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Introduction

There is considerable anticipation of

future improvements in disease prevention

and treatment following recent advances

in genomics [1]. One aspect of genomics

that is receiving considerable interest is

epigenetics—the regulatory processes that

control the transcription of information

encoded in the DNA sequence into RNA

before their translation into proteins.

Programmed developmental changes and

the ability of the genome to register, signal,

and perpetuate environmental cues are

subsumed under the epigenetic banner

[2].

Genes are packaged into chromatin and

dynamic chromatin remodeling processes

are required for the initial step in gene

expression (transcription), achieved by

altering the accessibility of gene promoters

and regulatory regions [3]. Epigenetic

factors are responsible for this regulatory

process, the major components of which

are DNA methylation, histone modifica-

tions, and the action of small non-coding

RNAs (Figure 1). Unlike DNA sequence,

which is largely fixed throughout the

lifecourse, epigenetic patterns not only

vary from tissue to tissue but alter with

advancing age and are sensitive to envi-

ronmental exposures [4–7]. It is this

propensity for change that makes epige-

netic processes the focus of such interest,

as they lie at the interface of the

environment and co-ordinated transcrip-

tional control.

In rare developmental disorders, the

role of aberrant epigenetic processes is well

established [8]. Our focus here, however,

is on the potential role of epigenetic

processes in the context of common

complex disease. Tumor-specific changes

in epigenetic patterns are a hallmark of

numerous cancers, with analysis of the

epigenetic machinery beginning to feature

prominently in emerging cancer diagnos-

tics and therapies [9–11].

There is an increasing body of evidence

to demonstrate that epigenetic patterns are

altered by environmental factors known to

be associated with disease risk (e.g., diet,

smoking, alcohol intake, environmental

toxicants, stress) [7,8]; however, an im-

portant question remains to be resolved

in defining which epigenetic changes are a

secondary outcome of either exposure or

disease, and which lie on the causal

pathway linking the two. Without proven

causality, interventions to prevent or

treat common complex diseases based

upon epigenetic mechanisms will not be

fruitful. Conversely, regardless of causality,

defining a robust prospective relation-

ship between epigenetic patterns and

phenotypic traits may have application

in diagnostics or in identifying high-

risk individuals for non-epigenetic-based

interventions.

Measurement of Epigenetic
Patterns

Epigenetic patterns, including histone

modifications, microRNA (miRNA), and

DNA methylation, can be assessed in a

range of tissue types. As DNA methylation

assays on stored DNA samples are

straightforward, this has been extensively

studied [12]. Histone modification analysis

requires that DNA is maintained as intact

chromatin, whereas analysis of miRNA

requires a source of RNA. Planned

prospective collection for such analyses is

necessary, and both are costly to under-

take on sizable sample sets. The N-

terminal tails of the four core histones

(H2A, H2B, H3, and H4) commonly

exhibit post-translational modifications,

including acetylation, methylation, or

phosphorylation [13]. These histone mod-

ifications can be analysed following pre-

cipitation of chromatin, and subsequent

use of an antibody to a specific modifica-

tion e.g., methylation of histone 3, lysine 9

(H3-K9). miRNA expression levels can be

measured using the same principles and

methods as regular trranscriptomic analy-

sis (miRNA array or qPCR). DNA meth-

ylation can be assayed through genome-

wide approaches where the investigator is

interested in global changes or in identi-

fying regions of interest [14], or targeted

approaches that focus on DNA methyla-

tion at a particular locus or loci associated

with genes in a specific pathway [15].

These technologies are reviewed in detail

elsewhere [16].

The tissue specificity of epigenetic

patterns is a well-established phenomenon,

with variation between tissues within

individuals being greater than variation

between individuals [5]. Furthermore,

epigenetic dysregulation with advancing

age has been shown to be highly tissue

dependent [17]. Extrapolating epigenetic

information gleaned from DNA from
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accessible sources such as peripheral white

blood or buccal cells to other tissue types is

therefore problematic. The correlation

between methylation patterns in different

tissues is complex and locus dependent,

but data that are beginning to emerge

suggest that epigenetic signatures on easily

accessible material such as circulating cells

have potential utility as biomarkers of

exposure or disease risk [18].

Epigenetic patterns are heritable across

cell divisions (mitosis) [19], but undergo

comprehensive but incompletely under-

stood reprogramming during meiosis [20].

Evidence that environmental exposures

can act across generations to influence

epigenetic patterns in offspring exist [21],

with maternal exposure to famine during

the perinatal period influencing offspring

DNA methylation in adulthood [22,23].

