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Abstract 

Background: Monocyte-to-macrophage differentiation involves major biochemical and structural changes. In order 
to elucidate the role of gene regulatory changes during this process, we used high-throughput sequencing to analyze 
the complete transcriptome and epigenome of human monocytes that were differentiated in vitro by addition of 
colony-stimulating factor 1 in serum-free medium.

Results: Numerous mRNAs and miRNAs were significantly up- or down-regulated. More than 100 discrete DNA 
regions, most often far away from transcription start sites, were rapidly demethylated by the ten eleven translocation 
enzymes, became nucleosome-free and gained histone marks indicative of active enhancers. These regions were 
unique for macrophages and associated with genes involved in the regulation of the actin cytoskeleton, phagocytosis 
and innate immune response.

Conclusions: In summary, we have discovered a phagocytic gene network that is repressed by DNA methylation in 
monocytes and rapidly de-repressed after the onset of macrophage differentiation.
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Background
�e differentiation of monocytes to macrophages is 

dependent on macrophage colony-stimulating fac-

tor (CSF1/MCSF) and modulated by inflammatory 

stimuli such as LPS, γ-IFN or TNFα. CSF1 promotes a 

resident-type macrophage phenotype with a role in tis-

sue repair [1]. CSF1 binds to the extracellular domain 

of the CSF1 receptor (CSF1R) with downstream signal-

ing via PI3K and MEK, to modulate differentiation and 

survival. Although much progress has been made in the 

understanding of macrophage activation, polarization 

and function, the underlying processes are still not fully 

understood.

A large transcriptomic data set of phagocyte differen-

tiation and activation [1], among numerous other cells 

and tissues, has recently been released by the FANTOM 

consortium [2, 3]. All phagocytes express a small num-

ber of lineage-specific transcription factors (TFs) and 

an array of known lineage-specific genes [4]. Transcrip-

tional changes are mainly mediated by the selection and 

establishment of enhancers (for review, see [5]). Based on 

mouse studies, it has been proposed that PU.1 and serum 

response factor (SRF) regulate cytoskeletal gene expres-

sion in macrophages [6]. Furthermore, miRNA signatures 

were identified in polarized macrophages that are differ-

entially regulated during monocyte-to-macrophage dif-

ferentiation and polarization [7].
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�e BLUEPRINT consortium recently reported some 

epigenetic aspects of monocyte-to-macrophage differ-

entiation [8]. Monocytes from peripheral blood were 

enriched by antibody-based depletion of T, B and NK 

cells and differentiated in medium enriched with 10  % 

human serum as a source of CSF1/MCSF. Based on the 

analysis of three histone marks (H3K4me1, H3K4me3 

and H3K27ac) as well as DNase I accessibility, the 

authors identified approximately 8000 dynamic regions 

and found that naïve macrophages displayed a remod-

eled metabolic enzyme repertoire and attenuated innate 

inflammatory pathways. DNA methylation was not ana-

lyzed in this study.

Changes in DNA methylation have previously been 

shown to occur in hematopoietic stem cells and during 

later stages of hematopoiesis. Using methyl-CpG immu-

noprecipitation and promoter microarrays, Klug et al. [9] 

observed active DNA demethylation during monocyte to 

dendritic cell (DC) differentiation, which was not nec-

essarily linked to transcription changes. �is group also 

showed that an siRNA-mediated knockdown of TET2 in 

primary monocytes prevented active DNA demethyla-

tion [10].

For a comprehensive analysis of  monocyte-to-mac-

rophage differentiation, we have generated class I refer-

ence epigenomes of both cell types according to IHEC 

standards. To avoid the confounding effects of antibody-

based isolation techniques and serum-containing culture 

media, monocytes were purified by counterflow elutria-

tion and differentiated in serum-free medium. By focus-

ing on differential DNA methylation, we discovered 

a gene network regulating the actin cytoskeleton and 

phagocytosis.

Results
For generating epigenomes, RNA, DNA and chroma-

tin from the same batch of cells from two healthy male 

donors (Hm03 and Hm05) were used.

Gene expression analysis

Transcriptome-wide analysis of mRNAs from mono-

cytes and macrophages was performed by RNAseq, and 

gene expression differences were determined with the 

DESeq software package. Of the 17,515 expressed genes 

in monocytes and macrophages, 2521 genes were sig-

nificantly up-regulated and 2245 genes were significantly 

down-regulated upon differentiation (padj <0.05, Fig. 1a). 

In order to investigate how our results compare to the 

BLUEPRINT data [8], where the authors used antibodies 

for cell isolation and serum-containing media, we cor-

related the expression differences in our cell system with 

that of their cell system. �e Pearson product–moment 

correlation coefficient of the comparison was 0.68, 

indicating a moderate to strong correlation (Additional 

file 1: Figure S1).

Next, we had a look at major differences between 

the two data sets. By performing a gene ontology (GO) 

enrichment analysis of genes that were unchanged in our 

experiment, but up-regulated in the BLUEPRINT experi-

ment, we found an overrepresentation of 12 terms, all 

of which are related to metabolic processes (Additional 

file 2: Table S1), suggesting that the “remodeled metabolic 

enzyme repertoire” described by Saeed et al. [8] might—

at least in part—be related to the use of serum in the 

culture medium. �e reverse analysis (genes unchanged 

in BLUEPRINT, but up-regulated in our experiment) 

revealed no significant enrichment of GO terms.

We also investigated whether  monocyte-to-mac-

rophage differentiation involves changes in miRNAs. As 

shown in Fig. 1b and in more detail in Additional file 3: 

Table S2, 34 miRNAs are significantly up-regulated and 

12 miRNAs are significantly down-regulated after dif-

ferentiation. Interestingly, several of the highly expressed 

and up-regulated miRNAs are encoded by miRNA gene 

a

b

upregulated

downregulated

unchanged

number of transcripts

12,749

2,245

2,521

Fig. 1 Transcriptional analysis. a Regulation of mRNA transcripts 
during  monocyte-to-macrophage differentiation. b log2 transformed 
expression changes upon  monocyte-to-macrophage differentiation 
plotted against miRNA levels in mean read counts. Significantly regu-
lated miRNAs (padj < 0.05) are labeled and depicted in red
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clusters (miR-99b-5p, let-7e and miR-125a-5p on 19q; 

miR-222-3p and miR-221-3p on Xp; miR-23a-3p and 

miR-27a-3p on 19p).

We selected miRNAs that were found significantly more 

than twofold up- or down-regulated (Benjamini & Hoch-

berg adjusted p value <0.05) and searched in the TargetS-

canHuman database (Release 7.1) for their family’s targets, 

demanding larger than 80 % probability of conserved tar-

geting (TargetScan PCT score >0.8). In the whole list of 

17,515 expressed genes in monocytes and macrophages, 

we found 3844 and 307 confident targets for the families 

of the up- and down-regulated select miRNAs, respec-

tively. Interestingly, all of the 307 targets of the down-

regulated miRNAs belonged to the group of 3844 targets 

of the up-regulated miRNAs as well, suggesting that those 

307 targets are under constant miRNA interaction. A GO 

enrichment analysis found those 307 targets enriched 

in biological processes such as miRNA loading to RISC, 

signal transduction and cell differentiation among others 

(Benjamini & Hochberg adjusted p value <0.05).

