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Abstract

Genetic and epigenetic intra-tumoral heterogeneity cooperate to shape the evolutionary course of 

cancer1. Chronic lymphocytic leukemia (CLL) is a highly informative model for cancer evolution 
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as it undergoes substantial genetic diversification and evolution with therapy2,3. The CLL 

epigenome is also an important disease-defining feature4,5, and growing CLL populations 

diversify through stochastic DNA methylation (DNAme) changes – epimutations6. However, 

previous studies based on bulk DNAme sequencing could not answer whether epimutations affect 

CLL populations homogenously. To measure epimutation rate at single-cell resolution, we applied 

multiplexed single-cell reduced representation bisulfite sequencing (MscRRBS) to healthy donors 

B cell and CLL patient samples. We observed that the common clonal CLL origin results in 

consistently elevated epimutation rate, with low cell-to-cell epimutation rate variability. In 

contrast, variable epimutation rates across normal B cells reflect diverse evolutionary ages across 

the B cell differentiation trajectory, consistent with epimutations serving as a molecular clock. 

Heritable epimutation information allowed high-resolution lineage reconstruction with single-cell 

data, applicable directly to patient samples. CLL lineage tree shape revealed earlier branching and 

longer branch lengths than normal B cells, reflecting rapid drift after the initial malignant 

transformation and a greater proliferative history. MscRRBS integrated with single-cell 

transcriptomes and genotyping confirmed that genetic subclones map to distinct clades inferred 

solely based on epimutation information. Lastly, to examine potential lineage biases during 

therapy, we profiled serial samples during ibrutinib-associated lymphocytosis, and identified 

clades of cells preferentially expelled from the lymph node with therapy, marked by distinct 

transcriptional profiles. The single-cell integration of genetic, epigenetic and transcriptional 

information thus charts CLL’s lineage history and its evolution with therapy.
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To measure intra-sample epimutation rate variability, we profiled single-cell DNAme of 831 

normal B cells from six healthy donors, including B cells across the maturation spectrum, 

and 1,821 cells from 12 primary IGHV mutated and unmutated CLLs (M-CLL and U-CLL, 

respectively; Fig. 1a, b; Extended Data Fig. 1, 2; Supplementary Table 1–4). The average 

epimutation rate (measured through proportion of discordant reads [PDR]6; Fig. 1c) was 

higher in CLLs compared to normal B cells (Mann-Whitney U-test, P = 0.0003; Fig. 1d), in 

line with previous bulk DNAme sequencing6. Uniquely, the single-cell measurement showed 

that CLL epigenome exhibited consistently elevated epimutation rates (i.e., low cell-to-cell 

variation in epimutation rate), irrespective of their IGHV mutational status, compared to 

CD19+ B cells (Mann-Whitney U-test, P = 0.0006; Fig. 1e; Extended Data Fig. 3a). Lower 

epimutation rate variability in CLL compared to normal B cells was observed across all 

genomic regions, including regions hypermethylated (e.g., CpG islands [CGIs]) or 

hypomethylated (e.g., intergenic regions) in CLL (Extended Data Fig. 3b–e). The common 

origin of CLL cells from a single, transformed cell is thus reflected in minimal cell-to-cell 

epimutation rate variability. In contrast, normal B cells represent an admixture of cells with 

different replicative histories, with newly formed naïve intermixed with long-lived post-

germinal center memory B cells, showing highly variable epimutation rates. Indeed, 

epimutation rates of index-sorted B cell subsets progressively increased during B cell 

maturation (Fig. 1f; Extended Data Fig. 3f, g). Notably, CLL epimutation rate showed lower 

cell-to-cell variation compared to even these well-defined B cell subsets, especially those 
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from low- to high-maturity memory B cells, which more closely resemble CLL in their 

epigenetic profiles4 (Extended Data Fig. 3h). These results are consistent with epimutation 

rate correlating with the cell’s proliferative history, serving as an epigenetic molecular 

clock7–9.

To extend the assessment of epimutation beyond DNAme concordance within single 

sequencing reads6,7, we measured the concordance odds ratio of DNAme between pairs of 

neighbouring CpGs as a function of their genomic distance (Extended Data Fig. 4a). We 

observed faster concordance decay in CLL at genomic regions with known regulatory roles, 

such as promoter CGIs, suggestive of an erosion of CGI spatial organization (Mann-Whitney 

U-test, P = 0.0013; Extended Data Fig. 4b). Faster concordance decay involved promoters of 

TP53 targets, genes differentially methylated across cancer, and genes associated with cell 

stemness (Extended Data Fig. 4c, e), previously reported to exhibit a high epimutation rate6, 

but not promoters of housekeeping genes (Extended Data Fig. 4d). Therefore, CLL 

epimutation also alters DNAme at larger scales10, in addition to local methylation disorder6.

While CLLs undergo stochastic diversification by epimutation, a minority of CpGs may 

maintain stable DNAme due to an active role in the leukemia’s regulatory code. To identify 

CpGs with low epimutation rate, we adapted the 4-gamete test11 to measure epimutation rate 

at single-CpG resolution (Fig. 1g; see Methods). As expected, the frequency of 4 gametes 

was positively correlated with PDR measurement of epimutation (Spearman’s rho = 0.32, P 

= 3.263 × 10−14). Across the 12 CLL patient samples, 166,720 CpGs exhibited a lower 4 

gametes frequency than expected based on their DNAme level, representing 1.22%±0.42 

(average±SEM) of assessable CpGs per sample (Fig. 1h; Extended Data Fig. 5a–c; 

Supplementary Table 5). Consistent with the key role of transcription factors (TFs) in 

DNAme patterning in CLL4, we identified gene promoter enrichment for binding motifs of 

TFs with established roles in CLL progression at sites surrounding low epimutation CpGs 

(±25bp), including NF-KB112 and MYBL113, a TF involved in c-Myc activation in 

lymphoid neoplasms14 (Fig. 1i, right; Extended Data Fig. 5d, e; Supplementary Table 6).