The quantitative importance of such

intergenerational epigenetic transmission

remains uncertain, and may have been

over-emphasized in comparison with the

theoretically less challenging but probably

more tractable and important intra-gener-

ational epigenetic influences [24].

Environmental Influences on
Epigenetic Patterns

Several other factors beyond tissue type

and age [4,5,17,25,26] are believed to

influence epigenetic patterns. Nutritional

factors modulate epigenetic marks in both

animal models and humans (reviewed by

[27]), with dietary sources of methyl

groups, including folate, choline, betaine,

methionine, and serine, which are re-

quired for DNA methylation [28,29],

having been most studied. In animal and

human studies these modulate epigenetic

patterns in disease and non-disease set-

tings. Other dietary components with

evidence for an effect on epigenetic

patterns relevant to the pathogenesis of

common complex diseases include the

influence of a high-fat diet on DNA

methylation [30] and various dietary

modifiers of histone deacetylase (HDAC)

activity such as isothiocyanates, butyrate,

and diallyl disulfide [31,32]. miRNA levels

have also been observed to be altered

following dietary modulation, with

miRNA expression in human muscle

being increased following a dietary chal-

lenge of essential amino acids [33].

The most widely studied lifestyle influ-

ence on epigenetic patterns is smoking. It

has been associated with global hypo-

methylation in DNA [34] as well as gene-

specific hypermethylation [35] in tumor

tissues in head and neck squamous cell

carcinoma (HNSCC). Animal models

suggest that epigenetic changes arise in

lung tissue following short-term exposure

to tobacco smoke condensate [36] and

precede histopathological changes. Expo-

sure to tobacco smoke is also believed to

alter expression of DNA methyltransferase

(DNMT) enzymes [37,38] and modulate

histone modifications, including acetyla-

tion and methylation [39]. In addition,

miRNAs have been proposed as modula-

tors of smoking-induced changes in gene

expression in human airway epithelium

[40], and studies in rodent models have

demonstrated that chemopreventive

agents can protect the lung tissue from

smoke exposure-induced changes in

miRNA expression [41]. Maternal ciga-

rette smoking during pregnancy influences

DNA methylation patterns in offspring

[42,43], pointing to a vulnerability of the

epigenome to environmental exposures

during the intrauterine period.

Animal studies have shown that chronic

alcohol consumption is associated with

reduced genomic DNA methylation in the

colon [44], although evidence from hu-

man studies is equivocal. Alcohol-induced

shifts in DNA methylation patterns could

arise through perturbation of one-carbon

metabolism and interference with methyl

group donation (reviewed by [45]). The

molecular actions of ethanol are also

thought to involve site-specific changes to

histone modifications, exemplified by a

recent study of alcohol exposure during

adolescence [46]. Epigenetic processes

could also influence patterns of alcohol

drinking, with emerging evidence suggest-

ing that alcohol-sensitive miRNAs control

the development of tolerance and subse-

quent alcohol addiction [47]. The alcohol-

related miRNA responses may in turn

reflect alcohol-induced changes in DNA

methylation [48].

Air pollutants such as air particulate

matter and airborne benzene exposure

levels have been associated with changes

in DNA methylation in genes involved in

inflammation and carcinogenesis [49,50].

Endocrine disruptors (vinclozilin, bisphe-

nol A), and various heavy metals (arsenic,

mercury, cadmium) are among other

compounds present in the environment

that have been implicated in epigenetic

changes, including altered histone methyl-

ation [21]. Most epigenetic studies of

environmental toxins have focused on the

potential of DNA methylation patterns as

biological markers of exposure rather than

establishing epigenetic mechanisms as

being causally related to a specific disease.

Studies have, however, suggested a role for

miRNAs in mediating the effects of

exposure to black carbon on disease [51].

Several infectious agents, including Hel-

icobacter pylori [52] and Epstein-Barr virus

[53], have been shown to induce epige-

netic changes, either directly or secondary

to inflammation. Epigenetic modulation is

recognized as an aetiological component

in chronic inflammatory diseases such as

rheumatoid arthritis and multiple sclerosis

[54]. Inflammation also plays an impor-

tant role in a wide range of diseases such

as cancers, obesity, and atopic disorders,

and epigenetic changes may be causal in

disease pathogenesis [54]. There is in-

creasing evidence that epigenetic mecha-

nisms contribute to the transcriptional

regulation of inflammatory responses [55].

