellular metabolites, in turn, these metabolites including
succinate, fumarate, pyruvate, lactate and oxaloacetate etc. and associated pathways involved enzymes such as PI3K, PKB, promote HIF proteins
stability with PHD loss-of-function. More, p53, β-catenin and so on, could also affect HIFs stability. PFKM: phosphofructokinase, muscle; GLUT1:
glucose transporter 1; PKM2: pyruvate kinase isozymes M2; LDHA: lactate dehydrogenase A; ERK: extracellular signal-regulated kinases; PGM1:
phosphoglucomutase-1; G6PDH: glucose-6-phosphate dehydrogenase; Aldo: Aldosterone; MCT4: monocarboxylate transporter 4; F6P: fructose 6-
phosphate; FBP: fructose-1,6-bisphosphate; G3P: glycerol-3-phosphate; 3PG: 3-phosphoglyceric acid; 2PG: 3-phosphoglyceric acid; PEP: phospho
enol pyruvate
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inflammation [161]. Isocitrate dehydrogenase isoform-1

(IDH1) and 2 (IDH2) mutations are considered to be as-

sociated with HIF-α stability in solid tumors, notably

glioblastoma and acute myeloid leukemia (AML) [166,

167]. Mutant IDH proteins obtain neomorphic enzym-

atic activity that catalyze the transformation of α-

ketoglutarate (α-KG) to R-2-hydroxyglutarate (R-2HG),

which activates prolyl hydroxylase domain-2 that further

leads to the degradation of HIF-α [168]. Moreover, non-

catalytic enzymes associated with metabolic plasticity

could also interact with HIF-α, such as fructose-1,6-

bisphosphatase (FBP1) and PKM2. In ccRCC, the loss of

FBP1 has been identified, and it may function as repres-

sor of HIF-α via binding to the degradation domain of

HIF in the nucleus, and further inhibit ccRCC progres-

sion. In human pancreatic adenocarcinoma, high level

PKM2 expression interacts with NF-κB and HIF-1α to

induce the activation of HIF target gene VEGF. In con-

trast to FBP1, PKM2 could function as a coactivator to

directly bind with HIF-1α by facilitating the recruitment

of p300 [16, 37, 169].

The epigenetic regulation of intratumoral metabolites on

stability of HIF-α

During tumor progression, tumor metabolism is regu-

lated by a number of metabolic regulators, including

HIF-1α, AMPK, mTOR, and PPAR gamma coactivator 1

alpha (PGC-1α), wherein AMPK indirectly regulates the

stability of HIF-1α through metabolites [170, 171].

AMPK is a heterotrimeric Ser/Thr kinase complex that

acts as a cellular sensor for energy state and ROS in

tumor cells to maintain intracellular energy homeostasis

[170]. Acetyl-CoA is a key metabolite that links metabol-

ism to transcription and chromatin structure [172].

AMPK regulates the levels of acetyl-CoA and NAD+ to

regulate the activities of histone acetylases (HATs) and

HDACs, thus affecting the activity of HIF-1α (Fig. 3)

[173]. AMPK phosphorylates and inhibits acetyl-CoA

carboxylase (ACC), thereby increasing the level of

acetyl-coA in tumor cells [174]. And since acetyl-CoA is

the substrate for all KATs, lysine acetyltransferase activ-

ity is increased [175]. For example, the p300/CBP family

is a type of KATs whose activity can be enhanced by

acetyl-CoA, which further promotes its binding to HIF-

1α and activating most of the downstream target genes

of HIF-1α [121]. HDAC can be divided into four classes,

among which, class I, class II, class IV are Zn2+-

dependent aminohydrolases, while class III use NAD+ as

a cosubstrate, thereby exerting the role of deacetylase to

affect the stability of HIF-1α and HIF-2α and thus regu-

late HIF-driven metabolic activities [176]. The specific

mechanism by which Class III, also known as Sirtuin

family, acts on HIF-α is discussed in the next section. In

normal cells, pyruvate, as the end product of glycolysis,

is decomposed by pyruvate dehydrogenase (PDH) into

acetyl-CoA and CO2 in mitochondria, while generating

NADH. However, in hypoxic tumor cells, HIF-1 target

gene PDK1 is activated and PKD1 inactivates PDH,

resulting in pyruvate being excluded from mitochondria

[27]. Finally, the levels of acetyl-CoA and NAD+ in hyp-

oxic tumors were reduced, which seemed to contradict

their ability to stabilize HIF-1α and HIF-2α and promote

tumor progression [177, 178]. However, pyruvate fails to

enter the electron transport chain, which reduces oxida-

tive phosphorylation levels and ROS production [178,

179]. ROS can promote death of tumor cells through

many pathways, such as ferroptosis [46, 180, 181].

Therefore, compared with cell death caused by ROS, tu-

mors prefer to choose other conventional metabolites,

such as succinate, glutamate and fumarate, to maintain

tumor progression [157].

The production of SAM also plays an important role

in DNA methylation in tumor metabolic fitness and

plasticity [27, 182]. SAM can be synthesized from me-

thionine and ATP catalyzed by methionine adenosyl-

transferases (MATs), and is involved in the regulation of

genomic DNA methylation status [75, 183]. For instance,

SAM metabolism affects DNA methylation status and

lead to metabolic reprogramming in liver cancer pro-

gression and prognosis [184]. Down-regulation of the

liver-specific MAT1A gene encoding isozymes MATI/III

and up-regulation of the MAT2A gene encoding

Fig. 3 The epigenetic regulation of acetyl-CoA, NAD+ and SAM on
stability of HIF-α. In the tricarboxylic acid cycle of mitochondria,
AMPK phosphorylates acetyl-CoA carboxylase (ACC), leading to
increased acetyl-CoA in tumor cells. The activity of histone acetylases
(HATs) such as p300/CBP, which uses acetyl-CoA as its substrate, is
increased accordingly. The acetyl-CoA leads to increased p300/CBP
activity, so recruitment of p300/CBP by HIF-1α results in substantial
activation of HIF-1 downstream genes. In hypoxic tumors, residual
Sirtuins catalyze the deacetylation of histones in NAD+