DNAme of enhancers can also impact transcriptional activity and cellular phenotypes in 

CLL14. Low epimutation enhancer CpGs (n = 1,585; Supplementary Table 7) were located 

in proximity to genes implicated in lymphoproliferation, including NOTCH1, NFATC1, and 

FOXC1, and genes involved in key CLL pathways (e.g., WNT and MAPK signaling 

pathways15; BH-FDR adjusted P < 0.2). Low epimutation enhancer CpGs were also 

enriched for binding sites of SP1, a component of CLL regulatory network16, and the 

transcriptional repressor HINFP involved in DNAme-mediated gene silencing17 (Fig. 1i, 

left; Extended Data Fig. 5d, e; Supplementary Table 8). This suggests that conserved CpG 

sites are protected from DNAme alterations by TF binding, through either direct exclusion 

of methylases or negative selection due to a disruption of the CLL regulatory code.

To examine the impact of epimutation on gene expression at the single-cell level, we 

integrated MscRRBS with whole transcriptome sequencing (Fig. 2a; Extended Data Fig. 6a). 

While the expected relationship between promoter DNAme and gene silencing was 

preserved in both CLL and normal B cells (Extended Data Fig. 6b), higher single-cell 

epimutation rate in CLL was associated with higher transcriptional entropy – a measure of 
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gene expression heterogeneity within cells18 – compared to normal B samples, consistent 

with transcriptional dysregulation in CLL (Fig. 2b; Extended Data Fig. 6c–e). A negative 

correlation between promoter DNAme and gene expression was observed at single-cell level 

in both CLL and normal B cells (Fig. 2c, d, f; Extended Data Fig. 6f–n), but was more 

pronounced in CLL (Fig. 2e; Extended Data Fig. 6j, n) suggesting that, at least partly, the 

decreased epigenetic-transcriptional coordination observed in bulk CLL sequencing6 results 

from intra-leukemic epigenetic diversity. A subset of genes exhibited positive correlation 

between expression and promoter DNAme (Fig. 2g; Extended Data Fig. 6f, right), enriched 

in genes marked by cytosine hydroxymethylation, which is known to be positively correlated 

with gene expression19 (Extended Data Fig. 6o).

As epimutations may serve as a molecular clock9, we leveraged the heritable epimutation 

information to reconstruct methylation-based lineage relationships in CLL and normal B 

cells (Fig. 3a–d; Extended Data Fig. 7a–e; see Methods). CLL lineage trees exhibited early 

branching with lower maximum tree depth (Fig. 3e; Extended data Fig. 7f) and 

homogeneous root-to-tip branch lengths (Extended data Fig. 7g), consistent with rapid drift 

after the initial malignant transformation (“big bang” cancer evolutionary framework20). 

Moreover, the homogenous branch length is inconsistent with a significant cancer stem-cell 

contribution in CLL, in contrast to data that revealed highly divergent replicative histories in 

acute myeloid leukemia21, where cancer stem cells have been well-described. The greater 

CLL proliferative histories were reflected in increased epimutation accumulation resulting in 

higher patristic distances (i.e., sum of the lengths of branches that link two tips in a tree) 

compared with normal B cell trees (Fig. 3f; Extended data Fig. 7h, i). In contrast, normal B 

cell clades followed a pattern consistent with normal B cell differentiation by exhibiting late 

branching and deeper tree topology, with younger naïve CD27− B cells showing shorter 

branches compared with CD27+ memory terminally-differentiated B cells (Fig. 3c; Extended 

Data Fig. 7b). As expected, normal B cell lineage trees resulted in smaller increase in 

fidelity compared with parsimony trees (based on DNAme mismatches between cells; see 

Methods) than CLL trees, consistent with their non-clonal growth (Fig. 3g).

To validate tree topology inferred via epimutation, we integrated single-cell DNAme and 

whole transcriptome sequencing with targeted sequencing of known somatic mutations in 

the cDNA (Extended Data Fig. 8a). We sampled a CLL carrying a subclonal driver SF3B1 

mutation (K666N; variant allele frequency of 0.23) and inferred its lineage tree from single-

cell DNAme (Fig. 3h; Extended Data Fig. 8b). The SF3B1 mutated cells mapped accurately 

to a distinct clade inferred solely based on epimutation information (Fisher’s exact test, P = 

7.4 × 10−9; Extended Data Fig. 8c, d). This accurate mapping was likely not due to distinct 

DNAme profiles of SF3B1 mutated cells, given the small number of differentially 

methylated regions (Extended Data Fig. 8e), but rather due to the ability of stochastic 

epimutation to trace lineage histories. Cells belonging to the SF3B1 mutated clade showed 

higher alternative 3’ splicing than their wild-type counterparts (Mann-Whitney U-test, P = 

0.015; Extended Data Fig. 8f), consistent with the known SF3B1-mediated splicing defect22, 

and were marked by a distinct transcriptional profile (Extended Data Fig. 8g, h; 

Supplementary Table 9). We further observed decreased transcriptional similarity between 

cells as a function of their lineage distance, providing a direct measurement of the 

heritability of the transcriptional profile in a human sample (Mann-Whitney U-test, P = 
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0.044; Extended Data Fig. 8i). Notably, cells in the SF3B1 mutated clade showed lower 

node heights (i.e., sum of branch lengths of the longest downward path to a leaf from a given 

node; Extended Data Fig. 8j) and longer root-to-tip branch lengths compared with SF3B1 

wild type clade (Extended Data Fig. 8k), consistent with SF3B1 mutation as a late subclonal 

event in CLL15. The molecular clock feature of epimutations further enabled timing of the 

subclonal divergence in the CLL’s evolutionary history, estimated to have occurred 

2,180±219 days after the emergence of the parental clone (Fig. 3i; Extended Data Fig. 8l).