We found an enrichment in the significantly differen-

tially expressed genes among the confident targets of the 

selected miRNAs (Fisher’s exact test p value <1e−16). 

Furthermore, confident targets of only the up-regulated 

selected miRNAs were found enriched in both the signif-

icantly down-regulated genes (Fisher’s exact test p value 

<1e−16) and up-regulated genes, albeit with a weaker 

p value (Fisher’s exact test p value =  0.0002). However, 

the confident targets of only the up-regulated selected 

miRNAs were not enriched in the top 10  % of highest 

expressed and significantly up-regulated genes (Fisher’s 

exact test p value  =  0.7). Taken together, these results 

suggest that a major part of miRNA functionality is dedi-

cated to target suppression and another part involves 

target thresholding that is maintained throughout the dif-

ferentiation transition. �ese conclusions are in perfect 

agreement with previous work based on a tissue-wide 

study of miRNA expression [11], where it was found that 

predicted targets are expressed at lower levels when co-

expressed with their targeting miRNAs, whereas highly 

expressed genes tend not to be targets of co-expressing 

miRNAs.

DNA methylation analysis

For analyzing DNA methylation at single base-pair 

resolution, we did whole-genome bisulfite sequencing 

(WGBS). By performing a principal component analysis 

on the WGBS data set, we found that principal compo-

nent 1 (PC1) separates the donors and principal com-

ponent 2 (PC2) separates monocytes and macrophages 

(Fig. 2a). �e genetic basis of the inter-individual differ-

ences in DNA methylation will be reported in more detail 

in a separate study.

Gene expression changes are not correlated with DNA 

methylation changes at transcription start sites

In order to determine whether the gene expression 

changes occurring during  monocyte-to-macrophage dif-

ferentiation are related to DNA methylation changes 

around the transcription start sites of the genes, we per-

formed a correlation analysis. As shown by the scatter 

plot (Additional file 4: Figure S2, Pearson’s r = −0.00018, 

p value =  0.97), there is no significant correlation. �is 

finding raised the question whether DNA methylation 

changes occur in other regions of the genome and what 

function they might have.

Identi�cation of di�erentially methylated regions (DMRs)

For identifying differentially methylated regions (DMRs) 

between the two cell types, we performed an unbi-

ased search using the software package BSmooth. Since 

WGBS studies are heavily underpowered with regard to 

the detection of methylation differences at single CpGs, 

we looked at strings of four or more CpGs. By setting 

the minimal mean methylation difference to 0.5, 0.4, 0.3, 

0.2 and 0.1, we observed 1, 18, 114, 288 and 468 DMRs, 

respectively. With the aim of focusing on large meth-

ylation differences, we continued our study with the 

114 DMRs that have a methylation difference equal or 

greater than 0.3 (Additional file 5: Table S3). �e size of 

these DMRs varies between 85 and 1697 bp. While only 

4/114 DMRs showed an increase in methylation, 110/114 

DMRs were demethylated during  monocyte-to-mac-

rophage differentiation (one example shown in Fig.  2b). 

In published data from other somatic tissues also sub-

jected to WGBS, most of these DMRs are highly methyl-

ated (p  <  0.0001, unpaired Student’s t test; Fig.  2c) [12, 

13].

Of all 114 DMRs, 15 were selected for validation by tar-

geted deep bisulfite sequencing in cells from the donors 

used for WGBS (Hm03 and Hm05) as well as from two 

additional donors (Hm04 and Hm06). Priority was given 

to DMRs with >10 CpGs and experimentally verified 

transcription factor binding sites that are subject to chro-

matin opening (see below) during  monocyte-to-mac-

rophage differentiation (Fig. 2b). For 10 DMRs, we could 

establish reliable targeted bisulfite assays. In each case, 

the macrophages show CpG demethylation as compared 

to monocytes (Fig. 2d, e, related to Additional file 6: Fig-

ure S3), thus confirming the results obtained by WGBS.

Demethylation of DMRs is linked to a macrophage-speci�c 

regulatory gene network

Since DNA demethylation is known to coincide with 

transcriptional activation, we analyzed these regions in 

further depth. Only two of the 114 regions overlap a CpG 

island as defined by Gardiner-Garden and Frommer [14]. 
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Fig. 2 DNA methylation analysis. a PCA on whole-genome bisulfite data. A clear separation of monocytes (Mo) and macrophages (Mac) as well 
as donors Hm03 and Hm05 is visible. b Representative example of a DMR in the left part of an IGV browser snapshot. The DMR coincides with the 
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other tissues. d Validation of 10 DMRs by targeted deep bisulfite sequencing. Average CpG methylated fractions in monocytes and macrophages 
after at least 3 days of differentiation. Results are mean ± SD from 4 independent donor samples (Hm03, Hm04, Hm05 and Hm06). **p value <0.01; 
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�is observation is in line with our finding that there is 

no correlation between gene expression changes and 

DNA methylation changes around the transcription start 

sites of gene (Additional file  4: Figure S2). Interestingly, 

11/114 DMRs contain an exon, but there was no evidence 

for alternative splicing (data not shown).

To predict the function of the DMRs, we used the 

Genomic Regions Enrichment of Annotations (GREAT) 

tool [15], which assigns biological meaning to a set of non-

coding genomic regions by analyzing the annotations of 

the nearby genes (for details, see “Methods”). We found 11 

regions that are associated with one gene and 103 regions 

that are associated with two genes. Interestingly, most of 

the DMRs map far from the transcription start site of its 

associated gene (Additional file 7: Figure S4). Gene ontol-

ogy analysis of the associated 217 genes against the whole-

genome background revealed significant enrichment of 16 

partially redundant GO terms, which include Fcγ receptor 

signaling, phagocytosis, cellular component organization, 

response to growth factor stimulus, immune response 

and regulation of metabolic processes. Ninety-five of the 

217 DMR-associated genes belong to one or more of these 

terms (Additional file 8: Table S4).

In order to determine whether demethylation of the 

DMRs is associated with expression changes of nearby 

genes, we first compared the distribution of expres-

sion changes of all genes sharing a topological domain 

(TAD, [16]) with a DMR (n =  1160) to the distribution 

of expression changes of all expressed genes (n = 17,515). 

As shown in Fig. 2f, no difference was observed (yellow 

and blue curves; Kolmogorov–Smirnov test, p  =  0.47). 

Next, we analyzed those 95 DMR-associated GO genes 

identified above (green curve). In this case, the distribu-

tion of expression changes was significantly different to 

that of all genes (Kolmogorov–Smirnov test, p = 0.028), 

suggesting that the DMRs participate in control of the 

expression of a significant fraction of these genes. Most 

of the 95 genes form an interaction network as shown 

in Fig. 3. Forty-three of these genes are part of ten con-

solidated pathways related to the regulation of actin 

cytoskeleton, phagocytosis and innate immune system.