− dependent
reactions to produce a deacetylated substrate, o-acetyl ADP-ribose,
and niacinamide. This results in changes in HIF-α and its
downstream gene activation. HIF-1α recruits p300 and HDAC1 to
the MAT2A promoter, leading to high expression of MAT2A. Up-
regulation of MAT2A regulates genomic DNA methylation status by
affecting SAM levels
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isozyme MATII occur in hepatocellular carcinoma, and

the resulting MAT1A: MAT2A switch leads to a de-

crease in SAM level [184, 185]. However, studies showed

that the MAT1A: MAT2A switch and low SAM level

are associated with CpG sites methylation of MAT1A

and MAT2A promoters in HCC [186]. With the involve-

ment of HIF-1α, SAM affects the activity of ERK1/2 by

interfering with DUSP1 [187]. As a member of the

AMPK family, active ERK1/2 phosphorylates serine resi-

due of DUSP1, leading to DUSP1 ubiquitylation and

degradation [187]. However, SAM treatment stabilizes

USP1 at both mRNA and protein levels, suggesting that

AMPK is regulated by SAM [188]. Interestingly, HIF-1α

stabilizes the ERK1/2 target gene FOXM1 and mediates

metabolic reprogramming regulated by AMPK under

hypoxia in HCC [189]. Hypoxia decreases SAM levels in

HCC cells, leading to reduced genomic DNA methyla-

tion levels [190]. Mechanistically, hypoxia-induced HIF-

1α recruits p300 and HDAC1 to the promoter of

MAT2A, and the resulting up-regulation of MAT2A

plays an important role in decreasing SAM level with

specific mechanism (Fig. 3) [190]. In addition, reliable

studies have shown that MAT2B, an important regulator

of MAT2A, inhibits the activity of MAT2A at high SAM

levels, and acts as a co-activator of MAT2A at low SAM

levels [191]. These results suggest that high expression

of MAT2A, which is activated by HIF-1α in hypoxia, can

be negatively regulated by MAT2B, resulting in the de-

crease of SAM instead [191]. This further suggests that

in hypoxic tumors, SAM biosynthesis may affect HIF-

1α activity by regulating genomic DNA methylation

status.

In general, there are many factors affecting the stability

and activity of HIF-α, and metabolites are one of the

most important aspects, which is why we discuss it sep-

arately. In terms of genetic regulation, the effect of intra-

cellular metabolism on HIF-α is usually involved in

metabolic reprogramming, especially glucose metabol-

ism, but evidence on the epigenetic regulation of HIF-α

activity by metabolites is limited.

Role of HIF-α in nutrient deprivation during
cancer progression through epigenetic regulation
The hypoxic tumors are characterized by oxygen de-

ficiency and nutrient deprivation, which mainly in-

volves glucose and amino acids [192, 193]. Growing

evidence have shown that tumors prefer glycolysis,

even in aerobic conditions [14]. Histone deacetylases

and non-coding RNAs both play important roles in

HIF-involved glucose depletion [194, 195]. In

addition, fatty acid metabolism also constitute an

important part of tumor metabolic reprogramming

[196]. Here, we briefly reviewed not only HIF-

mediated genetic regulation of tumor metabolism,

but also epigenetic regulation of glucose deprivation.

Here, we briefly review the overall glucose metabol-

ism of tumors by genetic regulation, and try to dis-

cuss epigenetic regulation of glucose metabolism.

Metabolic reprogramming with canonical genetic

regulation

The patterns of tumor metabolism are very different

from those of surrounding tissue [14]. Only 10% of

ATP in normal tissues comes from glycolysis, and the

rest 90% comes from metabolic activities in mito-

chondria [157]. However, 50% of ATP needed by tu-

mors comes from glycolysis and mitochondria,

respectively [157]. HIF-dependent glycolysis is a linear

metabolite processing process involving the expression

of several genes, including glucose transporter

(GLUT) genes, enzyme genes that break down glucose

into pyruvate, and enzyme genes that clear pyruvate

[197]. HIF-1 increases the rate of glucose internaliza-

tion by activating the expression of GLUT1 and

GLUT3 [198, 199]. Increased GLUT1 and GLUT3, in-

duced by HIF-1, transport glucose from high concen-

tration to low concentration into tumor cells, and

glucose entering the cells can be used for multiple

purposes, including glycogen synthesis, protein modi-

fication, and pentose shunt [157]. In the cytoplasm,

hexokinase (HK) converts glucose to glucose 6-

phosphate (G6P), which is then converted to glucose

1-phosphate (G1P) by phosphoglucomutase 1 (PGM1)

[200]. G1P can be further transformed into UDP-

glucose to form the constituent unit of glycogen.

When glycogen is decomposed in the cytoplasm, G1P

can be regenerated due to the functions of glycogen

phosphorylase (PYG) and a debranching enzyme

[200]. And G1P can be converted by PGM1 into G6P

to participate in glycolysis [200]. Studies have shown

that epithelial cells store energy in the form of glyco-

gen, but glycogen is not a major source of energy for

tumors [201]. In addition to glycogen metabolism, the

main fate of glucose is the synthesis of pyruvates

under the activities of the 6-phosphofructo-2-kinase/

fructose-2,6-bisphosphatase (PFKFB) enzymes induced

by HIF-1 [157]. That is, glucose, 2 ADP and 2 NAD+

are converted into 2 pyruvates, 2 ATP and 2 NADH

during glycolysis [157]. In most hypoxic tumors, pyru-

vate, the end product of glycolysis, is the primary car-

bon source, and HIF-1-induced pyruvate

dehydrogenase kinase 1 (PDK1) is a protein kinase

that phosphorylates and inactivates the mitochondrial

enzyme pyruvate dehydrogenase (PDH) responsible

for pyruvate catalysis [202]. PDH catalyzes pyruvate

into acetyl-CoA and CO2 in mitochondria to produce

NADH, but with the inactivation of PDH, this process

is blocked [203, 204].
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Fatty acid metabolism also exist in tumor cells, pro-

moting tumor progression. It is important for tumors to

reverse or mitigate the adverse effects of nutrient

deprivation because the cells at the core site are highly

plastic and contribute to tumor progression [27, 205].

Thus, HIF activates a series of enzymatic genes that per-

form metabolic reprogramming through the fatty acid

(FA) synthase system [165, 206, 207]. For example, the

transcriptional activity of genes coding fatty acid

synthases, particularly fatty acid synthase (FASN) and

acetyl-CoA carboxylase (ACC), leas to elevated de novo

FA synthesis [208]. HIF-1α not only inhibits pyruvate

metabolic pathway in mitochondria during glycolysis,

but also inhibits fatty acid oxidation (FAO) to promote

tumor progression (Fig. 4) [209–211]. Mechanistically,

two FAO enzymes, medium-chain acyl-CoA dehydro-

genase (MCAD) and long-chain acyl-CoA dehydrogen-

ase (LCAD), reduce ROS levels to promote tumor cell

proliferation, and loss-of-function of LCAD further ac-

celerates cancer progression via involving in phosphatase

and tensin homolog (PTEN) pathway [209]. In addition,

HIF-2α has been found to be highly expressed in pa-

tients with liver disease, and with the activation of its

target genes, such as SRT1 and AMPK, liver fibrosis is

intensified, suggesting that HIF-2 inactivation can re-

verse the progression of liver cancer [212, 213]. In the

case of tumor nutritional deprivation, fatty acid

metabolism regulated by HIF-1α and HIF-2α have grad-

ually shown its importance, but more work, such as epi-

genetic regulation, still needs to be further studied.