Summary Points

N The epigenome records a variety of dietary, lifestyle, behavioral, and social cues,
providing an interface between the environment and the genome. Epigenetic
variation, whether genetically or environmentally determined, contributes to
inter-individual variation in gene expression and thus to variation in common
complex disease risk.

N Interventions based upon epigenetic agents, including DNA methyltransferase
inhibitors and histone deacetylase inhibitors, have been in clinical use for many
years, but their role outside treatment of specific cancers is not established.

N Epigenetic therapies will only be fruitful if epigenetic mechanisms are causally
related to the disease being treated. Evidence linking epigenetic variation to
specific disease phenotypes to date is lacking.

N Epidemiological approaches can be applied to help separate causal from non-
causal associations.

N We propose the development of a Mendelian randomization approach
(‘‘genetical epigenomics’’), which could help overcome the problems of
confounding and reverse causation (when an association between epigenetic
patterns and disease phenotype is observed but it is unknown whether the
disease is causing changes to the epigenome or epigenetic changes are causal
in disease pathogenesis).
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Perhaps the most widely celebrated

example of the influence of environmental

conditions (other than diet) on the epigen-

ome relates to maternal postnatal nurtur-

ing and epigenetically mediated alterations

to the hypothalamic-pituitary-adrenal re-

sponse to stress [56]. Variations in mater-

nal signals alter gene expression and

complex behavioral phenotypes in rodent

offspring through a well-defined mecha-

nism involving the epigenetic regulation of

the glucocorticoid receptor gene within

the target tissue. A further example of

modulation of epigenetic patterns in a

target tissue is that of increased histone

acetylation in human muscle biopsy tissue

following exercise [57], providing evidence

that chromatin remodeling might be

important in mediating longer-term re-

sponses to exercise. miRNA involvement

in exercise-induced changes to gene ex-

pression has also been reported [58].

Genetic Influences on
Epigenetic Patterns

Twin- and family-based studies have

demonstrated that variation in epigenetic

patterns, including both chromatin states

[59] and DNA methylation [25,60,61], is

heritable. Much inter-individual variation

in epigenetic patterns can be explained by

common genetic variation [62], with a

recent study estimating that 6.5% of the

variance in methylation at the IGF2

(insulin-like growth factor 2) locus could

be explained by five single nucleotide

polymorphisms (SNPs) [63]. A genome-

wide association study considering DNA

methylation in human brain tissue as a

quantitative trait identified both cis and

trans genetic effects upon DNA methyla-

tion (cytosine guanine dinucleotide [CpG])

sites, the predominant influences being in

cis, defined as SNPs influencing methyla-

tion at CpG sites within 1 Mb of them-

selves [64]. Similar cis effects have been

reported in whole blood DNA [25].

Figure 1. Epigenetic modifications. Chromosomes are composed of chromatin, consisting of DNA wrapped around eight histone protein units.
Each DNA-bound histone octamer is a nucleosome. Histone tails protruding from histone proteins are decorated with modifications, including
phosphorylation (Ph), methylation (Me), and acetylation (Ac). DNA molecules are methylated by the addition of a methyl group to carbon position 5
on cytosine bases when positioned adjacent to a guanine base (CpG sites), a reaction catalyzed by DNA methyltransferase enzymes. DNA methylation
maintains repressed gene activity. Transcription involves the conversion of DNA to messenger RNA (mRNA), which is usually repressed by DNA
methylation and histone deacetylation. mRNA is translated into a protein product, but this process can be repressed by binding of microRNA (miRNA)
to mRNA. Each miRNA binds to the mRNA of up to 200 gene targets. miRNAs can also be involved in establishing DNA methylation and may influence
chromatin structure by regulating histone modifiers.
doi:10.1371/journal.pmed.1000356.g001
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Greater knowledge of the genetic deter-

minants of DNA methylation, histone

modifications, and miRNA activity will

transform our understanding of the mech-

anisms involved in the establishment and

maintenance of epigenetic patterns, with

such genetic influences undoubtedly con-

tributing to observed inter-individual dif-

ferences in gene expression [65].

Despite the relatively large body of

evidence that disease-related environmen-

tal exposures are associated with epigenet-

ic alterations, there remains little compel-

ling data to support the link between

epigenetic variation and common complex

disease phenotypes (other than cancer).