Next, we applied joint single-cell DNAme and whole transcriptome sequencing to study 

dynamic changes during therapy with ibrutinib – a targeted agent which abrogates B cell 

receptor (BCR) signaling. This therapy results in a transient rise in the peripheral blood 

leukemic cell burden due to forced migration of cells from the lymph node niche23. To 

examine potential lineage biases in ibrutinib-induced CLL migration, we profiled four 

CLLs, without subclonal genetic drivers, prior to (T0) and during ibrutinib-associated 

lymphocytosis (T1; Fig. 4a). Lineage trees integrating T0 and T1 cells identified major 

clades enriched for T1 cells in each of the CLLs (Fig. 4b, c; Extended Data Fig. 9a–c; see 

Methods), despite few DNAme differences between T1 enriched clades and other T1 cells 

(Extended Data Fig. 9d). These data suggest that different CLL lineages may be 

preferentially affected by ibrutinib and expelled from the lymph node upon treatment. 

Projection of transcriptomic data onto the lineage trees revealed that T1-enriched clade cells 

were marked by increased BCL11A expression – a proto-oncogene with expression 

restricted to the lymph node24, and increased BCL10 expression – an upstream regulator of 

NF-κB pathway in the BCR signaling cascade. Genes related to cell cycle and proliferation 

pathways (Fig. 4d; Extended Data Fig. 10a; Supplementary Table 10, 11) were also 

overexpressed in T1 enriched clades compared to other T1 cells. As the lymph node is the 

primary anatomical site of CLL proliferation25, these findings are consistent with the recent 

expulsion of cells of T1-enriched clades from the lymph node after treatment initiation. T1-

enriched clades across patients were also found to have Toll-Like Receptor (TLR) pathway 

up-regulation (Fig. 4d–f; Extended Data Fig. 10b). The TLR pathway is known to interact 

with the ibrutinib-inhibited BCR signaling pathway, as has been shown in functional 

genomics screen for ibrutinib sensitivity26, and is specifically activated in CLL cells in the 

lymph node niche, triggering pro-survival NF-ĸB pathway activation27,28, which was also 

upregulated in T1-enriched clades (Extended Data Fig. 10c). As the abnormal activation of 

TLR pathway may disrupt lymph node trafficking, these results are consistent with clades 

enriched in ex-migrating cells, as well as suggest the potential for dual BCR and TLR 

inhibition, as described ex vivo27,28.

Collectively, by leveraging the heritable information captured through epimutation, we 

retraced the evolutionary histories of CLL and charted its evolution with therapy, 

demonstrating how different lineages may be preferentially impacted by a therapeutic 

intervention, even in genetically homogenous cell populations. We foresee that future 

application of multi-modality single-cell sequencing will enable the annotation of intra-

tumoral transcriptional disparities in response to therapy with precise lineage history 

information, as well as the integration of genetic, epigenetic and transcriptional information 

at the atomic unit of somatic evolution – the single cell.
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Methods

Human subjects, sample collection and genotyping

The study was approved by the local ethics committee and by the Institutional Review Board 

(IRB) and conducted in accordance to the Declaration of Helsinki protocol. Blood samples 

were collected in EDTA blood collection tubes (BD Biosciences) from patients and healthy 

adult volunteers enrolled on clinical research protocols at the Dana-Farber/Harvard Cancer 

Center (DF/HCC) and NewYork-Presbyterian/Weill Cornell Medical Center (NYP/WCMC), 

approved by the DF/HCC and NYP/WCMC Institutional Review Boards. We note that the 

IRB does not permit collection of demographic information of healthy donors. The diagnosis 

of CLL according to World Health Organization (WHO) criteria was confirmed in all cases 

by flow cytometry, or by lymph node or bone marrow biopsy. Informed consent on DF/HCC 

and WCMC IRB-approved protocols for genomic sequencing of patient samples was 

obtained prior to the initiation of sequencing studies. B cells from healthy donors and CLL 

patient samples were isolated from blood samples using Ficoll-Paque Plus (GE Healthcare) 

density gradient centrifugation and red blood cell lysis, followed by EasySep™ Human B 

Cell Enrichment Kit (STEMCELL Technologies, Vancouver, Canada) as per manufacturer 

recommendation. Immunoglobulin heavy-chain variable (IGHV) homology was 

determined31 (unmutated was defined as greater than or equal to 98% homology to the 

closest germline match). Cytogenetics were primarily evaluated by FISH analysis for the 

most common CLL abnormalities [del(13q), trisomy 12, del(11q), del(17p), del(6q), 

amp(2p)]; if FISH was unavailable, genomic data were used (Supplementary Table 12). 

Presence and location of recurrent somatic mutations were detected in the genes tested 

through Genoptix clinical grade CLL gene panel testing (Genoptix, Carlsbad, CA; 

Supplementary Table 13).