The histone deacetylases regulate glucose metabolism in

tumors via epigenetic regulation

Limited literature suggests that histone deacetylases,

especially members of the Sirtuin (SIRT) family, play

an important epigenetic role in HIF-regulated glucose

metabolism [195, 214]. SIRT family can be divided

into four classes, SIRT1, SIRT2 and SIRT3 belong to

class I, SIRT4 belong to class II, SIRT5 belong to

class III, and SIRT6 and SIRT7 belong to class IV

[215]. Among them, SIRT1, SIRT3, SIRT6 can play

regulatory roles in multiple links of glucose metabol-

ism regulated by HIFs [195, 216]. Under nomorxia,

SIRT1 promotes HIF-1α degradation by stabilizing

intracellular VHL transcripts, and SIRT1 can further

deacetylate HIF-1α in the nucleus, affecting the inter-

action between HIF-1α and p300 to affect the activa-

tion of a range of metabolism-related target genes

[124]. In hypoxic tumors, the activity of SIRT1 is

inhibited by the decreasing NAD+, but residual SIRT1

deacetylates HIF-2α and activate HIF-2α [217]. There-

fore, it suggests that SIRT1 may form a dynamically

balanced pool in hypoxic tumor cells, regulating the

activities of HIF-1α and HIF-2α according to the

Fig. 4 Role of HIF-α on fatty acids metabolism during cancer progression via epigenetic regulation. Two FAO enzymes, the acyl-CoA
dehydrogenases MCAD and LCAD, are inhibited by the activated HIF-1α under hipoxia. LCAD and MCAD loss disturbs the process of FAO which
leads to ROS alteration via TCA (tricarboxylic acid) cycle and separate LCAD loss inhibits PTEN pathway, which finally mediate resistance to tumor
progression. HIF-1α loss-of-function may rescues the resistance and contributes to cancer progression. CS: citrate synthase; ACL: acetone-
cyanohydrin lyase; ACC: acetyl-CoA carboxylase alpha
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oxygen availability [195, 218]. In tumor cells, SIRT3,

as the major mitochondrial deacetylase in the Sirtuin

family, promotes mitochondrial respiration and in-

hibits HIF-regulated glycolysis [219]. SIRT3 can dea-

cetylate and activate various mitochondrial metabolic

enzymes involved in TCA and FAO enzymes, includ-

ing LCAD, 3-hydroxy-3-methylglutaryl CoA synthase

2 (HMGCS2), isocitrate dehydrogenase 2 (IDH2) and

glutamate dehydrogenase (GDH) to block the supply

of glycolysis to the tumor cells [219]. SIRT6-

defiencicy mice showed fatal hypoglycemia, suggesting

that SIRT6 is involved in glucose metabolism [220].

SIRT6, an H3K9 deacetylase, inhibits transcriptional

activation of HIF-1α in non-tumor cells and reduces

the level of glucose metabolism, but SIRT6 knock-

down increased glucose uptake in mice, inhibited

mitochondrial respiration, and effectively responded

to nutrient deprivation [220]. However, in tumor cells

such as colon cancer cells, SIRT6 binds directly to

the hypoxia-responsive elements of the glycometabo-

lism genes and blocks HIF-1α-induced glycometabo-

lism without activating oncogenic pathway [219]. This

suggests that SIRT6 acts as a tumor suppressor in the

development of tumors by inhibiting glucose metabol-

ism [219]. Other members of the Sirtuin family, such

as SIRT7, have also been shown to influence HIF-

induced metabolic activity via decreasing HIF-1α and

HIF-2α, but the specific mechanism remains to be in-

vestigated [221].

The role of non-coding RNAs in glucose metabolism via

epigenetic regulation

There is considerable evidence that non-coding RNAs,

including microRNAs and lncRNAs, regulates HIF-

induced metabolic activity [194, 222]. In liver cancer,

miR-3662 can inhibit the growth and proliferation of

liver cancer cells by negatively regulating HIF-1α-

mediated glycolysis [223]. miR-3662 is low expressed in

liver cancer tissues, and this low expression is closely re-

lated to tumor size, multiplicity and metastasis [223].

Mechanistically, miR-3662 down-regulates HIF-1α ex-

pression, thereby reducing lactate level, glucose metabol-

ism rate, intracellular glucose-6-phosphate content, ATP

level, but increasing oxygen consumption rate, suggest-

ing that miR-3662/HIF-1α axis is closely related to glu-

cose metabolism reprogramming [223]. In colorectal

cancer cells, miR-23a, miR-27a and miR-24 were found

to be upregulated microRNAs that collectively regulate

the glucose metabolic network [224]. HIF-1α binds to

the promoter of miR-23a ~ 27a ~ 24 cluster formed by

miR-23a, miR-27a and miR-24, promoting the expres-

sion of miRNA clusters in HCC cells [224]. miR-24/

VHL/HIF-1α forms a double-negative feedback regula-

tory pathway that can enhance the effect of HIF-1α and

miR-23a ~ 27a ~ 24 cluster, greatly regulating the meta-

bolic network of colorectal cancer and shifting the meta-

bolic balance of normal cells to glycolysis [224].

Homeobox A9 (HOXA9), as the target gene of miR-365,

can inhibit glycolysis by regulating HIF-1α and the

downstream glycolysis genes [225]. However, HOXA9 is

down-regulated in cutaneous squamous cell carcinoma

(cSCC), which means that the miR-365-HOXA9-HIF-1α

axis promotes glycolysis [225]. In chronic myelogenous

leukemia (CML), curcumin was found to up-regulate the

expression of miR-22 and down-regulate its target gene

importin 7 (IPO7), thus affecting the nuclear transport

of HIF-1α [226]. Thus, the target genes of HIF-1α re-

lated to glycolysis were down-regulated [226]. In acute

myeloid leukemia (AML), the up-regulated expression of

LncRNA urothelial carcinoma-associated 1 (LncRNA-

UCA1) inhibited the adriamycin (ADR)-based chemo-

therapy effect by negatively regulating glycolysis [227].

