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Abstract

DNA methylation [1,2] is capable of modulating coordinate expression of large numbers of genes across many different
pathways, and may therefore warrant investigation for their potential role between genes and disease phenotype. In a rare
set of monozygotic twins discordant for Alzheimer’s disease (AD), significantly reduced levels of DNA methylation were
observed in temporal neocortex neuronal nuclei of the AD twin. These findings are consistent with the hypothesis that
epigenetic mechanisms may mediate at the molecular level the effects of life events on AD risk, and provide, for the first
time, a potential explanation for AD discordance despite genetic similarities.
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Introduction

Wide varieties of studies have examined candidate genes for

associations with Alzheimer’s disease (AD). Although such associ-

ations have been found, they are probabilistic rather than inevitable,

with the exception of familial AD. A potential explanation of the

probabilistic nature of the association between specific genes and

disease may be the apparent genetic complexity of AD. However,

the existence of rare monozygotic twins discordant for AD offers the

opportunity to examine other factors that may be contributing to

the probabilistic nature of the association between genes and AD,

specifically epigenetic mechanisms. Since epigenetic modifications

contribute to the phenotypic differences that emerge in monozy-

gotic twins, including discordant disease states [3], we examined

DNA methylation, an important epigenetic mechanism, in

monozygotic twins discordant for Alzheimer’s disease (AD). As

has been described in sporadic AD cases [4], neurons of the AD

twin exhibited dramatic decrements across multiple DNA methyl-

ation markers compared to the non-AD twin. Epigenetics may

therefore, constitute a basic molecular genetic mechanism in the

pathophysiology of AD.

Methods

Ethics Statement*
Written informed consent for autopsy was obtained for both

cases in compliance with institutional guidelines of Boston

University. The Boston University Institutional Review Board

approved this study including recruitment, enrollment, and

autopsy procedures. Both twins and their respective next-of-kin

consented to brain autopsy for the purpose of research analysis as

participants in the Boston University Alzheimer’s Disease Center.

The human brain tissue used in this manuscript was from routine

existing autopsies, which fully qualifies for 4C exemption by NIH

guidelines. In addition samples were analyzed anonymously (e.g.

twin 1 and twin 2) throughout the experimental process.

Subjects and brain samples
Using standard protocols of NIH AD Centers, both twins were

thoroughly evaluated antemortem and postmortem by board-

certified neurologists and a neuropathologist who determined their

respective diagnoses as AD and neurologically normal, non-

demented (ND). The AD twin was a white male chemical engineer

who had extensive pesticide contact in his work. He developed AD

symptoms at age 60, first manifest as the inability to read maps,

followed by progressive loss of memory and intellect over 16 years

until his death at age 76. His identical twin, also a chemical

engineer with an identical education but different work environ-

ment, died at 79 years from prostate cancer. At the time of his

death, he was cognitively intact. The twins were autopsied at the

same facility using the same tissue processing protocols. Post

mortem delay for the control twin was 3 h 10 minutes and 7 h 20

minutes for the AD twin. Both subjects were immediately snap

frozen on aluminum plates cooled to 280uC on dry ice and

immediately transferred to 280uC freezer for long term storage.

In the AD twin post-mortem examination confirmed severe AD

(NIA-Reagan: high, CERAD plaque: frequent, Braak: VI). In the

non-demented twin post-mortem examination revealed sparse

neuritic plaques and entorhinal and transentorhinal NFTs (NIA-

Reagan: low, CERAD: sparse, Braak: II). The AD twin showed

dense plaques and neurofibrillary tangles (NFT) in the anterior

temporal cortex, while these stigmata were remarkably rare in the

non-demented twin (Figure 1).