Investigation of parent-of-origin effects on

risk of common complex disease have

suggested a role of perturbed DNA

methylation [66]. Adequately powered

studies relating epigenetic profiles to both

exposure and disease are in their infancy,

but it is highly likely that a myriad of such

associations will be identified, and the

major issue will be identifying meaningful

and useful associations within this tsunami

of data. Epigenetic measures are pheno-

typic, not genotypic, and as with pheno-

typic measures in general, non-causal

associations will be the rule rather than

the exception [67]. As with conventional

epidemiological investigations, separating

causal from non-causal associations will

become an important task (Figure 2).

‘‘Genetical Epigenomics’’:
Identifying Causal
Relationships between
Exposure, Epigenetic Patterns,
and Disease

Using germ-line genetic variation as a

proxy for environmental exposures pro-

vides a route to strengthening causal

inference within observational data [68–

70]. The rationale is that genetic variants

are not, in general, related to the socio-

economic, behavioral, and physiological

factors that confound associations in

conventional observational epidemiology

[67], nor are they altered by disease

processes and thus subject to reverse

causation. The Mendelian randomization

approach can be extended to the interro-

gation of epigenetic variation as potential

mediators of the influence of a modifiable

exposure on disease outcomes, and thus

appropriate targets for disease prevention.

Mendelian randomization methods can

be applied to many categories of environ-

mentally modifiable exposures to help

define whether their relationship with

phenotype is causal. For example, with

respect to behavioral factors, it has been

used in a proof-of-principle manner to

demonstrate associations of alcohol intake

with esophageal [71] and head and neck

cancers [72], as well as to considerably

strengthen evidence on the associations of

alcohol intake with blood pressure [73].

The method has particular promise when

applied to circulating intermediate pheno-

types, the manipulation of which can

potentially prevent disease. Again, as

proof-of-principle, an increasing number

of genetic variants that are associated with

low density lipoprotein-cholesterol (LDL-

C) level are also associated with coronary

artery disease (CAD) risk [67,74–76]

(Figure 3).

In a similar fashion, genetic variants

related to body mass index and obesity

have been shown to influence a wide

variety of metabolic, cardiovascular, and

bone-related traits, strengthening evidence

on the causal influence of adiposity in these

cases [77–80]. Conversely, genetic variants

associated with C-reactive protein (CRP)

level have not been found to predict insulin

resistance [80] or coronary heart disease

[81], casting doubt on the causal role of

CRP with respect to these conditions.

Figure 2. Defining the causal relationship between epigenetic patterns and
phenotype. Analysis of the respective relationships between DNA methylation (CpG), body
mass index (BMI), and cardiovascular disease (CVD) can help to inform the direction of causality.
An observed association between BMI and CpG and CpG and CVD will not decipher which of the
depicted scenarios apply.
doi:10.1371/journal.pmed.1000356.g002

Figure 3. Applying Mendelian randomi-
zation to define the causal relationship
between phenotype and disease. An
example based upon the report of Lintel-
Nietschke et al. (2008) [74] reporting the
association between a gene variant in the
LDLR gene with decreased low density lipo-
protein-cholesterol (LDL-C) levels and with a
reduced risk of coronary artery disease (CAD).
The variant can be used in a Mendelian
randomization approach to test the causal
relationship between LDL-C and CAD. If LDL-C
has a causal role in CAD, an association
between the LDLR gene variant and disease
risk would be seen (red dashed arrow). If LDL-
C levels are correlated with CAD risk but not
causal, then the gene variant will not show an
association with CAD risk. This will establish
whether reverse causation is at play and
remove the potential confounding influence
of factors such as smoking and nutritional
status.
doi:10.1371/journal.pmed.1000356.g003
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In the field of gene expression studies,

identifying causal processes within a mul-

titude of associations is at least as prob-

lematic as in observational epidemiological

studies. For example, the majority of gene

expression signatures in adipose tissue, and

in high proportions (up to 10%) in blood,

have been found to be related to obesity

[82]. Methods equivalent to the Mende-

lian randomization approach we propose

here (sometimes called ‘‘genetical geno-

mics’’ [83] in the context of gene expres-

sion studies) have been applied to separate

causal transcription effects from those

generated by reverse causation [82]. This

is facilitated by strong cis effects on gene

expression, which allows isolation of spe-

cific loci influencing transcript level. The

identification of strong cis effects in a

genome-wide association study analysis of

methylation patterns [64] provides en-

couragement that these methods can be

extended to investigate the causal influ-

ences of epigenetic signatures in what

could be called ‘‘genetical epigenomics’’.