LncRNA-UCA1 can be directly bound to miR-125a as

ceRNA, and in HL60andHL60/ADR cells, target gene

hexokinase 2 (HK2) of miR-125a can be positively regu-

lated by lncRNA-UCA1 [227]. Importantly, lncRNA-

UCA1 overexpression can reverse the HIF-1α-dependent

glycolysis inhibition mediated by miR-125a in

HL60andHL60/ADR cells, showing that lncRNA-UCA1

could inhibit glycolysis through miR-125a/HK2 pathway

and plays an active role in overcoming chemotherapeutic

resistance to AML in children [227].

Nutritional deprivation is one of the most common

metabolic phenomena in hypoxic tumors, and with the

involvement of the HIF family, tumors use a variety of

metabolic pathways to shape the plasticity of tumor cells

and their microenvironment in order to cope with or re-

verse undesirable situations. In terms of phenotypic plas-

ticity, in addition to the glucose and fatty acid

metabolism mentioned above, there are also amino acid

metabolism that have not been discussed. However, in

terms of the epigenetic regulation of HIF-related nutri-

ent deprivation, the reference basis is still limited, mainly

focusing on histone deacetylases SIRT family and non-

coding RNAs. Among them, some epigenetic regulations

are concentrated on HIF target genes, suggesting that

seeking more downstream HIF genes may be a way to

deepen our understanding of epigenetic regulation in

hypoxic tumors.

Role of HIF-α in tumor microenvironment through
epigenetic regulation
Many studies have shown that genetic changes fail to

fully explain tumor progression, invasion and metastasis,

and some epigenetic changes occurring in tumor cells

have profound impacts on tumor progression [228].

Both microenvironment cues and intracellular alter-

ations promote epigenetic regulation [228–230]. Here
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we briefly summarize the HIF-α-related epigenetic regu-

lation in the tumor microenvironment between tumor

cells and myeloid cells.

The tumor microenvironment mainly includes inflam-

matory cells, accessory fibroblasts and extracellular

matrix (ECM) components, which have high phenotypic

plasticity [231]. Cell-to-cell contact, secretion of soluble

factors and release of exosomes can lead to tumor mi-

croenvironmental disorders that have important effects

on both genetic and epigenetic characteristics [232–

235]. Infiltrating and tissue-resident myeloid cells are

important regulators of innate and adaptive immunity

[236]. During inflammation, these cells can adapt to mi-

croenvironmental conditions and acquire specific func-

tions, including phagocytosis and the production of pro-

inflammatory cytokines [237]. This myeloid plasticity is

driven in part by epigenetic regulation that maintains a

stable phenotype after activation, such as demethylation

by TET family member TET2 enzyme [237, 238]. There

is increasing evidence that pathological activation and

differentiation of myeloid cells is a marker of cancer

[238]. TET2 is mutated in some malignant myelopathy,

indicating its important role in the proliferation and dif-

ferentiation of myeloid cells [239]. Hydroxylation of 5-

methylcytosine (5meC) was inhibited in myeloid cancer

cells with TET2 mutations, which may be related to the

altered methylation levels observed in these cells [240,

241]. Activation and differentiation of tolerogenic mye-

loid cells, including myeloid-derived suppressor cells

(MDSCs), regulatory dendritic cells (regDCs) and

tumor-associated macrophages (TAMs), are regulated

not only by gene expression, but also by epigenetic regu-

lation in tumor environments [235]. TET2 has been

found to inhibit the expression of inflammatory cyto-

kines IL6, which has resolved the inflammation of innate

myeloid cells [242]. Interestingly, the inhibition of IL6 by

TET2 requires recruitment of HDAC2 [242]. In addition,

HIF-1α deletion in glioblastoma cells was shown to in-

crease TET2 transcription and translation levels and fur-

ther promote ascorba-induced and TET2-dependent

5hmC, suggesting that HIF-1α is involved in regulating

TET2 expression and 5hmC levels in malignant cells

[243]. Thus, HIF-1α regulation of TET2 in human meta-

static melanoma can also be reflected in myeloid malig-

nant cells. The pathological switch of immature bone

marrow cells to tolerogenic MDSCs is driven by tumor-

derived molecules as well as epigenetic regulation [244].

MDSCs are heterogeneous populations composed of

pathologically activated immature myeloid cells, which

inhibit anti-tumor immune response and promote tumor

angiogenesis and tumor invasion [245, 246]. In ovarian

cancer, MDSCs play an inhibitory role through prosta-

glandin E2 (PGE2), which not only enables normal den-

dritic cells (DCs) to differentiate into tolerogenic

MDSCs, but also mediates MDSCs-derived PGE2 to dir-

ectly inhibit CD8+ T cell function [235, 247]. Moreover,

the generation of PGE2-mediated monocytic MDSCs is

dependent on the up-regulation of DNA methyltransfer-

ase 3A (DNMT3A) [248]. In MDSCs, the upregulation

of DNMT3A in is accompanied by specific DNA methy-

lation and immunogenic-related gene suppression, while

the downregulation of DNMT3A would lead to the de-

creased hypermethylation level and the loss of immuno-

suppressive activity of MDSCs [248]. Interestingly,

primary MDSCs isolated from ovarian cancer patients

showed similar hypermethylation characteristics associ-

ated with PGE2-dependent DNMT3A overexpression

[248]. However, DNMT3A was found to methylate and

inactivate the HIF-2α gene EPAS1, and inactivation of

DNMT3A in the early stages of tumor cell progression

leads to abnormal activation of EPAS1 [249]. This allows

cancer cells to take advantage of the HIF-2α pathway in

the hypoxic tumor microenvironment to form a cell

mass larger than the oxygen diffusion limit [249].

As an important component of the microenvironment,

stromal cells also have close epigenetic links with tumor

cells [250, 251]. For example, histone methyltransferase

enhancer of zeste homolog 2 (EZH2) regulates its target

gene HIF-1α to influence the status of the tumor micro-

environment [252]. The specific mechanism will be dis-

cussed in other sections. However, the involvement of

HIF-α in the epigenetic mechanisms between immune

cells and tumor cells remain unclear. The reason for this

phenomenon may be that the tumor microenvironment

is a complex system, and a lot of epigenetic regulation in

tumor progression will affect the microenvironment and

tumor cells plasticity, so HIF-α may not be the only par-

ticipant in such a complex epigenetic regulatory

network.