DMRs are enriched for speci�c transcription factor binding 

motifs

Almost all of the DMRs (103/114) contain a transcrip-

tion factor binding site as identified by chromatin 

immunoprecipitation (ENCODE Txn Factor ChIP data, 

Additional file  5: Table S3). To test for significance, we 

simulated 1 million sets, each consisting of 114 regions 

of equal length compared to the original DMRs and each 

region containing at least 4 CpGs. Only 21 simulations 

showed an equal or higher fraction of transcription factor 

binding sites (empirical p value = 0.000021).

We also asked which transcription factor binding 

motifs are enriched in the DMRs. To this end, we used 

the TRANSFAC database (professional version, release 

2015.3; http://www.biobase.de/product/transcription-

factor-binding sites) [17]. Random regions and provided 

example regions served as background, and the param-

eters were set to default. Depending on the data set used 

as a background, we found that 13 (experimental data) 

and 19 (randomly generated data) transcription fac-

tor binding motifs were significantly enriched (p < 0.01) 

in the DMRs (Table 1). Eight motifs were found in both 

comparisons. Some of these transcription factors are 

known to play a role in phagocytic differentiation (GKLF/

KLF4 and SREBP, [18–20]) and/or to be transcription 

factors that can open closed chromatin (AP-1, RFX1, 

GKLF/KLF4 and p65 [21]).

Most of the DMRs become nucleosome-depleted

In order to investigate whether the chromatin acces-

sibility of the DMRs changes during differentiation, we 

performed NOMe-seq (Nucleosome Occupancy and 

Methylation assay) on cells from donor Hm05. In this 

technique, native chromatin is treated with the GpC-

specific methyltransferase M.CviPI which methylates 

GpC dinucleotides in nucleosome-free regions [22]. �e 

DNA is then treated with sodium bisulfite and subjected 

to WGBS. From these data, CpG methylation patterns as 

well as nucleosome-free regions (GpC methylation) can 

be identified. First, we used a NOMe-seq peak finder 

(Nordström et al., unpublished) to identify nucleosome-

depleted regions in the two lineage-specific differen-

tiation stages. While monocytes had 89,212 NOMe-seq 

peaks, covering about 21 Mbp, macrophages had 127,267 

peaks covering about 42 Mbp which demonstrates that 

macrophages have more nucleosome-depleted regions. 

We then determined the overlap between DMRs and 

NOMe-seq peaks that were gained or lost during dif-

ferentiation. While 21/114 DMRs did not overlap with a 

NOMe-seq peak in any cell type, 85/114 (74.6 %) DMRs 

gained a peak and 2/114 (1.8 %) lost a peak. In six cases, 

the NOMe-seq peak had different borders. We conclude 

that most DMRs become nucleosome-depleted during 

differentiation.

DMRs have distinct histone modi�cations

To gain further insight into the function of the DMRs, 

we used ChIP-seq to profile the histone modifications 

H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3 

and H3K9me3. DMRs plus 1 kb flanking sequences were 

clustered by ChIP signal over input log2 ratio across all 

six histone marks using the k-means algorithm. �ree 

clusters with distinct chromatin signatures were found 

(Fig.  4, [23]). �e DMRs in clusters 1 and 2 showed 

http://www.biobase.de/product/transcription-factor-binding
http://www.biobase.de/product/transcription-factor-binding
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a significantly increased signal of the histone marks 

H3K27ac and H3K4me1 in macrophages compared to 

monocytes (p  <  0.001, paired Student’s t test with Bon-

ferroni correction). �e presence of these two marks is 

a characteristic of active enhancers. �e regions in both 

clusters also gained H3K4me3 (p  <  0.001, paired Stu-

dent’s t test with Bonferroni correction), a mark found 

at promoters and certain enhancers, during  monocyte-

to-macrophage differentiation. �e regions in cluster 

1 additionally became reduced in the repressive mark 

H3K27me3 during differentiation (p < 0.001, paired Stu-

dent’s t test with Bonferroni correction), which com-

plements the gain of H3K27ac. Cluster 2, in contrast to 

cluster 1, comprises DMRs that are consistently deco-

rated with H3K36me3, which associates with actively 

transcribed gene bodies. �e DMRs in cluster 3 were 

marked with H3K27ac, H3K4me1 and H3K4me3 in both 

monocytes and macrophages. Although the H3K4me1 

signal was significantly reduced in macrophages, the 

other marks were without significant change during dif-

ferentiation (p  <  0.001 for H3K4me1, p  >  0.001 for the 

remaining marks; paired Student’s t test with Bonfer-

roni correction). �ese results suggest that the DMRs in 

cluster 3 are located at promoters or enhancers that are 

active in both cell types.

As our consortium did not investigate enhancer RNAs 

(eRNAs), we queried the FANTOM database for bidi-

rectional eRNAs in monocytes and macrophages. �is 

revealed that 24 of the 114 identified DMRs are likely 

to produce bidirectional eRNAs indicating enhancer 
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activity. In 21 of these cases, the FANTOM-predicted 

target DNA of the enhancer is the transcription start site 

of the DMR host gene.

Demethylation is a rapid process and likely mediated 

by Tet dioxygenases

In order to determine how rapidly the identified regions 

become free of methylation and nucleosomes, we dif-

ferentiated monocytes to macrophages (donor Hm06) 

and removed aliquots at several time points. By analyz-

ing CpG levels in ten DMRs at each time point (Fig. 5a, 

related to Additional file  9: Figure S5), we observed a 

rapid decline in DNA methylation within the first 24  h. 

By a time-course analysis of DNA methylation (CpG) 

and chromatin accessibility (GpC in NOMe-seq) of five 

DMRs in donor Hm10, we observed that chromatin 

opening also occurs very rapidly (most pronounced at 

6–18 h, Fig. 5b and Additional file 10: Figure S6). �ese 

data validate WGBS results and suggest that both the 

opening of these genomic regions and their DNA dem-

ethylation occur simultaneously in the early stages of the 

differentiation process.

Monocytes do not divide during differentiation, which 

makes passive loss of DNA methylation unlikely. Also, 

mRNA levels of the maintenance methyltransferase 

DNMT1 as well as of DNMT3A and DNMT3B remained 

stable. �erefore, we anticipated active DNA demethyla-

tion by oxidation. To further study this process, we investi-

gated the dynamics between 5-methylcytosine (5mC) and 

the first oxidative product of active DNA demethylation, 

5-hydroxymethylcytosine (5hmC) in two DMRs (DMR13 

and DMR33) in both donor Hm06 and donor Hm10. 

Again, we analyzed cell aliquots at multiple time points. 

We observed that the oxidation of 5mC was particularly 

fast in the first 12 h, with cells exhibiting methylation lev-

els of approximately 20 % 5hmC after 12-h differentiation, 

corresponding to a threefold to 13-fold increase relative to 

monocytes (Fig. 5c and Additional file 10: Figure S6).