Multiplexed single-cell reduced representation bisulfite sequencing (MscRRBS) library 
construction

Single-cell methylome profiling was performed with multiplexed single-cell reduced 

representation bisulfite sequencing (MscRRBS), an adaption of a previous scRRBS 

protocol32,33 that allows to increase throughput through the addition of cell barcodes early in 

the scRRBS protocol. Specifically, single cell experiments were performed by sorting DAPI 

negative cells in 96-well plates in 3 μL of 0.1X CutSmart buffer (New England Biolabs) per 

well using a BD Influx sorter (Becton Dickinson, Franklin Lakes, NJ). Normal B cells for 

sample B04, B05, and B06 were further index-sorted using the following sorting strategy: 

NBC (CD27−, IgM+, IgD+++), loMBC (CD27−, IgM+, IgD+), intMBC (CD27+, IgM+, IgD
++) and hiMBC (CD27+, IgG+). The antibodies used were: FITC mouse anti-human IgD 

(clone IA6–2, BD Pharmingen), APC mouse anti-human IgG (clone G18–145, BD 

Biosciences), APC/Cy7 anti-human IgM (clone MHM-88, BioLegend) and PE/Cy7 anti-

human CD27 antibody (clone O323, Bio Legend). Plates were then stored at −80°C until 

further processing. The day of the experiment, cells were lysed for 2 hours at 50°C in 1X 

CutSmart buffer supplemented with Proteinase K (0.2U, NEB) and Triton X-100 (0.3%, 

Sigma Aldrich) for a final volume of 5 μL. Proteinase K was heat-inactivated for 30 min at 

75°C. DNA was incubated with 10 units of the restriction enzyme Msp1 (Fermentas) in 6.5 

μL final volume reaction during 90 min at 37°C. Heat-inactivation was performed for 10 min 
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at 70°C. Digested DNA was filled-in and A-tailed at the 3’ sticky ends in 8.5 μL final 

volume of 1X CutSmart with 2.5 units of Klenow fragment (Exo-, Fermentas). Reaction was 

supplemented with 1 mM dATP and 0.1 mM dCTP and 0.1 mM dGTP (NEB) and 

performed as follows in a thermocycler: 30°C for 25 min, 37°C for 25 min and heat-

inactivation at 70°C for 10 min. Custom barcoded methylated adaptors (0.1 μM) were then 

ligated overnight at 16°C with the dA-tailed DNA fragments in the presence of 800 units of 

T4 DNA ligase (NEB) and 1 mM ATP (Roche) in a final volume of 11.5 μL of 1X CutSmart 

buffer. T4 DNA ligase heat-inactivation was performed at 70°C for 15 min the next day. 

Genomic DNA from 24 individual cells were pooled together according to their barcodes, 

giving, for a 96-well plate, 4 pools of 24 cells. Pooled genomic DNA was cleaned-up and 

concentrated using 1.8X SPRI beads (Agencourt AMPure XP - Beckman Coulter). Each 

pool was then sodium bisulfite converted (Fast Epitect Bisulfite, Qiagen) following 

manufacture recommendations. To ensure full bisulfite conversion, two cycles of conversion 

were performed. The double-stranded DNA was first denatured 10 min at 98°C and then 

incubated for 20 min at 60°C. 100 ng of dephosphorylated and sheared bacterial DNA was 

added as carrier to every pool prior to conversion. Converted DNA was then amplified using 

primers containing Illumina i7 and i5 index. Following Illumina pooling guidelines, a 

different i7 index was used for every 24-cell pool, allowing multiplexing of 96 cells for 

sequencing on one Illumina HiSeq lane. Library enrichment was done using KAPA HiFi 

Uracil+ master mix (Kapa Biosystems) and the following PCR condition was used: 98°C for 

45 secs; 6 cycles of: 98°C for 20 secs, 58°C for 30 secs, 72°C for 1 min; followed by 12 

cycles of: 98°C for 20 secs, 65°C for 30 secs, 72°C for 1 min. PCR was terminated by an 

incubation at 72°C for 5 min. Enriched libraries were cleaned-up and concentrated using 

1.3X SPRI beads. DNA fragments between 200 bp and 1 Kb were size-selected and 

recovered after resolving on a 3% NuSieve 3:1 agarose gel. Libraries molarity concentration 

calculation was obtained by measuring concentration of double stranded DNA (Qubit) and 

quantifying the average library size (bp) using an Agilent Bioanalyzer. Every 24-cells pool 

was mixed with the others pool in an equimolar ratio. All cells from a 96-well plate were 

sequenced as paired-end on HiSeq 2500 with 10% PhiX spike-in. Negative controls (empty 

wells with no cell) were used to control for non-specific amplification of the libraries.

MscRRBS read alignment

Each pool of 96 cells was first demultiplexed by Illumina i7 barcodes (Supplementary Table 

1), resulting in four pools of 24 cells. Each pool of 24 cells was further demultiplexed by 

unique cell barcodes (Supplementary Table 2). Reads were assigned to a given cell if they 

matched 80% of the template adapters. Adapters and adapter reverse complements (6 bp) 

were trimmed from the raw sequence reads. After adapter removal, reads were trimmed from 

their 3’ end for read quality by applying a 4 bp sliding window and removing bases until the 

mean base quality of the window had a Phred quality score greater than 15. Read pairs with 

a read shorter than 36bp after trimming were discarded. We aligned trimmed reads in single-

end mode to the hg19 human genome assembly using Bismark34 (v.0.14.5; parameters: -

multicore 4 -X 1000 --un –ambiguous) running on bowtie2–2.2.8 aligner35. Bismark 

methylation extractor (--bedgraph --comprehensive) was used to determine the methylation 

state of each individual CpG. For downstream analyses, a site was considered methylated or 

unmethylated only if there was 90% agreement of the methylation state for all reads mapped 
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to the site. Cells with coverage of at least 50,000 unique CpGs were retained for downstream 

analyses (n = 2,435 cells; 92% of the total; Fig. 1b; Extended Data Fig. 1b; Supplementary 

Table 4), with bisulfite conversion rates of 99.8%±0.09 (median±MAD) and an average of 

276,165±3,765 (average±SEM) unique CpGs per cell (Supplementary Table 4). We note that 

the analysis for Extended Data Fig. 2c was performed prior to the implementation of this 

filtering procedure to confirm that single-cell methylation values predominately equal 0 or 1, 

consistent with the random sampling of a single allele.