Role of HIF-α on extracellular matrix remodeling
through epigenetic regulation
The extracellular matrix (ECM) is a dynamic, non-

cellular and three-dimensional structure that occurs in

all tissues [253]. ECM is composed of collagen, elastin fi-

brils, proteoglycan, glycosaminoglycan, glycoprotein and

protease, which are interconnected to form a dynamic

cell regulatory niche and provide structural stability

[254]. Studies have shown that ECM is sustainably re-

modeled to play an important role in the proliferation,

migration, adhesion, invasion and metastasis of tumor

cells [255, 256]. In intratumoral hypoxia, HIF-1α acti-

vates genes encoding collagen prolyl hydroxylases, such

as P4HA1 and P4HA2, and collagen prolyl hydroxylases,

such as PLOD2 [257]. In this context, epigenetic regula-

tion mainly involves non-coding RNAs [258].

VEGF is an important factor in the regulation of

tumor angiogenesis [259]. Hypoxia is a major regulator
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of VEGF expression via HIFs [260]. HIFs and its target

genes such as epidermal growth factor and platelet-

derived growth factor coordinate VEGF expression

within tumor cells [260, 261]. Studies have shown that

miRNAs targeting the HIF-VEGF axis may have import-

ant effects on angiogenesis [258, 262]. For example,

miR-484 works by targeting VEGFB and VEGFR2 path-

ways to determine chemotherapy resistance in serous

ovarian cancer [262]. In addition, miR-120 is considered

to be the most important miRNA induced in epithelial

cells [263]. miR-210 is overexpressed in normoxic epi-

thelial cells, which stimulates the formation of capillary-

like structures and promotes VEGF-driven cell migration

[264]. However, hypoxia-induced mir-210 blockade

could inhibit the above phenomena, because during

HIF-induced hypoxia, mir-210 directly down-regulated

its target gene tyrosine kinase ligand Ephrin-A3 to even-

tually inhibit the survival, migration and differentiation

of the endothelial cells [264]. In this case, VEGF-

mediated angiogenesis is blocked in hypoxia, which may

be further hypothesized to be the same in epithelial tu-

mors [265]. ECM plays a fundamental role in controlling

angiogenesis by providing basic structural support for

cytokines, direct signal transduction function, and scaf-

folding [259, 266]. Thus, ECM has long been considered

essential for all stages of angiogenesis [267]. However, a

recent study has shown that VEGF also plays an import-

ant role in ECM remodeling in metastatic colorectal

cancer (mCRC) [268]. In patients with mCRC who were

treated with bevacizumab prior to surgical intervention,

deposits of hyaluronic acid (HA) within the tumor were

found [268]. At the same time, anti-VEGF therapy was

found in the homologous mCRC mouse model to sig-

nificantly increase the expression of HA and sulfated

glycosaminoglycans (sGAGs), but not significantly

change collagen deposition, indicating that tumor hyp-

oxia induced by treatment promotes ECM remodeling

[268]. However, we do not know exactly which HIF-α is

involved in regulating hypoxic activity in this study, and

further investigation is needed.

There are many factors that regulate ECM remodeling,

but miRNA is undoubtedly an important link. The regu-

lation of miRNA on ECM remodeling mainly focuses on

VEGF. Whether other enzyme genes involved in ECM

remodeling also generally accept the regulation of

miRNA or even other non-coding RNAs has not yet

formed an understanding paradigm.

Role of HIF-α in metastasis through epigenetic
regulation
Tumor metastasis is a major challenge in clinical man-

agement and is often associated with high mortality from

cancer because it cannot be cured with conventional

chemotherapy and radiotherapy [269]. Metastasis is a

complex dynamic process in which highly aggressive

tumor cells acquire the ability to spread from the pri-

mary site to new tissues and organs and eventually sur-

vive at distant sites [270]. Hypoxia has become a key

microenvironmental factor regulating metastasis, espe-

cially HIF signaling pathway [271]. From a genetic point

of view, metastasis may result from a succession of gen-

etic mutations [272]. Therefore, for a long time, the use

of sequencing technology to analyze the mutation pro-

files on a genome-wide scale has been a hot topic [272].

However, in recent years, it has been suggested that

traditional mutation drivers cannot explain the phenom-

ena observed in experiments or clinical practice, so it

has been suggested that epigenetic regulation may play

an extremely important role, especially in hypoxia-linked

metastasis [271].

Activation of HIF signaling regulates multiple stages in

the cascade of metastasis, including invasion and migra-

tion, intravasation and extravasation, establishment of

the pre-metastatic niche, and survival and growth at dis-

tant organ sites [269]. Epigenetic regulation of gene ex-

pression profiles usually affects metastasis in three ways:

(1) regulation of key genes involved in metastasis; (2) ex-

tensive epigenetic remodeling due to changes in cell

state; and (3) epigenetic regulation of non-coding RNA

in tumor metastasis [272–276]. In the first way, epigen-

etic regulators of HIF are JMJD2C, TET1 and VHL [99,

277–279]. JMJD2C specifically interacts with HIF-1α,

and HIF-1α can recruit JMJD2C into the hypoxia re-

sponse elements of HIF-1 target genes [277]. JMJD2C

reduces the level of trimethylation on the histone H3 at

lysine 9 (H3K9), and activate the genes lysyl oxidase-like

protein 2 (LOXL2) and L1 cell adhesion molecule

(L1CAM) that can promote lung cancer metastasis

[277]. TET1, as DNA demethylase, is thought to be re-

lated to tumor metastasis [280]. TET1, as DNA

demethylase, is thought to be associated with tumor me-

tastasis, and hypoxia increases the expression of TET1

in a HIF-1α-dependent manner [281, 282]. Because the

binding of HIF-1α to HRE of target genes depends on

the methylation level of CpG, TET1 can regulate the

HIF-1α target genes by regulating the methylation state

of HRE [278]. Moreover, TET1 E2082K mutant inhibits

the TET1-enhanced cell migration in colon cancer [278].

VHL regulates hypoxic signaling by controlling the ubi-

quitination and degradation of HIF-α protein, thus gen-

etic or epigenetic inactivation of VHL leads to

constitutive activation of HIF-1α and HIF-2α [283]. Epi-

genetic modification of prometastatic genes in VHL-

deficient ccRCCs cell subsets was found to increase the

expression of metastasis-related HIF target genes [284].