Table 1 Lists of overrepresented transcription factor binding motifs in di�erentially methylated regions using the Trans-

fac database and default settings for the experimental and the random data set

Yes and No denote the relative number of sites for the selected matrix in the DMRs as compared to an experimental data set (A) and a random data set (B)

Factor Versus experimental set (A) Versus random set (B)

Yes No Yes/no Yes No Yes/no

AP-1 0.1667 0.0038 43.6333 0.1667 0.0175 9.5000

RelA-p65 0.1404 0.0130 10.8070 0.1140 0.0175 6.5000

MAF 0.1754 0.0260 6.7544 0.1140 0.0088 13.0000

Muscle initiator 0.1228 0.0191 6.4302 0.1667 0.0439 3.8000

GEN_INI 0.4474 0.0718 6.2298 0.1053 0.0088 12.0000

GKLF 0.6140 0.1406 4.3683 0.6140 0.0877 7.0000

Myogenin 0.9474 0.2231 4.2469 0.9474 0.2632 3.6000

CPBP 2.0877 0.6157 3.3906 2.0877 1.0877 1.9194

BBX secondary motif 0.0439 0.0023 19.1374

RFX1 0.0526 0.0038 13.7789

TTF-1 0.1404 0.0237 5.9264

AHR 0.2281 0.0413 5.5286

ZNF333 0.8772 0.5225 1.6787

Ikaros 0.5965 0.0263 22.6667

SREBP 0.1404 0.0088 16.0000

Ets 0.1140 0.0088 13.0000

Helios A 0.1140 0.0088 13.0000

MZF-1 0.2193 0.0526 4.1667

Smad4 0.1842 0.0526 3.5000

NF-AT1 0.5351 0.1754 3.0500

MAFA 0.2105 0.0702 3.0000

FAC1 0.2456 0.0877 2.8000

ING4 0.6316 0.2368 2.6667

SRY 0.6579 0.2895 2.2727



Page 8 of 17Wallner et al. Epigenetics & Chromatin  (2016) 9:33 

Since conversion of 5mC into 5hmC is performed by 

members of the ten eleven translocation family (TET), 

we further investigated the involvement of these enzymes 

[12]. Monocytes show very low levels of TET1 mRNA, 

while TET2 and TET3 are substantially expressed. TET2 

and TET3 mRNA levels decrease during differentiation 

(TET2, log2FC  =  −2.07, adjusted p value  =  1.32E−6; 

TET3, log2FC = −1.2, adjusted p value = 0.007). At the 

protein level, a substantial decrease in TET2 occurred in 

the first 24  h (Fig.  6a). Since we expected regulation to 

take place not only on the mRNA and protein level, we 

performed an in  vitro TET hydroxylase assay to check 

whether TET hydroxylase activity is modulated dur-

ing differentiation. As shown in Fig.  6b, TET activity 

dropped considerably during the first 12  h and subse-

quently reached a lower steady level.

To test whether TET-mediated demethylation is 

essential for  monocyte-to-macrophage differentiation, 

we decided to inhibit the TET enzymes. In view of the 

fact that demethylation occurs very rapidly (see above), 

whereas an antisense-mediated TET knock-down would 

become effective only after 48  h, we decided to treat 

freshly isolated monocytes from three independent 

donors (Hm15, HU2 and HU3) with the cell-permeable, 

competitive dioxygenase inhibitor (2S)-Octyl-alpha-

hydroxyglutarate (2-HG). 2-HG has been reported 

before to be able to inhibit TET activity [24]. With this 

approach, we were able to inhibit DNA demethylation of 

DMR33 partially (630 µM) or completely (2 mM) (Fig. 6c, 

compare also to Fig. 5) as compared to the methylation 

levels of monocytes (Fig. 2d). �e inhibitor prevented the 

formation of cellular protrusions and adherence (Fig. 6d). 

In contrast, flow cytometry for early macrophage differ-

entiation markers (CD14, CD71, CD81, CD11b, CD195, 

CD68 and CD16) after 1  day of differentiation did not 

show any difference between 2-HG treated and control 

cells (data not shown). Apoptosis as detected by staining 

with Annexin-V/7-AAD was increased in cells treated 

with the inhibitor (33  % in cells treated with 2  mM 

2-HG vs 5 % for treatment with 630 µM 2-HG and 2 % 

in untreated control cells). Since monocyte DNA meth-

ylation levels were significantly maintained (~  50  %) at 

630 µM and completely maintained at 2 mM (see above), 

the vast majority of methylated DNA molecules cannot 

be derived from dead cells.

Discussion
Based on high-throughput epigenome analysis accord-

ing to IHEC standards, we found that  monocyte-to-

macrophage differentiation is characterized by extensive 

changes in mRNA and miRNA levels. �ese changes are 

reflected by widespread changes in histone modifications 

Fig. 4 Heatmap of histone modification signals at 114 differentially methylated regions in monocyte (Mo) versus macrophage (Mac). The heatmap 
shows the log2 ratio of ChIP signal over input at the DMRs plus 1 kb flanking regions for six different histone modifications. k-means clustering 
revealed three cluster with distinct chromatin signatures. Cluster 1 comprises DMRs that gain in macrophages the signature of active enhancers in 
non-transcribed regions, cluster 2 comprises DMRs that gain in macrophages the signature of active enhancers in actively transcribed regions and 
cluster 3 comprises DMRs with the signature of promoters or enhancers that are active in both monocyte and macrophage. Clusters and histone 
marks with significant change during  monocyte-to-macrophage differentiation (p < 0.001, paired Student’s t test with Bonferroni correction) are 
highlighted with a bold light blue border
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and chromatin accessibility ([8] and our study). In con-

trast, DNA methylation changes affect only a small num-

ber of genomic regions, and most of them are far away 

from transcription start sites. Notably, these regions are 

enriched for binding sites of transcription factors such as 

AP-1, RFX1 and KLF4, which can open chromatin, are 

rapidly demethylated by TET enzymes, become nucleo-

some-free and gain active enhancer marks. DNA dem-

ethylation affects a small and specific set of genes, which 

regulate the actin cytoskeleton and phagocytosis and 

thus are most important for macrophage structure and 

function. �is network remains repressed by DNA meth-

ylation in other somatic tissues.

Several of the genes regulated by the DMRs are part of 

ERBB2, PDGFRβ, CXCR4 and PIK3 signaling pathways 

(Fig. 3), which are involved in regulating actin cytoskel-

eton and phagocytosis (for review, see, for example, 

[25]). ERBB2 stabilizes ligand binding and enhances 

kinase (PI3K)-mediated activation of downstream sign-

aling pathways, regulates cytoskeletal arrangements and 

outgrowth and stabilization of peripheral microtubules 

involved in podia formation, cell migration and phagocy-

tosis. PDGFRβ signaling promotes rearrangement of the 

actin cytoskeleton, membrane ruffling and podia forma-

tion. Furthermore, it is involved in chemotaxis and ini-

tiating intracellular signaling through the MAPK, PI3K 

and PKCγ gamma pathways. Engagement of Fcγ recep-

tors by IgG-opsonized particles leads to their clustering 

and tyrosine phosphorylation by Src-family kinases. �is 

event in turn recruits the tyrosine kinase Syk as well as 

phosphatidylinositol 3′-kinase (PI3K). �e formation 

of pseudopods is coincident with local remodeling of 

the underlying actin cytoskeleton to form a dense heavy 

mesh termed the actin cup. Actin cup formation requires, 

among others, activation of Rho-family GTPases [25]. 