Immunohistochemistry
Temporal neo-cortex was sliced axially into 1-cm thick slabs,

immersion fixed for 48 h in buffered 4% paraformaldehyde at
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4uC, washed extensively in phosphate buffer (PB), and cryopro-

tected in ethylene glycol and glycerol. The slabs were then

sectioned at 40 mm on a freezing cryostat. Free-floating sections

were stored in freezing solution (glycol/glycerol/PB) at 220uC

until required for experiments. Tissue sections used for bright field

microscopy were immunoreacted using the avidin-biotin com-

plex/diaminobenzidine (DAB) method. Briefly, tissues were

washed 26, blocked in 1% hydrogen peroxide for 45 min, washed

36, blocked in 3% bovine serum albumin (BSA) for 1 h, washed

26, and incubated at 4uC overnight in primary antibody solutions

containing 0.25% BSA. Unless otherwise stated, all washes were

with 16 PBS Triton (PBST). Available information about the

antibodies is given in (Table 1). After incubation with primary

antibody, sections were washed 36, incubated in biotinylated,

species-specific secondary antibodies (Vector) for 2 h, washed 36,

and incubated in avidin-biotin complex (Pierce) for 1 h. Following

incubation with secondary antibody, the sections were washed 36,

once in PBST and twice in 0.05 M Tris buffer, then exposed to

DAB solution containing 125 ml of 5 mg/ml DAB (Sigma),

11.125 ml 50 mM Tris buffer pH 7.6, and 500 ml saturated

nickel ammonium sulfate. Incubations during chromagen devel-

opment were no longer than 10 min, and were followed by two

quick rinses in 50 mM Tris to stop the reaction. Finally, the

sections were dried, taken through graded alcohols, de-fatted in

Neoclear (EMD), and mounted with Permount (Pierce). AD and

ND sections were immunoreacted simultaneously using netwells in

well-less plates. For fluorescence microscopy, the sections were

washed 36, blocked with either 3% normal goat serum or 3%

BSA, and incubated for 2 h. The sections were then washed 26,

incubated in primary antibody in 0.25% BSA at 4uC overnight,

washed again, and incubated in species–specific, fluorophore-

conjugated secondary antibodies (Molecular Probes) at room

temperature for 2 h. After a final wash, the sections were

mounted, taken through Sudan Black to reduce autofluorescence,

and coverslipped with Vectashield mounting media (Vector).

Deletion of primary antibody or incubation with pre-immune

serum resulted in abolition of specific immunoreactivity in all cases

(data not shown). Adjacent serial sections were stained with cresyl

violet for cell layer identification and verification that the island

neurons of layer II were intact. For some sections, nuclei were

counterstained with 49,69-diamidino-2-phenylindole (DAPI) (In-

vitrogen) before mounting.

Double-label immunohistochemistry was also employed to

evaluate the associations of epigenetic factors with specific

neuronal, and glial cell types. Briefly, sections were washed,

blocked with either 3% normal goat serum or 3% BSA, and

incubated for 1–2 h. Sections were then washed 26, incubated in

primary antibodies raised in different species in 0.25% BSA/PBST

at 4uC overnight. After primary incubation sections were washed

36 in PBST, and incubated in species–specific, fluorophore-

conjugated secondary antibodies (Molecular Probes) at room

temperature for 2 h. After a final wash, the sections were

mounted, taken through Sudan Black to reduce autofluorescence,

and coverslipped with Vectashield mounting media (Vector).

Immunostained tissue sections were examined on Olympus IX51

and Olympus IX70 microscopes equipped with epifluorescence

illumination or with confocal laser scanning using argon and

krypton lasers (Olympus IX70). The findings were documented

photographically with an Olympus DP-71 color digital camera or,

for confocal microscopy, by Fluoview software (Olympus).

Cell Quantification and statistical analysis
Using the Fluoview software, integrated fluorescence intensities

for 5-methylcytosine of layer II and layer III of the anterior

Figure 1. Thioflavin S plaques and PHF1 neurofibrillary tangle pathology in middle temporal gyrus (MTG) of non-demented and
AD twin. AD pathology was remarkably rare in the non-demented twin and abundant in the AD twin.
doi:10.1371/journal.pone.0006617.g001
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temporal neocortex from each individual were analyzed. Briefly,

sections were processed in parallel using identical antibody

concentrations. DAPI+Nuclei of NSE+ cells were randomly

selected in coded slides. The detection bandwidth was set at

488 nm for 5-methylcytosine indicator, and fluorescence intensity

of the nucleus was recorded (N= 20 per layer per case).