Joint MscRRBS and single-cell RNA-seq library construction

Single cells were sorted by flow cytometry, as above-described, into 2.5 μL of RLT Plus 

buffer (Qiagen) supplemented with 1 U/μL of RNase Inhibitor (Lucigen). Sorted cells were 

immediately store at −80°C. Genomic DNA (gDNA) and mRNA have been separated 

manually as previously described36. Briefly, a modified oligo-dT primer (5′-biotin-

triethyleneglycol-AAGCAGTGGTATCAACGCAGAGTACT30VN-3′, where V is either A, 

C or G, and N is any base; IDT) was conjugated to streptavidin-coupled magnetic beads 

(Dynabeads, Life Technologies) according to the manufacturer’s instructions. To capture 

polyadenylated mRNA, we added the conjugated beads (10 μl) directly to the cell lysate and 

incubated them for 20 min at room temperature with mixing to prevent the beads from 

settling. The mRNA was then collected to the side of the well using a magnet, and the 

supernatant, containing the gDNA, was transferred to a fresh plate. Single-cell 

complementary DNA was amplified from the tubes containing the captured mRNA 

according to the Smart-Seq2 protocol37. After amplification and purification using 0.8X 

SPRI beads, 0.5ng cDNA was used for Nextera Tagmentation and library construction. 

Library quality and quantity were assessed using Agilent Bioanalyzer 2100 and Qubit, 

respectively. Genomic DNA present in the pooled supernatant and wash buffer from the 

mRNA isolation step was concentrated on 0.8X SPRI beads and eluted directly into the 

reaction mixtures for Msp1 (±HaeIII) (Fermentas) enzymatic reaction (10μL final reaction). 

MscRRBS protocol was then performed on the digested gDNA after the restriction enzyme 

digestion step. To obtain higher coverage single-cell DNA methylomes, we performed 

double digestion with HaeIII in addition to MspI on cells from CLL11 patient sample, 

increasing coverage to an average of 2,298,281±86,699 (average±SEM) reads per cell, and 

yielding 790,951±24,098 (average±SEM) unique CpGs per cell.

Single-cell RNA-seq read-alignment and differential gene expression quantification

The sequenced read fragments were mapped against the hg19 human genome assembly 

using the 2pass default mode of STAR38 (version 2.5.2a) with the annotation of 

GENCODE39 (version 19). The number of read counts overlapping with annotated genes 

were quantified applying the ‘GeneCounts’ option in the STAR alignment. The single-cell 

transcriptomes recovered an average of 552,201±19,808 (average±SEM) reads per cell and 

4,211±69 (average±SEM) genes per cell, comparable to previous stand-alone single-cell 

whole-transcriptome data in CLL6.

Comparison of transcriptional distances as a function of lineage distance between cell pairs 

was performed by first normalizing the read counts by scaling for the total number of counts 

per cell. We then performed principal component analysis on the log of the normalized 
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counts and used the first three components to compute the Euclidean distance between each 

pair of cells (Extended Data Fig. 8i).

Differential expression analyses (Extended Data Fig. 8g and Fig. 4d) were performed using 

a negative binomial model with observational weights to account for zero inflation40. 

Specifically, we used ZINB-WaVE41 (v. 1.0.0) to estimate a set of observational weights and 

edgeR (v. 3.20.1) to test for differential expression using a weighted F statistic approach, as 

previously described42.

In Extended Data Fig. 8g, we defined differentially expressed genes by adjusting nominal P-

values using a Benjamini-Hochberg FDR procedure (cut-off of adjusted P-value < 0.2), with 

an additional criterion of an absolute log2(fold-change) value > 0.5. In Fig. 4d, while the 

differentially expressed genes were examined individually for each patient (CLL03, CLL04, 

CLL05, and CLL11; Supplementary Table 10); they were also examined in combination 

across the four patients by combining the nominal P-values for the differentially expressed 

genes via Fisher’s combined probability test and averaging the log2(fold-change) 

(Supplementary Table 11). We used Fisher’s combined P-values < 0.05 and absolute 

log2(fold-change) > 0.5 to nominate candidate genes for subsequent gene-set enrichment 

analysis (see “Gene set enrichment analysis section” below). The gene set analysis was then 

followed by a Benjamini-Hochberg FDR adjustment, correcting the nominal P-values for 

multiple hypotheses testing (cut-off of adjusted P-value < 0.2). Gene expression projections 

of transcriptomic data onto the lineage trees for differentially expressed genes belonging to 

Toll-like receptor (TLR) pathways in Fig. 4f and Extended Data Fig. 10b was performed by 

averaging gene expression across genes for each cell. Average gene expression was 

subsequently scaled by the maximum expression value to bring values into a 0–1 range.