For example, studies on two important pro-metastatic

genes chemokine (C-X-C motif) receptor 4 (CXCR4)

and cytohesin 1 interacting protein (CYTIP) have found
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that ablation of the polycomb repressive complex 2

(PRC2)-dependent histone H3 lysine 27 trimethylation

activates the expression of HIF-driven CXCR4 [283]. To

promote chemotactic cell invasion, DNA methylation is

lost, leading to HIFF-driven CYTIP gene expression to

protect tumor cells from death chemical signals [283]. In

the second way, epithelial-mesenchymal transition is a

beautiful example [274]. EMT is a key process in tumor

metastasis, that is, the transformation of well-

differentiated epithelial cells into less differentiated

mesenchymal cells makes it easier for tumors to invade

adjacent tissues and spread to distant organs for survive

[274, 285]. EMT induced by hypoxic signaling can be

regulated by HDAC3 and WD repeat containing protein

5 (WDR5) to regulate the inhibition of epithelial genes

and the activation of mesenchymal genes [286]. In hyp-

oxia, HDAC3 and WDR5 are activated by HIF-1α to re-

cruit histone methyltransferase (HMT) complexes to

increase histone H3 lysine 4-specific HMT activity and

promote the expression of mesenchymal genes [286]. In

addition, HDAC3 also acts as a cofactor to inhibit epi-

thelial gene expression, and WDR5 knockout can elim-

inate mesenchymal gene activation [286]. This suggests

that HDAC and WDR5 can jointly epigenetically regu-

late the metastatic phenotype of cancer under the regu-

lation of HIF-1α [286]. For the third way, both lncRNA

and miRNA can interact with HIF respectively or jointly

to regulate tumor metastasis [149, 287, 288]. For ex-

ample, the taurine upregulated gene 1 (TUG1), as a po-

tential oncogene, has been found to be abnormally

expressed in osteosarcoma (OS) and has been associated

with distant metastasis [288]. TUC1 expression was sig-

nificantly increased in OS tissues [288]. TGF-β from

cancer-associated fibroblasts (CAFs) can up-regulate the

expression of TUG1, and the crosstalk between CAFs

and OS activate TUG1 to generate lncRNA TUG1 and

promote the metastasis of OS [288]. The specific expres-

sion of TUG1 competitively keep HIF-1α mRNA 3’UTR

from miR-143-5p [288]. In addition, in hepatocellular

carcinoma, lnc RNA ubiquitin conjugated enzyme E2C

pseudogene 3 (UBE2CP3) has been reported as an onco-

gene that promotes tumor metastasis [289]. UBE2CP3,

which is highly expressed in hepatocellular carcinoma

tissues, promotes human umbilical vein endothelial cell

(HUVEC) proliferation, migration, and tube formation

through the ERK/HIF-1/p70S6K/VEGFA axis in vitro

and in vivo compared to paracancer tissues, leading to

upregulation of VEGFA expression [289]. Recent studies

have shown that methylation leads to miRNA silencing

and that these silenced miRNAs are reactivated by de-

methylation [275, 276, 290]. The re-expression of these

silenced miRNA can regulate the tumor microenviron-

ment and promote tumor metastasis [291]. This suggests

that global hypomethylation is a feature of cancer cells,

and that the crosstalk between HIF-α and miRNA may

also involve methylation changes [291].

Tumor metastasis is often associated with poor prog-

nosis and can be regulated by both HIF-α and epigenet-

ics. Although disordered epigenetic patterns in cancer

cells have long been identified, they have for a long time

been ignored. But with the discovery of promoter hyper-

methylation leading to gene silencing and global hypo-

methylation in cancer cells, we have gained a deeper

understanding of epigenetic disorders involved in HIF-α

in cancer cells. However, many epigenetic mechanisms

do not directly regulate HIF-α or are directly regulated

by HIF-α, suggesting that these mechanisms are complex

and that other intermedi are involved, which need to be

further explored.

Hypoxia and targeted therapy via epigenetic
interference
Given the association between hypoxia and chemoresis-

tance, radioresistance and targeted therapies, hypoxia

has been regarded as a therapeutic target, and epigenetic

therapies, particularly anti-angiogenic treatment, VHL-

HIF axis therapy, bromodomain extralterminal proteins

(BET) inhibition and other therapies to be argued etc.,

are of great interests. Clinically, resistance to multi-

therapies has been observed, and the mechanisms be-

hind poor outcomes vary with treatments. For example,

resistance to radiotherapy is mediated by ROS which

produced by ionizing radiation, however, hypoxic condi-

tion restrains the ROS production and further limits the

damage to DNA. Also, chemicals can’t reach the tumors

in sufficient quantities due to abnormal vascularization

and up-regulation of HIF signaling etc., which leads to

chemoresistance [292].

Anti-angiogenic therapy

Anti-vascular therapy has long played a pivotal role in

oncotherapy. Angiogenesis is a hallmark of solid tumors,

and the process of which is governed by VEGF over-

expression induced by hypoxia [293, 294]. VEGF family

is composed of VEGFA, VEGFB, VEGFC, VEGFD and

placenta growth factor (PlGF), which are polypeptides

with homodimeric structure and are functional related.

Three VEGF receptors have been indentified, including

VEGFR1, VEGFR2 and VEGFR3, which are also struc-

turally related [295]. Over-expression of VEGF family,

which triggered by HIF signaling, promotes neovascular-

ization within solid tumors and function as survival fac-

tor of neovessels to inhibit endothelial cells death to

further promote angiogenesis in retina [296]. In addition,

neuropilin family (NRPs) could form complex with

VEGF, for example, NRP1 and NRP2 act as a coreceptor

for VEGFR1/2 and VEGFR3, respectively, to regulate

angiogenesis [295, 297]. Also, semaphorin (Sema) family
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and VEGF could be ligands of NRP2 receptors to regu-

late angiogenesis, respectively, for example, semaphorin

3A (Sema3A) interacting with NRP2 functions as a nega-

tive role in regulating physiological and pathological

processes of endothelial cell. And studies indicated that

Sema3A activation combines with inhibition of VEGF

pathway may improve therapeutic efficacy, and thus

some small-molecule tyrosine kinase inhibitors, in-

cluding Axitinib, Cabozantinib, Lenvatinib and Sorafe-

nib etc., are widely used in targeting VEGFR during

clinical investigation or treatment (see review by

Bedard, P. L., et al., 2020) [298, 299]. Although inhi-

biting VEGF is a potent and major therapeutic strat-

egy, more efforts need to be invested in

understanding mechanisms of multikinases acting on

angiogenesis to exploit more efficient anti-angiogenic

therapies via epigenetic intervention [298].