Results

DNA methylation Immunoreactivity
Figure 2a shows representative immunohistochemistry of anterior

temporal neocortex for 5-methylcytosine, a marker of methylated

CpG sites on DNA. In the AD twin, decreased immunoreactivity

relative to the ND twin was readily apparent in the anterior

temporal neocortex, a region severely affected in AD. Similar results

were obtained in the pathologically-vulnerable superior frontal

gyrus (Figure S1). To develop quantitative data, integrated

fluorescence intensities of immunoreactivity for 5-methylcytosine

were recorded for layer II and layer III nuclei of DAPI-and neuron

specific enolase positive cells from coded slides. By two-tailed t-test,

all markers exhibited highly significant (P,0.0001) decrements in

immunoreactivity in the AD twin compared to the ND twin

(Figure 2b). These findings are consistent with our previous results

for non-twin AD and ND subjects [4].

To show that the results obtained in neocortex were not due to

differences in tissue handling, storage time, or quality, DNA

methylation markers were also evaluated in cerebellum, a brain

region that is largely spared from AD pathology. As in our

previous assessment of AD and control cases [4], the cerebella of

both twins exhibited virtually identical staining patterns and

intensity for 5-methylcytosine (Figure 2a), as well as for another

methylation marker, 5-methylcytidine (Figure S1) and several

methylation stabilizing factors (MBD2/3 and HDAC2; Figure S2)

Relationship of DNA methylation marker 5-metylcytosine
to neurons and Glial cells
In Figure 3 we examine co-localization of the DNA methylation

marker, 5-methylcytosine, with markers for neurons (neuron

specific enolase), for reactive astrocytes (GFAP) and for microglia

(RCA1). These figures show that DNA methylation is present in all

three cell types in non-demented brain and that the decrement in

DNA methylation seen in AD extends to all three cell types.

Discussion

Large-scale expression array studies have reported significant

up- or downregulation of thousands of genes in AD [5,6]. These

alterations in gene expression span multiple pathogenic pathways,

including amyloid b peptide (Ab) processing, tau hyperpho-

sphorylation, and inflammation, among others. Because many

genes across the genome have methylation sites in their promoters

[2], extensive hypomethylation in AD may provide an over-

arching principle that accounts for significant aspects of the

molecular and pathogenic complexity of the disorder. For

example, amyloid precursor protein (APP), the Ab precursor,

has been shown to be normally methylated, and hypomethylated

with age [7] which apparently enhances Ab production [8].

However, more recent data indicates no difference in methylation

of the APP gene in AD [9]. Furthermore, inducible nitric oxide

synthase, interleukin 1, and tumor necrosis factor-a are all

increased as part of the inflammatory response in AD cortex

[10]; all their respective genes are methylated; and all show

enhanced secretion with hypomethylation [11,12,13]. At the

protein level, protein phosphatase 2A is methylated (probably

by peptidylarginine methyltransferases or lysine methyltrans-

ferases), and its hypomethylation results in tau hyperphosphory-

lation [14].

The present findings indicate that epigenetic mechanisms may

provide a molecular basis for the effect of life events, including

exposure to hazardous substances, on AD risk. More specifically,

they may provide a rationale for the consistent epidemiologic and

neuropathologic association of AD with homocysteine elevation

and folate deficiencies [15,16], since folate ultimately provides the

methyl group for DNA methylation. Maintaining adequate dietary

folate (and B12) or increasing S-adenosylmethionine levels might

therefore be useful, inexpensive strategies to decrease risk for AD.

Since epigenetic patterns can be passed on to subsequent

generations, epigenetics may also constitute a mechanism by

which AD in a first degree relative confers increased risk of

‘‘sporadic’’ disease.