As a hypothetical example of how this

approach could be applied, we will

consider alcohol intake and HNSCC. It

is likely that alcohol intake would be

associated with a wide range of epigenetic

changes, although at least some (and

probably many) of these associations could

reflect confounding by the many other

factors related to alcohol consumption.

Similarly, HNSCC could be related to a

multitude of epigenetic changes, which

could arise through reverse causation (the

disease influencing the epigenetic patterns)

or confounding (factors associated with

HNSCC risk influencing the epigenetic

patterns). If the epigenetic processes are to

be targeted as a component of disease

prevention they must be causally associat-

ed with HNSCC, and for them to mediate

the effect of alcohol intake on HNSCC risk

they need to be responsive to changes in

alcohol intake. Observational data dem-

onstrating an association of alcohol intake

with a particular epigenetic profile exists,

but the association of this profile with

HNSCC risk does not, of course, establish

causality. As depicted in Figure 4, Men-

delian randomization approaches could be

applied to this scenario.

Epigenomic Modifiers and the
Prospects for Future
Treatments

It can be argued that mitotically stable

changes in gene expression are very likely to

underlie the development of virtually all

disease (in the same way as they are an

essential component in the process of the

development of an organism [84]), and as

definitions of epigenetics incorporate such

changes, they automatically fall within the

field’s remit. Once epigenetic mechanisms,

even if only contributory, are unequivocally

implicated in disease pathogenesis, the

prospect of epigenomic-based therapies

becomes a realistic possibility. A wide range

of pharmacological agents that target the

epigenome, including DNMT inhibitors

and HDAC inhibitors, are used in clinical

practice, largely as anti-cancer treatments

[11]. However, these agents require further

development to enhance the specificity of

their pleiotropic effects, and evaluation of

their efficacy in a non-cancer setting is

essential. Combination therapies involving

DNMT inhibitors or HDACs being em-

ployed with other agents are an active

avenue of inquiry. miRNAs are also emerg-

ing as a promising technology in drug

development following an increasing under-

standing of their biogenesis and function.

The links between miRNA expression and

common complex disease are growing,

providing a greater impetus to pursue this

useful tool for the targeted modulation of

gene regulation. As with other epigenetic

signatures, their utility might also lie in

disease diagnosis and prognosis [85].

Figure 4. Incorporating epigenetic information in a Mendelian randomization
framework. (A) Alcohol exposure is associated with risk of head and neck squamous cell
carcinoma (HNSCC) and this may be mediated by altered DNA methylation (CpG). The
relationship between alcohol exposure and HNSCC is potentially confounded by factors such as
socio-economic position, which correlate with both exposure and disease. A common variant in
ADH1B can be used as an unconfounded, genetic proxy for alcohol exposure, and if this SNP is
associated with CpG (either locally or more widely across the genome), it would lend support to
the hypothesis that alcohol intake causally influences DNA methylation. However, showing
associations of these epigenetic measures with HNSCC does not demonstrate causality of either
alcohol or CpG on HNSCC, as either or both associations (alcoholRHNSCC and CpGRHNSCC)
could be confounded or alcohol could influence HNSCC through another pathway (dashed line).
(B) To investigate this, another Mendelian randomization experiment could be undertaken using
an SNP known to have a cis influence on loci-specific DNA methylation. If an association were
observed between this SNP and both CpG and HNSCC, this would support a role for DNA
methylation in the causation of HNSCC.
doi:10.1371/journal.pmed.1000356.g004
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Conclusion

Through examining the role of envi-

ronmental factors in causing variation in

epigenetic patterns (exposure/epigen-

otype) and ultimately exploring the

causal impact of epigenotype on disease

outcomes (epigenotype/disease) using

genetical epigenomics and other meth-

ods, progress towards epigenetic inter-

ventions can be made. As genome-wide

association studies and other approaches

identify robust associations between genetic

variants and epigenetic patterns, possibilities

for elucidating causal pathways and predict-

ing the effect of manipulation—through

environmental (including lifestyle) modifica-

tion or pharmacotherapeutic means—is

considerable. In this way, epigenetic markers

may become targets for modification as well

as biomarkers for exposure and disease risk.

The International Human Epigenome Con-

sortium is poised to invest millions of dollars

to map 1,000 reference epigenomes in a

range of normal tissues and define the level

of variation that exists between individuals

[86]. The field of epigenetics in relation to

common complex disease will undoubtedly

continue to be the focus of much attention,

and its progress, now that it has passed the

starting line, will be followed with consider-

able interest.
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