HIF inhibition

Growing evidence have revealed that HIF-1α and HIF-

2α inhibitors block tumor growth through a variety of

mechanisms [18, 300]. HIF-1α inhibitors have the most

types, among which HDAC inhibitors are indirectly in-

volved in epigenetic regulation [136, 301]. Studies have

shown that class II HDAC is associated with the stability

of HIF-1α and provides a theoretical basis for targeting

HIF-1α with HDAC inhibitors [136]. For example,

LAQ824 has been reported to promote the polyubiquiti-

nation of HIF-1α by unknown mechanisms, thereby

inhibiting the function of HIF-α [136]. Due to HIF-1α

inhibition, the regulation of HIF-1α by class III HDAC is

blocked, thus indirectly blocking the epigenetic regula-

tion of HIF-1α by class III HDAC [176]. In addition,

HIF-2α inhibitors, including PT2385 and Vorinostat, in-

hibit the HIF pathway by interfering with epigenetic

mechanisms [302, 303]. Clinically, adjuvant retinoic acid

(RA) therapy has a poor response to high-risk neuro-

blastoma [303]. However, study has shown that 5-Aza-

deoxycytidine (AZA) as a DNA-demethylating agent in-

creases the sensitivity of high-risk neuroblastoma to RA,

and AZA and RA combined therapy inhibits the growth

of high-risk neuroblastoma. This combined treatment

induces high levels of transcriptional responses regulated

by HIF-2α [303]. After treatment with HIF-2α inhibitor

PT2385, the sensitivity of tumor cells to AZA and RA

combined therapy decreased, suggesting that HIF-2α is a

tumor suppressor in neuroblastoma [303]. In fact,

PT2385 indirectly affects DNA methylation involving

AZA by inhibiting HIF-2α. More, studies have shown

that the expression level of HIF-2α gene EPAS1 in hu-

man soft tissue sarcomas (STS) is lower than that of the

corresponding normal tissue [302]. Vorinostat, a clinic-

ally approved HDAC inhibitor, promotes HIF-2α accu-

mulation, leading to increased tumor growth, which is

reversed by HIF-2α deletion [302]. This indicated that

Vorinostat mainly affected the transcriptional activity of

HIF-2α [302]. These are not the only drugs that target

HIF-1α and HIF-2α. These drugs are of great interest in

their own right and cannot be ignored.

Targeting VHL loss for cancer treatment

VHL loss is linked with HIFs over-expression within tu-

mors, especially ccRCC, which observed in clinical trials,

and thus small molecule inhibitors that target VHL are

widely used in clinical studies [304, 305]. VHL as a

tumor suppressor mediates many cellular processes due

to its multi-functional role, in which interacted with HIF

signaling is the most notably physiological event that

VHL binds to Elongin B, Elongin C, Cul2, and Rbx1 pro-

teins forming E3 ligase, leading to HIF-α degradation

inhibiting tumor progression [306]. For a long period,

the main direction of ccRCC treatment is understanding

mechanisms that VHL loss drives tumorigenesis, espe-

cially downstream of VHL-HIF pathway, including glu-

tamine metabolic genes, mTOR signaling and lipid

metabolism, among others [210]. Glutamine is trans-

formed into glutamate which is subsequently catalyzed

into 2-oxo-glutarate (2-OG), and further into lipid via

glutaminase enzymatic function in VHL-loss tumor cells.

Inhibiting glutaminase blocks the conversion from glu-

tamine to substrates associated with HIF signaling,

which may serves as potential therapeutic target [307].

More, mutations in mTOR interdict the PI3K-AKT-

mTOR pathway, for example, mutations in PTEN lipid

phosphatase and the Tuberous Sclerosis Complex 1/2

(TSC1/2) leads to mTOR dysfunction, which resulting in

usage of mTOR inhibitors in clinical treatment [298].

Authentic study noted that VHL-deficient germline

resulting in reduced high-density lipoprotein (HDL)

cholesterol which is associated with HIF-dependent

pathway, and insulin induced gene 2 (INSIG2) is subse-

quently activated which leads to low levels of fatty acids

(FAs) and cholesterol [52]. Similarly, in tumors with

VHL loss, HIF-2α activation promotes lipid droplets ac-

cumulation followed by elevated expression of both FAs

synthesis and FAs absorption-related genes [308]. Cut-

ting off metabolic pathway of HIF signaling, such as

lipogenic protein perilipin 2 (PLIN2) and carnitine pal-

mitoyltransferase 1A (CPT1A), may contributes to lipid

redistribution, which could be exploited as a therapeutic

strategy [304, 309]. More interestingly, OTU deubiquiti-

nase 6B (OTUD6B) as the first reported deubiquitination

enzyme is capable of inhibiting pVHL ubiquitination,

and the deubiquitination regulation of OTUD6B on

pVHL did not depend on its enzyme activity, but via

interaction with pVHL to enhance the stability of

CBCVHL ubiquitin ligase complex, and reduce the ubi-

quitination degradation of pVHL by Trp-Asp repeat and
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suppressors of cytokine signaling box-containing protein

1 (WSB1) and E2-EPF ubiquitin carrier protein (UCP).

This provides a new understanding of the mechanisms

of the OTU subfamily of deubiquitination enzymes and

Cullin-RING ubiquitin ligases [310].

BET inhibition

Bromodomain and extraterminal domain (BET) family

proteins consists of four members, BRD2, BRD3, BRD4

and BRDT, which play an important role as epigenetic

readers in gene transcriptional activation [311, 312]. The

abnormal activity of the BET protein, which recognizes

lysine residues of both histones and non-histones, espe-

cially BRD4, is closely associated with cancer progres-

sion, making BET a promising therapeutic target [313,

314]. The BET small molecule inhibitors can be used as

a promising alternative cancer therapy [315]. Thus, BET

inhibitors such as ABBV-075, ABBV-744, BAY 1238097,

BMS-986158, CPI-0610, FT-1101, GS-5829, GSK-

2820151, GSK-525762, BI-894999, RO-6870810 and

OTX-015, have been used to study their efficacy as can-

cer therapies in clinical trials [312]. Among them, BMS-

986158, OTX-015 and GSK-525762 inhibitors are three

major clinical stage BET inhibitors [315].