Supporting Information

Figure S1 Top four panels: Immunoreactivity for 5-methylcy-

todine (5MeCd), another methylation marker, in medial temporal

gyrus and cerebellum of non-demented and Alzheimer’s disease

twin. Note similarity of immunoreactivity in granule cell layer of

Table 1. Antibodies.

Antibody Host Dilution Source/Catalogue# Recognition/sequence References

NSE Chicken plyclonal 1:500 Chemicon/AB9698 Neuron Specific Enolase www.millipore.com

GFAP Rabbit polyclonal 1:1000 Chemicon/ab5804 Glial fibrillary acidic protein is a class-III
intermediate filament

[17]

RAC1 lectin 1:1000 Vector/B-1085 Ricinus communis agglutinin I [18]

pS396 Rabbit polyclonal 1:1000 Invitrogen/44-752G Serine 396 [19]

PHF1 Mouse monoclonal 1:1000 Gift of Dr. P. Davies Paired Helical Filament 1 [20]

MBD3 Mouse monoclonal 1:400 Abcam/ab45027 CKAFMVTDEDIRKQEE [21]

5-methylcytidine Mouse monoclonal 1:1000 Genway/20-783-71663 Methylation [22]

MTA2 Rabbit polyclonal 1:500 Abcam/ab8106 Amino acids 652–668 [23]

HDAC2 Rabbit monoclonal 1:500 Abcam/ab32117 Reidues within C-terminal end [24]

5-methylcytosine Mouse Monoclonal 1:1000 Genway/20-003-40005 Methylation [25]

doi:10.1371/journal.pone.0006617.t001
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both twins in cerebellum, which is relatively unaffected in

Alzheimer’s disease. Bottom two panels: 5-methylcytosine (5Me-

C)immunoreactivity in the Superior frontal gyrus (SFG)in AD and

non-demented twin.

Found at: doi:10.1371/journal.pone.0006617.s001 (2.63 MB TIF)

Figure S2 Immunoreactivity for selected components of the

MECP1 complex in superior frontal gyrus and cerebellum of non-

demented and AD twin. Note consistency of these results with

other data shown.

Found at: doi:10.1371/journal.pone.0006617.s002 (1.63 MB TIF)
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Figure 2. a) Anterior temporal neocortex (left and right top panels) and cerebellum (left and right bottom panels) immunoreactivity for DNA
methylation marker in a pair of monozygotic twins discordant for Alzheimer’s disease. Sections were processed in parallel using identical antibody
concentrations to 5-methylcytosine (1:1000) with nickel intensification. Note similarity of immunoreactivity in cerebellar granule cell layer of both
twins in this brain region that is relatively unaffected in Alzheimer’s disease. b) Integrated fluorescence intensities of DAPI-counterstained anterior
temporal neocortex layer II and layer III neuronal nuclei in a set of monozygotic twins discordant for AD. Sections were processed at the same time
using identical immunohistochemical methods [4] and antibody concentrations. Nuclei of NSE+ cells (N= 20/brain) were randomly selected and
traced from coded slides by an investigator blind to subject condition. The appropriate detection fluorescence bandwidth (488 nm) for 5-
methylcytosine indicator was then set, and the integrated fluorescence intensity within the traced area was taken. Highly significant decrements in
the pathologically-vulnerable entorhinal cortex was observed in the AD twin (p,3.51E-08 for layer II and p,3.71E-06 for layer III), whereas readings
for the cerebellum were nearly identical in the AD and ND twin (data not shown).
doi:10.1371/journal.pone.0006617.g002
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Figure 3. Co-localization of immunoreactivity for 5-methylcytosine with neuron specific enolase, GFAP, RCA1 (microglial marker) in
non-demented and Alzheimer’s disease twin. Note extensive co-localization of 5-methylcytosine in ND twin with all three cell specific markers,
and the lack of co-localization with 5-methylcytosine in the AD twin.
doi:10.1371/journal.pone.0006617.g003
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