In addition, other genes such as GSN and ELMO1 are 

related to the actin cytoskeleton and phagocytosis. Sev-

eral other genes are important for the (innate) immune 

system (e.g., IFI6 and IL1RN).

Although we have not found any DNA methylation 

changes at miRNA genes, it is interesting to note that 

at least three miRNAs that are highly expressed and 

strongly up-regulated during  monocyte-to-macrophage 

differentiation (miR-34, miR-146 and miR-221) have 

been reported to play a role in actin cytoskeletal reorgan-

ization in macrophages or other cell types [26–28].

Many genes in the identified network do not change 

their level of expression during macrophage differen-

tiation (Fig.  2f, green line, and Additional file  8: Table 

S4). In an independent DNA methylation study based 

on 450  K microarrays, it was found that demethylated 

genes become activated only after cell stimulation [29]. 

It is possible that RNA polymerase II is stalled at the 
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Fig. 5 Time-course analysis. a Demethylation of 10 DMRs. Aver-
age CpG methylated fractions in Hm06 donor monocytes (0 h) and 
cells collected at different time points during differentiation into 
macrophages. Related to Additional file 9: Figure S5. b Time course of 
chromatin accessibility (GpC methylation in NOMe experiments) and 
DNA CpG methylation in DMR33. Average CpG and GpC methyl-
ated fractions in Hm10 donor monocytes (0 h) and cells collected at 
different time points during differentiation into macrophages. The 
transition from lower to higher GpC methylated fraction is indicative 
of an increase in chromatin accessibility. GCG motifs were excluded 
due to ambiguity between CpG- endogenous- and GpC-enzymatic-
methylation. Related to Additional file 10: Figure S6. c 5-hydroxyme-
thyl-cytosine (5hmC) level increases during differentiation. Average 
5hmC and 5mC (5-methylcytosine) fractions in monocytes (0 h) and 
cells collected at different time points (DMR33 from donor Hm10). 
Related to Additional file 14: Figure S7
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Fig. 6 Analysis of TET activity. a Western blot for TET enzymes (donor Hm14) showing a decrease in TET2 protein levels during the first day of dif-
ferentiation. Multiple isoforms are detectable for TET2. TET3 levels did not change. TET1 was undetectable by western blotting using commercial 
antibodies. b TET activity during  monocyte-to-macrophage differentiation. TET activity in nuclear extract decreases significantly (p < 0.05, ANOVA) 
during differentiation from freshly isolated monocytes at 0 h to adherent phagocytic cells at later time points (n = 3–5, mean ± SEM). c Quantifica-
tion of DMR33 methylation after 1-day differentiation exposed to different concentrations of the TET inhibitor Octyl-2-α hydroxyglutarate (2-HG). 
Results are mean ± SD from 3 independent donor samples (Hm15, HU2 and HU3). **p value <0.01 (unpaired Student’s t test). (D) Light microscopy 
of monocytes after 1 day differentiation in the presence or absence of TET inhibitor (donor Hm15). While control cells acquire a macrophage-like, 
adherent phenotype with protrusions, cells treated with 630 µM 2-HG are only loosely attached and have a round phenotype
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promoter of these genes, poising them for a prompt and 

coordinated expression in response to future stimuli. In 

fact, this mechanism of controlling the timing and ampli-

tude of transcriptional responses was reported to occur 

in macrophages for several pro-inflammatory genes that 

have PolII paused at their promoters and basal levels of 

transcription prior to stimulation [30, 31].

DNA demethylation during  monocyte-to-macrophage 

differentiation is a rapid, active process catalyzed by TET 

enzymes, as shown by increasing levels of 5hmC lev-

els in the first 12  h of differentiation and the inhibition 

of this process by the competitive dioxygenase inhibi-

tor 2α-hydroxyglutarate. Our results are in line with data 

showing active demethylation and a role for TET2 in 

monocyte differentiation [9, 10, 29, 32]. Zhang et al. [32] 

showed that when differentiating to dendritic cells, TET2 

was up-regulated on the first day and then showed decreas-

ing levels. Also similar to our data, no regulation of TET3 

was observable [32]. Furthermore, in dendritic cells half of 

DMR-associated genes were up-regulated during differen-

tiation, and DMRs were not confined to proximal promot-

ers [9]. Since TET activity is high in monocytes, it seems to 

act as a standby system that is provisioned in monocytes 

and rapidly targeted to specific genomic regions upon 

induction of differentiation. Although the mechanistic 

details are unknown, it is likely that the TET enzymes are 

recruited to the target regions by pioneer transcription 

factors or other factors following the pioneers. Currently, 

our data do not allow us to decide whether transcription 

factor binding follows TET-mediated opening of chroma-

tin or whether pioneer transcription factors recruit TET 

proteins to the DMR. Potentially “both mechanisms oper-

ate and reinforce one another” [33].

A high concentration of the TET inhibitor 2-HG, which 

completely inhibited DNA demethylation, prevented the 

formation of cellular protrusions and adherence, whereas 

the appearance of early cell surface markers was not 

affected. �is finding substantiates the notion that dem-

ethylation leads to derepression of a specific program 

involved in cell structural changes and phagocytosis. 

Cells treated with higher TET inhibitor concentrations 

showed increased apoptosis, which could be due to the 

inability of developing adherence. However, it should 

be noted that 2-HG also inhibits other 2-ketoglutarate-

dependent dioxygenases, for example histone demethy-

lases. �us, the effect of TET inhibitor on the cellular 

morphology may also be due to changes in histone modi-

fications patterns.

Conclusions
In summary, we have found that a specific gene network 

related to phagocyte structure and function is repressed 

in monocytes and other cells by DNA methylation of 

distant enhancers and that this program is rapidly dere-

pressed by CSF1-induced demethylation of these regions 

(Fig. 7). �us,  monocyte-to-macrophage differentiation is 

a prime example for the role of targeted demethylation in 

cell differentiation.

Methods
Monocyte elutriation and di�erentiation

Primary human monocytes were obtained from healthy 

normolipidemic volunteers with the apolipoprotein E3/E3 

genotype by leukapheresis and counterflow elutriation as 

described previously [34]. �e study was approved by the 

ethics committee of the University Hospital Regensburg, 

and donors gave their written consent (Universitätsklini-

kum Regensburg, Ethikkommission der medizinischen 

Fakultät, proposal 08/119). Monocyte cultivation and 

differentiation were conducted according to Stöhr et  al. 