Genome annotations definitions

Promoters were defined as 1 Kb upstream and 1 Kb downstream of hg19 RefGene gene 

transcription start sites (TSSs), unless stated otherwise. The set of CpG Islands (CGIs) were 

defined using biologically-verified CGIs43. Enhancer regions were defined using FANTOM5 

human robust enhancer set44. To verify the suitability of FANTOM5 human robust enhancer 

set in the context of CLL, we produced genome-wide maps of H3K27ac through bulk 

chromatin immunoprecipitation sequencing (ChIP-seq) of two IGHV mutated and two 

IGHV unmutated CLL patient samples. We observed a large overlap (72%) between 

FANTOM5 human robust enhancers and the CLL H3K27ac ChIP-seq peaks. In addition, 

85% of the low epimutation CpGs at enhancers overlapped with CLL H3K27ac ChIP-seq 

peaks (1,360 out of 1,585). In Extended Data Fig. 1d, CTCF binding sites were annotated 

based on published CTCF binding ChIP-seq experiments generated by the ENCODE 

Consortium from the GM12878 lymphoblastoid cell line45. We curated a list of CTCF 

binding sites based on sites that were detected in at least 75% of these samples. The location 

of long terminal repeats (LTRs) was identified based on the RepBase database46 for hg19.

Chromatin immunoprecipitation sequencing (ChIP-seq) analysis

Antibody used for ChIP included anti-H3K27ac (2 mg for 25 mg of chromatin; ab4729 

Abcam, Cambridge, United Kingdom). A minimum of 2 million purified human CLL cells 
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were used. Briefly, cells were fixed in a 1% methanol-free formaldehyde solution and then 

resuspended in sodium dodecyl sulfate (SDS) lysis buffer. Lysates were sonicated in an 

E220 focused-ultrasonicator (Covaris, Woburn, MA) to a desired fragment size distribution 

of 100–500 base pairs. ChIP assays were processed on a SX-8G IP-STAR Compact 

Automated System (Diagenode, Denville, NJ) using a direct ChIP protocol47. Briefly, 

immunoprecipitation reactions were performed with the above-indicated antibodies, each on 

approximately 500,000 cells, and incubated overnight at 4°C. The immune complex was 

collected with protein A/G agarose or magnetic beads and washed sequentially in the low 

salt wash buffer (20mM Tris pH8, 150mM NaCl, 0.1% SDS, 1% Triton X-100, 2mM 

EDTA), the high salt wash buffer (20mM Tris pH8, 500mM NaCl, 0.1% SDS, 1% Triton 

X-100, 2mM EDTA), the LiCl wash buffer (10mM Tris pH8, 250mM LiCl, 1% NP-40, 1% 

Sodium Deoxycholate, 1mM EDTA) and TE. Chromatin was eluted with elution buffer (1% 

SDS, 0.1 M NaHCO3), and then reverse cross-linked with 0.2M NaCl at 65°C for 4 hr. DNA 

fragments were purified using Agencourt AMPure XP beads (Beckman Coulter, Brea, CA). 

Barcoded immunoprecipitated DNA and input DNA were prepared using the NEBNext 

ChIP-seq Library Prep Master Mix Set for Illumina (#E6240, New England Biolabs, 

Ipswich, MA) and TruSeq Adaptors (Illumina) according to the manufacturer’s protocol on a 

SX-8G IP-STAR Compact Automated System (Diagenode). Phusion High-Fidelity DNA 

Polymerase (New England Biolabs) and TruSeq PCR Primers (Illumina, San Diego, CA) 

were used to amplify the libraries, which were then purified to remove adaptor dimers using 

AMPure XP beads and multiplexed on the HiSeq 2000 (Illumina, San Diego, CA). ChIP-seq 

data were processed according to the ENCODE Histone ChIP-seq Data Standards and 

Processing Pipeline (https://www.encodeproject.org/chip-seq/histone/). Raw reads were 

mapped to the human genome hg19 assembly using Burrows-Wheeler Aligner48 (BWA 

v0.7.17). Duplicate reads were removed using Picard (https://broadinstitute.github.io/

picard/). Peaks were identified with MACS249 (v2.0.10) with a q-value threshold of 0.01. 

Peaks overlapping with Satellite repeat regions and Encode Blacklist were discarded.

Single-cell DNA methylation-gene expression correlation analysis

For each sample, we filtered out poor quality cells when the number of detected CpGs was 

below 50,000, the number of detected genes in the transcriptomes was below 2,000 or the 

fraction of mitochondrial or ribosomal gene counts was higher than 20% of the library size 

(total number of read counts). We randomly downsampled the vector of RNA read counts 

per cell such that the total number of read counts equated to the bottom quartile of the 

library size distribution for all cells in the sample (cells below this threshold were dropped). 

Mitochondrial genes, genes encoding ribosomal proteins, and genes with RNA-seq 

expression in less than 5 cells were then removed from the analysis. At single-cell 

resolution, a gene’s promoter methylation rate was represented by the proportion of 

methylated CpGs in the region 1 Kb upstream/downstream of the transcription start site. 

Genes with less than 5 CpG observations in the promoter region were excluded. Spearman’s 

rank correlation coefficient between expression and promoter methylation rate was then 

calculated across available cells for each gene. The observed Spearman’s rho was validated 

by a non-parametric permutation test, in which we compared the correlation of promoter 

DNAme with gene expression against a null distribution obtained by randomly permuting 

cell labels for the methylation values (such that RNA and DNAme are no longer linked at 
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the single-cell level) and then computing the Spearman’s rank correlation coefficient (n = 26 

permutations for normal B sample [B04] and n = 16 permutations for CLL samples [CLL03 

and CLL04] were used to obtain comparable numbers of genes between samples; see Fig. 