There is limited but growing evidence that BRD4 in-

teracts with HIFs and modulates HIF activities to de-

velop BRD4 as a reliable therapeutic target in multiple

cancers, including acute myeloid leukemia, multiple

myeloma, and Burkitt’s lymphoma [316, 317]. Studies on

BDR4 inhibitors received rapid attention after the inhibi-

tory effects of JQ1 and I-BET762 on BET were reported,

in which JQ1 could indirectly regulate the function of

HIF through BRD4 [318–320]. Within triple negative

breast cancer (TNBC), JQ1 was able to alter the expres-

sion activity of 44% of the downstream genes in the HIF

pathway, two-thirds of which were down-regulated in-

cluding CA9, which is related to pH regulation, and

VEGF-A, which is related to angiogenesis [318]. Al-

though hypoxia increased the recruitment of BRD4 to

CA9 and VEGF-A in tumor cells, the down-regulated

CA9 and VEGF-A in tumor cells treated with JQ1 indi-

cated that JQ1 affected the hypoxia response in which

BRD4 participated [318]. Recently, Chen and Yin et al.

found that NHWD-870, a novel BRD4 inhibitor, effect-

ively inhibited the expression of BRD4 and its target

gene HIF-1α [315]. NHWD-870 significantly inhibits

tumor growth in a variety of animal tumor models [315].

Mechanistically, NHWD-870 reduces the expression and

secretion of macrophage colony stimulating factor 1

(CSF1) in tumor cells by blocking the functional activity

of BRD4 and its target gene HIF-1α [315]. Down-

regulation of CSF1 weakens the activation degree of

ERK1/2 and PI3K/AKT pathways, leading to decreased

proliferation and survival of tumor associated

macrophages (TAMs) [315]. TAMs rely on tumor-

secreted growth factors, such as CSF1, to promote

tumor growth and metastasis [321]. This study revealed

for the first time that the novel BET inhibitor NHWD-

870, which was independently developed, can block the

mechanism of tumor-macrophage interaction, providing

a theoretical basis for the effective treatment for solid tu-

mors such as melanoma by blocking the new epigenetic

target BRD4 in clinical trials [315]. Studies have shown

that this inhibitor increases the clinical activity by 5-50

times compared with BMS-986158, OTX-015 and GSK-

525762 inhibitors, and can effectively reverse the drug

resistance of tumors, which is expected to double the

survival time of patients with advanced melanoma [315].

As a first class original new drug in development,

NHWD-870 will be the first to carry out phase I clinical

trial with melanoma in 2020 [315], which is expected to

be a new broad-spectrum anticancer drug, bringing new

hope for patients with advanced melanoma, small-cell

lung cancer and other diseases. The evidence that BRD4

regulates the activities of HIF-1α and HIF-2α need to be

further enriched, and targeting BRD4 is currently con-

sidered as a strategy to be developed. Together, BRD4

inhibitor exploitation plays an important potential role

in cancer therapy, especially hypoxic tumors.

Potential treatment based on crosstalk between HIFs

signaling and ferroptosis

Ferroptosis is recently discovered iron-dependent cell

death fueled by lipid peroxidation, which differs from

necrosis and apoptosis [322–324]. Mitochondrial metab-

olism involved series of substrates consumption, is pri-

mary source of ROS via Fenton reaction that ferrous

iron mixed with hydrogen peroxide (H2O2) is equipped

with strong oxidizability to oxidize many known intra-

cellular compounds such as carboxylic acids, alcohols

and esters into inorganic states with significant oxidation

effect [325]. Emerging studies has revealed ROS accu-

mulation in a variety of cells including those within ma-

lignancies. Interestingly, it’s reported that hypoxic

tumors with HIF-1 over-expression inhibits acyl-CoA

dehydrogenases leads to tumor progression via ROS al-

teration [209]. Over the past 20 years, small-molecule in-

hibitors, including system xc-Inhibitors, GPX4 inhibitors,

RTAs, CoQ10 pathway inhibitors, endoperoxides, and

iron chelators and sources inhibitors etc., have been ap-

plied in ferroptosis-associated diseases [322], and mech-

anisms behind these inhibition effects may reappear in

HIF signaling, which remains under-reported.

Anti-tumor therapy, in addition to established anti-

angiogenic therapy, targeting VHL loss and BET inhib-

ition, also has the sustainable treatment based on the

potential crosstalk between HIFs and ferroptosis, and

targeting CAFs. Epigenetic intervention mediated by

Li et al. Journal of Experimental & Clinical Cancer Research          (2020) 39:224 Page 17 of 25



small molecule inhibitors are on the way, and higher ef-

ficacy may derived from combined joint therapy.

Conclusion and perspectives
Hypoxia affects tumor progression via various epigenetic

modifications, including acetylation, methylation and de-

methylation and so on, which leads to tumor genomic

instability due to tumor and tissue speficity or altered

microenvironment. HIF-α activity plays a pivotal role in

metabolic reprogramming, for example, special enzymes

are activated by HIF-α family to adapt to the obligate

metabolic demands, in turn, produced metabolites, in-

cluding succinate, fumarate, pyruvate, lactate and oxalo-

acetate etc., affect the HIF proteins stability due to loss-

of-function of PHD. Despite of crosstalk between intra-

cellular metabolites production and subsequent meta-

bolic genes activation, EMT is also affected by HIF-α via

epigenetic remodelers, notably, HIF-1α promotes

P4HA1 and P4HA2 transcriptional activities to further

contributes to the formation of collagen, and α-

ketoglutarate modulation of P4HA1 boosts the stability

of HIF-1α, and further enhance the tumor progression.

HIF signaling influences the EMT to promote metasta-

sis, and primary tumors secrete factors which interacted

with HIF-α to modify the niche into a survivable system

so as to secondary tumor development and progression

under hypoxia.

Anti-angiogenetic therapy may be exploited as rec-

ognized therapeutic stragedy through epigenetic inter-

vention on VEGF family. Some small molecule

tyrosine kinase inhibitors combines with VEGF block-

ade may improve therapeutic efficacy. However, VEGF

signaling interacts with many other genes, it’s critical

to fully understand the complex crosstalk and exploit

more therapies in face of low curative effects. Besides

targeting VHL loss and BET inhibition therapy, given

interaction between ferroptosis and HIFs on ROS af-

fects, small-molecule inhibitors of ferroptosis is con-

sidered to use in hypoxic tumors treatments. HIF-1α

and HIF-2α has been studied a lot, and mounting evi-

dences indicated their important role in the regula-

tion of hypoxic tumor progression, however the

pathological role of HIF-3α remains elusive and more

efforts should be placed in understanding its patho-

logical function. In fact, Ras/raf/MAPK, NF-κB,

SREBP, Jak/Stat and Notch pathways are also play im-

portant roles in tumorigenesis, the interactions be-

tween them and HIF signaling may be more complex

and need to be further studied.

Up to now, given the role of HIF signaling in hypoxic

tumor progression, it’s of great potential importance that

targeting HIF-α directly or inhibiting the downstream

genes in the crosstalk instead.
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