[35]. Briefly, elutriated monocytes were seeded at 1 × 106 

cells/mL in macrophage serum-free medium (Invitrogen, 

Germany) supplemented with 50  ng/mL recombinant 

human monocyte colony-stimulating factor (rhMCSF; 

R&D Systems, USA) to induce phagocytic differentia-

tion. Cells were cultured on plastic petri dishes (Sarstedt, 

USA) and incubated at 37  °C/5 % CO2 for five days. For 

time-course experiments, cells were collected at differ-

ent time points during differentiation (0  h, 12  h, 24  h, 

36 h, 48 h, 60 h and 72 h; 6 h and 18 h time points were 

additionally performed once). For ChIP-seq and NOMe-

seq, cells were fixed for 5  min in 1  % paraformaldehyde 
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(Sigma-Aldrich). Fixation was stopped using 125 mM gly-

cine, and cells were thoroughly washed in PBS. Cell pellets 

were shock-frozen in liquid nitrogen and stored at −80 °C 

until analysis. Donors used for each type of experiment 

are summarized in Additional file  11: Table S5. Sample 

names were assigned according to the standardized DEEP 

naming scheme with, e.g., Hm03 representing cells from 

human, male donor 03. A more detailed overview can also 

be found in Additional file 11: Table S5.

Magnetic bead-based isolation of monocytes

Bisulfite sequencing in the TET inhibitor experiments 

(donors Hm15, HU2 and HU3) required only a low num-

ber of cells. �erefore, monocytes for these assays were 

isolated by negative magnetic bead selection (Pan-mono-

cyte isolation kit, #130-096-537, Miltenyi-Biotec) on an 

Auto-MACS system (Miltenyi Biotec) and in vitro differ-

entiated as described above for elutriated cells.

Nucleic acid isolation

Total RNA was isolated using PeqGOLD TriFast reagent 

(PeqLab, Germany) according to manufacturer’s recom-

mendation. QIAamp columns (Qiagen, Germany) were 

used for DNA isolations. Nucleic acids were quantified 

with a Nanodrop 100 spectrophotometer (Peqlab, Ger-

many) and RNA quality checked with an Agilent 2100 

bioanalyzer on RNA 6000 nanochips.

mRNA analysis

Long RNA libraries were prepared from 500  ng total 

RNA input of RNA integrity (RIN) >8 according to the 

Illumina stranded total RNA and mRNA protocols, 

respectively. In brief, poly-A enrichment (mRNA-seq) 

or ribosome-depletion (totalRNA-seq) was performed 

on the input total RNA, respectively. First- and second-

strand cDNA synthesis and chemical fragmentation 

were performed, followed by adapter ligation and PCR 

amplification of the final library. PCR cleanup was per-

formed using AMPure XP beads. Barcoded long RNA 

libraries were sequenced for 2 ×  101 nt on an Illumina 

HiSeq  2000. Raw reads were aligned with TopHat2 [36] 

to the human reference genome (hs37d5). DESeq2 [37] 

with default settings was used to analyze differential gene 

expression between monocytes and macrophages using 

GENCODE reference annotation.

miRNA analysis

Small RNA libraries were prepared from 1 µg total RNA 

of RIN >8 according to the Illumina small RNA pro-

tocol. In brief, adapter ligation, reverse transcription 

and PCR amplification were performed. Size selection 

on the library was performed by gel excision to capture 

the ~ 148nt fragment to contain the adapter-ligated small 

RNAs. Small RNA libraries were sequenced for 1 × 51 nt 

on an Illumina HiSeq 2000.

�e expression levels of precursor hairpins and mature 

miRNAs obtained from miRBase (version 21) were esti-

mated using the miRDeep2 algorithm (version 2.0.0.7) 

[38]. �e total count of each mature miRNA and for each 

library was estimated by summing over the counts of 

identical mature miRNAs originating from different pre-

cursor hairpins. Differential expression analysis was done 

using the DESeq2 package [37].

DNA methylation analysis

For each sample, two libraries were generated. A pre-

bisulfite library was prepared from 2 µg of DNA accord-

ing to the Illumina protocol essentially as described by 

Rademacher et  al. [39]. A post-bisulfite library was pre-

pared from 1 µg of DNA using the EpiGnome Methyl-Seq 

Kit from Epicentre. For each methylome, we sequenced 

two to three lanes of the Illumina library and one lane of 

the EpiGnome library on an Illumina HiSeq 2500, again 

as described previously [39].

�e read mapping of the 650–700 million read pairs 

per sample was executed by bwa [40] version 0.7.5a and 

a modified human reference (hs37d5) to achieve C/T-

tolerance. �e segmentation into LMRs and UMRs was 

performed by MethylSeekR [41] version 1.6.0 with a FDR 

cutoff of 0.05. An in-house script was used to call the 

CpG methylation levels, excluding reads with a mapping 

quality lower than 30 (probability to map at a correct 

position  =  0.999) and ignoring bases with base quality 

<17 (probability that the sequencing process produced 

the correct base  =  0.98). BSmooth [42] was applied to 

detect DMRs with a minimum difference in methylation 

level of 0.3, a minimum size of four CpG and a q value 

cutoff of 0.0001 per single CpG. No region-wise p value 

or FDR is available for calculations with this tool.

All other statistical analyses and DMR annotations 

were performed by in-house scripts using R, SciPy and 

FANTOM [2] data of monocytes and macrophages for 

active enhancer, RefSeq [43] genes and CpG islands [16].

NOMe-seq

One million fixed frozen cells were thawed in nuclei 

extraction buffer (60 mM KCl; 15 mM Tris–HCl, pH 8.0; 

15 mM NaCl; 1 mM EDTA, pH 8.0; 0.5 mM EGTA, pH 8.0; 

0.5  mM spermidine free base) supplemented with com-

plete protease inhibitor cocktail (Roche, Basel, Switzer-

land) and 0.1 % NP40 (Sigma-Aldrich, St. Louis, USA), and 

incubated on ice for 30 min. During incubation, each sam-

ple was dounced 10–20 times with a douncing pistil (Qia-

gen, Hilden, Germany) until nuclei became visible under a 
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standard light microscope. Nuclei were centrifuged (500g, 

4  °C, 8  min), and the pellet was washed using the same 

buffer without NP-40. After another round of centrifuga-

tion, the pellet was gently resuspended in 90 µl of 1× GpC-

buffer (NEB, Ipswich, USA) followed by addition of 70 µl of 

NOMe reaction mix 7 µl 10× GpC buffer (NEB), 1.5 µl of 

32 mM SAM (NEB), 45 µl of 1 M sucrose, 60 U of M. CviPI 

(NEB) and 1  µl of lambda DNA spike-in (1  ng/µl). �e 

reaction was incubated 3 h at 37 °C, and 0.5 µl of SAM was 

added after one and two hours. �e reaction was stopped 

by adding 160 µl NOMe stop buffer (20 mM Tris–HCl, pH 

8.0; 600 mM NaCl; 1 % SDS, 10 mM EDTA) and 10 µl pro-

teinase K (20 mg/ml, Sigma-Aldrich), and genomic DNA 

was extracted. Next, 100  ng was bisulfite-converted with 

the EZ DNA Methylation-Gold kit (Zymo, Irvine, USA) 

and then subjected to NGS library preparation using the 

TruSeq DNA Methylation Kit (Illumina, San Diego, USA) 

according to the manufacturer’s protocol. All libraries were 

checked for adapter dimers and fragment distribution on 

a Bioanalyzer HS chip (Agilent Technologies, USA). Each 

sample was sequenced on an Illumina HiSeq 2500 gener-

ating approx. 380–400  M 100  bp paired-end reads. Raw 

read data were adapter trimmed (Trim Galore!), mapped 

using bwa [40] to the human reference genome (hs37d5) 

followed by removal of duplicate reads. Methylation levels 

of CpGs and GpCs, respectively, were called using Bis-SNP 

[44]. Cytosines in a GCG context were excluded from fur-

ther analysis. Bisulfite conversion efficiency was checked 

genome wide with all cytosines in an HCH context.