2c, d; Extended Data Fig. 6f). We note that the same result was obtained when equalizing 

number of permutations (n = 16) and/or number of genes (n = 2,500) between samples in the 

analysis (see Extended Data Fig. 6g–n).

Single-cell transcriptional entropy analysis

Transcriptional entropy in Fig. 2b and Extended Data Fig. 6c–d was computed as previously 

described18. Briefly, for a given cell we divide each element of the downsampled vector of 

gene expression counts by the cell’s library size to obtain the corresponding proportion of 

overall expression attributable to each gene. These gene proportions were used to compute 

Shannon’s information entropy for each cell using the standard formula:

S = − ∑iPi ln Pi

Where S is Shannon’s information entropy, and Pi is the proportion of overall expression 

attributable to gene i within that single cell. This value was subsequently scaled by the 

maximum obtainable entropy to bring each value into a 0–1 range. We note that the analyses 

in Fig. 2b and Extended Data Fig. 6d were performed with downsampling to create a 

balanced dataset by matching the total number of RNA read counts for all cells in each 

sample (n = 50,000 reads per cell).

Gene set enrichment analysis

Gene set enrichment analysis was limited to the Molecular Signature Database50 (MSigDB; 

http://www.broad.mit.edu/gsea/) CGP (expression signatures of genetic and chemical 

perturbations) and CP (canonical pathways derived from KEGG, Reactome, and 

BIOCARTA) curated gene set collections. In Fig. 4d, genes with a Fisher’s combined P-

value < 0.05 and absolute log2(fold-change) > 0.5 were used for the subsequent gene-set 

enrichment analysis (n = 336). A hypergeometric test was used to measure the enrichment of 

these genes in each gene-set, followed by a Benjamini-Hochberg FDR procedure (cut-off of 

adjusted P-value < 0.2).

PDR (Proportion of Discordant Reads) analysis

Epimutation rates are quantified by assessing the concordance of adjacent CpGs within the 

same sequencing read (both methylated and unmethylated CpGs on a single sequencing 

read) and are measured with MscRRBS as the proportion of discordant reads per cell 

(single-cell PDR) as previously described6, with minor modifications. Briefly, at each CpG, 

PDR is equal to the number of discordant reads (reads containing both methylated and 

unmethylated sites) divided by the total number of reads. To calculate PDR for each 

individual cell, all reads with greater than 4 CpGs were evaluated for discordance, and the 

sum of discordant reads was divided by total number of reads with greater than 4 CpGs 

within that cell. To determine region-specific PDR, each cell’s reads were intersected with 

the genomic coordinates of the region of interest before PDR calculation. To compute cell-
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to-cell PDR differences, pairs of cells were randomly sampled without replacement and the 

absolute difference between the two cells was measured. This procedure was repeated until 

all pairs of cells within a sample were exhausted. We note that for analyses in Fig. 1d–e, we 

excluded 175 cells (6.5%) with a bisulfite conversion rate < 0.99, to remove incomplete 

conversion as a technical source of epimutation, from the total of 1,721 cells profiled with 

stand-alone MscRRBS (see Extended Data Fig. 1b). In addition, we also excluded cells from 

sample B03, as these are CD19+CD27− index-sorted B cells.

To exclude technical artifacts as a potential cause of lower PDR dispersion in CLL compared 

with normal B cells, a multivariable generalized linear model (GLM) regression analysis 

was performed, confirming that the observed low cell-to-cell epimutation rate variability was 

strongly associated with CLL vs. normal B cell status. Cell-to-cell PDR difference was used 

as dependent variable. Number of unique CpGs, bisulfite conversation rate, number of reads, 

and cell type status (CLL vs. normal B cells) were used as explanatory variables. P-values 

for the GLM coefficients (Student’s t-test) of less than 0.05 were considered significant 

(Extended Data Fig. 3e).

Concordance Odds Ratio (COR) analysis

We present a CpG auto-correlation metric called COR, referring to the Concordance Odds 

Ratio (COR). CpG observation (CpG_a) is considered concordant with another CpG 

observation (CpG_b) at genomic base pair (bp) distance, d, away if both CpG_a and CpG_b 

are methylated, or both are unmethylated, otherwise they are labeled as discordant. The 

COR at each base pair distance d is the quotient between the concordance empirical 

likelihood at d and the background concordance empirical likelihood. For a given distance d, 

all pairs of CpGs covered in a single cell i that are separated by d base pairs are obtained. 

The COR for distance d in a given single cell i is then computed by measuring the ratio of 

concordant pairs separated by distance d out of all pairs of CpGs that are at a distance d and 

dividing it by the expected background ratio of concordance determined by average 

methylation in the given genomic region of interest in cell i (e.g., CGI, see formula in 

Extended Data Fig. 4a). This provides a vector for cell i of COR values as a function of d, in 

the range 100bp (i.e., beyond the length of a single sequencing read) to 1000bp for the 

region of interest. Due to differences in length of the assessed genomic regions of interest, 

we corrected for the length of these genomic regions by dividing each genomic location into 

equal-sized bins and averaged the COR values within each bin. For visualization clarity, 

COR values were subsequently scaled to bring all values into the range [0,1]. We then fitted 

a linear curve to this vector of COR by d and computed the slope as a measure of 

concordance decay for each independent cell. All cells belonging to CLL01-CLL12 and 

B01-B06 samples profiled with MscRRBS were used in the analysis. Finally, P-values were 

computed for two-tailed Mann-Whitney U-test by comparing the average rate of decay in 