NOMe-seq peaks were called with in-house scripts (to 

be published, https://github.com/karl616/gNOMePeaks/

releases/tag/v0.1-alpha): After segmenting the genome 

with a two-state binomial HMM into putative NDRs and 

background regions, the former were contrasted to flank-

ing background regions with Fisher’s exact test. Finally, 

p values were adjusted by calculating empirical false-

discovery rates (eFDR) by contrasting to NDRs based on 

shuffled GCH methylation values. Only NDRs with eFDR 

below 0.01 were kept.

Targeted deep bisul�te sequencing and targeted deep 

NOMe-seq

For regular bisulfite sequencing (BS-seq), 500  ng of DNA 

was bisulfite-converted using the EZ DNA Methylation-

Gold Kit (Zymo Research) according to the manufacturer’s 

instructions. TrueMethyl Seq kit (CEGX) was used for 

discriminating 5mC and 5hmC following the manufac-

turer’s protocol except that 300  ng genomic DNA was 

used as input for purification and denaturation steps, and 

split equally before DNA oxidation into oxBS and BS sam-

ples. In BS-seq, both 5mC and 5hmC are read as cytosine, 

while in oxBS-seq, only 5mC is read as cytosine, and thus, 

5hmC is inferred from BS- and oxBS-seq comparison. 

Locus-specific bisulfite amplicon libraries were amplified 

by PCR employing bisulfite-tagged primers designed using 

the MethPrimer [45] and BiSearch [46, 47] tools (see primer 

and PCR details below) and HotStarTaq Master Mix (Qia-

gen). A second PCR was performed to add sample-specific 

barcode sequences (MID, multiplex identifiers) and uni-

versal linker tags (454 adaptor sequences). Samples were 

prepared and sequenced on a Roche/454 GS Junior system 

(Roche Diagnostics) as described elsewhere [48], and spe-

cial filter settings were applied to increase the yield of reads 

[49]. For BS- and oxBS-Seq, automated CpG methylation 

analysis was performed using the Amplikyzer software [50] 

with minimum bisulfite conversion rate set to 95  %, lead-

ing to an average of 2192 reads per sample (minimum 576). 

For targeted NOMe-seq, both CpG-endogenous and GpC-

enzymatic methylation were analyzed with Amplikyzer 

software [50], obtaining an average of 1409 reads per sam-

ple (minimum 176). To assess NOMe-seq efficiency and 

specificity, sequencing of reference regions within HSPA5 

(mainly open chromatin) and MLH1 (transition of open to 

closed chromatin) were performed. Methylated fraction is 

the percentage of methylated molecules at a specific CpG 

site as represented by reads in deep bisulfite sequencing. 

�e number of replicates and tested loci are summarized in 

Additional file 11: Table S5. Primers and PCR conditions for 

targeted bisulfite sequencing and NOMe-seq can be found 

in Additional file 12: Table S6.

Histone modi�cation ChIP-seq

Formaldehyde-fixed cell pellets were resuspended in 

1  ml of Farnham laboratory buffer (5  mM PIPES, pH 8; 

85  mM KCl; 0.5  % Igepal CA-630) supplemented with 

protease inhibitors. Nuclei were isolated using the NEX-

SON approach [51]. �e nuclei pellet was resuspended 

in 1 ml of shearing buffer (10 mM Tris–HCl, pH 8; 0.1 % 

SDS; 1  mM EDTA) supplemented with protease inhibi-

tor cocktail, and chromatin was sheared using a focused 

ultrasonicator (Covaris S220). ChIP was performed using 

an automated liquid handler (SX-8G Compact IP-Star, 

Diagenode) and the Auto Histone ChIP-seq kit (Diagen-

ode, C01010022) with the following parameters: ChIP 

indirect method, 200  µl volume of ChIP reactions, 13-h 

antibody incubation, 4 h beads incubation, 5-min washes 

(all steps at 4  °C). Eluates were decrosslinked, and DNA 

was purified using MinElute columns (Qiagen, 28006). 

�e following antibodies were used for ChIP-seq  (1  μg 

per ChIP reaction): anti-H3K27ac (C15410196), anti-

H3K4me3 (C15410003), anti-H3K4me1 (C15410194), 

anti-H3K36me3 (C15410192), anti-H3K9me3 

(C15410193) and anti-H3K27me3 (C15410195), all from 

Diagenode. Sequencing libraries were prepared using 

https://github.com/karl616/gNOMePeaks/releases/tag/v0.1-alpha
https://github.com/karl616/gNOMePeaks/releases/tag/v0.1-alpha
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the NEBNext Ultra DNA Library Prep kit for Illumina 

(E7370S, NEB) following the manufacturer’s instructions. 

Size selection after adapter ligation was omitted, and 

DNA was amplified by 10 PCR cycles. Final libraries were 

sequenced on an Illumina HiSeq  2500 generating 50-bp 

paired-end reads.

Raw reads were aligned with bwa [40] to the human 

reference genome (hs37d5). Coverage tracks of ChIP-

seq samples were calculated as the number of sequenced 

fragments per 25  bp bin, using the tool bamCoverage 

from the deepTools suite [52]. Coverage was normal-

ized to 1 × sequencing depth with an effective genome 

size of 2.9e9. log2 ratio tracks of ChIP over input chro-

matin signal were computed as log2 ratio of the num-

ber of fragments per 25 bp bin, normalized by total read 

counts per sample, using bamCompare from deepTools. 

�e ChIP over input log2 ratios at DMRs ± 1 kb flank-

ing regions were then visualized as heatmap with the 

tools computeMatrix and heatmapper from the deep-

Tools suite. All DMRs were scaled to a length of 1  kb. 

DMRs plus flanks were clustered by bin scores across all 

six histone modifications and two biological replicates 

per cell type using the k-means algorithm (k = 3).

Data deposition and visualization

Genome raw data from human subjects have been depos-

ited at the European Genome-phenome Archive (EGA, 

http://www.ebi.ac.uk/ega/), which is hosted at the EBI 

(Study Accession ID: EGAS00001001595, Dataset Acces-

sion ID: EGAD00001002201). To receive access to these 

controlled data, applications can be addressed to the 

DEEP Data Access Committee (http://www.deutsches-

epigenom-programm.de/data-access/).

GREAT analysis of enriched genomic annotations

�e bioinformatic tool GREAT (Genomic Regions 

Enrichment of Annotations Tool) was used to investigate 

the function of differentially methylated regions by ana-

lyzing the annotations of the nearby genes [15]. GREAT 

uses a two-step process. “First, every gene is assigned a 

regulatory domain of a minimum distance upstream 

and downstream of the transcription start site (regard-

less of other nearby genes). �e gene regulatory domain 

is extended in both directions to the nearest gene’s basal 

domain but no more than the maximum extension in one 

direction” (great.stanford.edu). We used the default set-

tings for GREAT’s basal plus extension with limits set 

to 5  kb upstream, 1  kb downstream and an additional 

distant limit of 1000  kb. “�en, each genomic region is 

associated with all genes whose regulatory domain it 

overlaps” (great.stanford.edu). Data on topologically 

associated domains were taken from [16].

Regulatory gene network analysis

�e interaction network was computed using GeneMANIA 

software [53] using 245 network data sources: the default 

networks in the categories genetic interactions (7/7), path-

way (6/6), physical interactions (190/190) and predicted 

(41/42), plus the network consolidated pathways-2013 

under the attributes category to allow gene-set enrichment 

analysis. �e network was generated allowing the return of a 

maximum of 10 attributes and 0 related genes.

Western blotting

Nuclear extracts from samples were prepared using gen-

tle lysis with 0.1  % NP-40 for 5  min. Protein concentra-

tions of the nuclear extracts were determined by Optiblot 

Bradford protein assay (Abcam), and 15 μg of extracts was 

subjected to SDS–polyacrylamide gel electrophoresis on 

4–12 % Bis–Tris polyacrylamide gels with MOPS running 

buffer (Invitrogen). Proteins were transferred onto PVDF 

membranes (BioRad), which were then blocked by incu-

bation for 1 h with 5 % nonfat dry milk in PBS with 0.1 % 

Tween 20 (PBS-T). Primary antibodies (TET2 mAb clone 

21F11, Active Motif 61389; TET3 rabbit polyclonal IgG, 

�ermo-Scientific, PA5-31960) were diluted 1:1000 in 

1 % BSA in PBS-T and incubated overnight at 4  °C. �e 

membranes were washed with PBS-T, incubated for 1 h at 

room temperature with anti-rabbit or anti-mouse-HRP-

IgG (Jackson ImmunoResearch), washed in PBS-T, and 

antibody binding was detected by chemiluminescence 

ECL-Pus blot detection system (GE-Healthcare).

TET activity assay

TET functional enzyme activity was quantified in trip-

licate using the commercially available TET Hydroxy-

lase Activity Quantification Kit (Abcam) from nuclear 

extracts according to manufacturer’s instructions. Flu-

orescence readings were taken on a FluoStar Galaxy 

microplate reader (BMG).

�e competitive inhibitor of TET activity (2S)-Octyl-α-

hydroxyglutarate was purchased from Cayman Chemical. 

(2S)-Octyl-α-hydroxyglutarate is a cell-permeable deriva-

tive of the L-isomer of 2-HG that has been described to 

be the primarily active isomer in the inhibition of TET 

enzymes [24].

Flow cytometry

Antibodies given in Additional file 13: Table S7 were used 

for flow cytometry of surface antigens. �e analysis was 

performed on a Becton–Dickinson FACS Canto II flow 

cytometer according to standard protocols. To specifi-

cally stain apoptotic and necrotic cells, the ANNEXIN 

V-FITC/7-AAD kit from Becton–Dickinson was used 

according to manufacturer’s instructions.

http://www.ebi.ac.uk/ega/
http://www.deutsches-epigenom-programm.de/data-access/
http://www.deutsches-epigenom-programm.de/data-access/


Page 15 of 17Wallner et al. Epigenetics & Chromatin  (2016) 9:33 

Additional �les

Additional �le 1: Figure S1. Scatter plot of the mean log2 fold changes 
obtained by BLUEPRINT for three pairs of monocytes/macrophages vs. 
the mean log2 fold changes of the two pairs of monocytes/macrophages 
analyzed by DEEP (r = 0.68).

Additional �le 2: Table S1. List of statistically significantly overrepre-
sented GO terms (GO biological process data set) for genes up-regulated 
during  monocyte-to-macrophage differentiation (log2Fc > 2) in the 
Blueprint study (Saeed et al. 2014) but with unchanged expression in the 
present study (log2Fc < 2). Terms with fold enrichment >2 are shown. 
In the reverse analysis (genes up-regulated in the present study, but 
unchanged in the Blueprint study), no significant enrichment of GO terms 
was found.

Additional �le 3: Table S2. Regulation of miRNAs during differentiation.

Additional �le 4: Figure S2. Correlation plot of gene expression 
changes and DNA methylation changes around the transcription start site 
(± 1 kb). Each dot represents a gene. The x-coordinate shows the mean 
change of DNA methylation during monocyte-to-macrophage differentia-
tion in the regions ± 1 kb around the TSS of the corresponding genes. The 
y-coordinate represents the log2 fold change in its expression.

Additional �le 5: Table S3. Overview over all identified DMRs and their 
characteristics.

Additional �le 6: Figure S3. Validation of DMRs by deep bisulfite 
sequencing. Comparative methylation plots of monocytes and mac-
rophage from 4 independent donor samples (Hm03, Hm04, Hm05 and 
Hm06). Samples sorted by overall methylation. DMR33 is shown in the 
main text. Related to Fig. 2d and 2e.

Additional �le 7: Figure S4. Distance of DMRs to the transcription start 
sites (TSS) of their associated genes (GREAT).

Additional �le 8: Table S4. (Tab 1) Gene Ontology analysis of genes that 
are associated with DMRs. (Tab 2) DMR associated genes that belong to 
an identified GO category and that were used for the GREAT analysis.

Additional �le 9: Figure S5. Time course of DNA demethylation. 
Comparative methylation plots obtained by targeted deep bisulfite 
sequencing of 10 DMRs show a rapid decline in DNA methylation dur-
ing monocyte-to-macrophage differentiation (time points: 0 h, 12 h, 24 h, 
36 h, 48 h, 60 h and 72 h). Samples sorted by differentiation time.

Additional �le 10: Figure S6 Time course of chromatin accessibil-
ity (GpC methylation) and DNA CpG methylation in 4 DMRs during 
monocyte-to-macrophage differentiation. The transition from lower to 
higher GpC methylated fraction is indicative of an increase in chromatin 
accessibility. Average CpG and GpC methylated fractions in Hm10 donor 
monocytes (0 h) and cells collected at different time points during dif-
ferentiation into macrophages (6 h, 12 h, 18 h, 36 h, 48 h and 72 h). GCG 
motifs were excluded due to ambiguity between CpG- endogenous- and 
GpC-enzymatic-methylation. Related to Fig. 5b.

Additional �le 11: Table S5. Overview over the donors and sample 
nomenclature used in the analyses presented in the manuscript.

Additional �le 12: Table S6. Primer sequences and PCR conditions for 
targeted bisulfite sequencing and NOMe-Seq analysis.

Additional �le 13: Table S7. Antibodies used for flow cytometry of 
surface antigens.

Additional �le 14: Figure S7. Time course of 5hmC (5-hydroxymethyl-
cytosine) and 5mC (5-methylcytosine) in 2 DMRs during monocyte-to-
macrophage differentiation. Average cytosine variant levels in Hm06 
(A and B) and Hm10 (C) donor monocytes (0 h) and cells collected at 
different time points during differentiation into macrophages. (A) DMR33, 
(B and C) DMR13. Related to Fig. 5c.
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