COR of healthy donor samples (n = 6) with the average rate of decay in COR of CLL 

samples (n = 12), to test whether CLL samples lose DNA methylation concordance at a 

different rate compared with healthy donor samples.
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4-gamete analysis

We present a CpG epimutation metric based on the four-gamete test11. We will refer to this 

metric as four gamete (4G). This test relies on the fact that detecting four gametes defies the 

assumptions of the infinite site mutation model51 and therefore is likely to reflect a high 

epimutation rate. Moreover, this test allows to estimate epimutation rate at single CpG site 

resolution in CpG-sparse regions, such as enhancers, in contrast to methods that rely on 

capturing multiple CpGs on the same read6,7. For each sample (CLL01-CLL12 were used in 

the analysis), the number of gametes between two CpGs, CpG_a, and CpG_b, was 

determined by counting how many of the four possible combinations of methylation and 

unmethylation were observed across all cells in a given sample where both CpG_a and 

CpG_b were obtained. This process was repeated by pairing each individual CpG_a with all 

CpGs further than 100bp away (to exclude CpGs contained within a single sequencing read) 

and enumerated the number of gametes observed in each pair of sites in all cells. A binary 

mask was applied to the resulting counts to exclude the pairing of a site with itself. After all 

pairings, as a measure of CpG epimutation, we computed the frequency of observing four 

gametes at CpG_a by dividing the number of observed pairs with four gametes by the total 

number of pairings. As the direct implementation of such an algorithm has time complexity 

of O(m*n2), where m is the number of cells and n is the number of sites, the number of 

pairings analyzed for each CpG was randomly downsampled by a 100x factor to speed up 

the calculation. To validate this approach, five runs with random 100-fold downsampling 

were performed for the same dataset and the frequencies of observing four gametes were 

compared. The results were highly concordant (Pearson correlation coefficient r = 0.93), 

supporting the validity of this approach. Notably, by pairing individual CpGs to all other 

CpGs across the genome, 4G enabled the determination of epimutation rate even for CpGs 

that are not in close genomic proximity to other CpGs, which is required for methods such 

as PDR and epigenetic polymorphism for calculation of epimutation6,7. We note that the 

assumption of independence between CpGs in the 4-gamete test is likely valid here, as 

MscRRBS captures ~10% of the targeted methylome per single-cell due to the sparsity of 

the single-cell data. Therefore, the 4-gamete test is based on a nearly unique combination of 

CpGs/cells for each CpG pairing. Only CpG sites covered by at least 5 cells in each sample 

were used in the analysis (range [156,662–2,371,498] CpGs/sample). Within each sample 

(CLL01-CLL12), CpG sites with lower 4G rate than expected based on their methylation 

level (i.e., low epimutation CpGs) were defined as being 1.5*median absolute deviation 

(MAD) away from the median frequency of four gametes in each DNAme window size of 

0.05 [from 0.1 to 0.9]. A total of 166,720 unique CpGs across all the 12 CLL patient 

samples (average of 1.22%±0.42 [average±SEM]; range [0.04–2.9%]) exhibited a lower 

frequency of four gametes than expected based on their DNAme level and were used for 

downstream analyses.

BEDTools52 v2.25.0 was used to calculate overlaps between low epimutation CpGs and 

gene promoters or FANTOM5 human enhancers44. De novo motif enrichment analyses were 

performed using MEME-ChIP53 against JASPAR CORE vertebrates and UniPROBE Mouse 

databases (-order 2, -meme-minw 6, -meme-maxw 15, -meme-nmotifs 5, -dreme-e 0.05, -

meme-mod zoops). Specifically, we performed a discriminative motif discovery to find 

motifs within gene promoters or enhancers that were over-represented at sites surrounding 
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low epimutation CpGs (±25bp around CpG) relative to a control set consisting of randomly 

selected CpGs (±25bp around CpG), matched for methylation values and cell coverage to 

the low epimutation CpGs. To further control for possible CpG content biases (e.g., as MspI 

cut site is CĈGG), a 2-order background model was used to normalize for biased distribution 

of trimer nucleotides in our sequences. Only motifs with an E-value ≤ 0.05 were reported, 

and each motif was then matched to its most similar motif in the TOMTOM database54 or 

literature if available. The E-value is an estimate of the expected number of motifs with the 

given log-likelihood ratio (or higher), and with the same width and site count, that one 

would find in a similarly sized set of random sequences53. We also report the TOMTOM P-

value, defined as probability that a random motif of the same width as the target would have 

an optimal alignment with a match score as good or better than the target’s53.

Lineage tree inference and support values

Since epimutations mark cell divisions9, the heritable DNAme information captured through 

MscRRBS can inform the reconstruction of cellular lineages. Indeed, given that the 

maintenance methylation machinery has an error rate estimated to be four orders of 

magnitude higher than that observed for DNA replication55,56, the phylogenetic information 

content of single-cell DNAme data is higher than that of single-cell nucleotide variants. 

Moreover, while single-cell copy number variations (CNVs)57,58, IGH transcript 

sequences59, somatic microsatellite21 and mitochondrial DNA60,61 mutations allow for the 

reconstruction of cancer lineages, they may have limited resolution given the smaller 

number of events that can be detected with current single-cell sequencing approaches, 

limited applicability across cancer types, or have not been adapted for large scale multi-

modality single-cell sequencing. Specifically, CNVs are not applicable to cancers, such as 

CLL, without significant copy number variations. We therefore generated methylation-based 

lineage trees by applying a tree searching maximum-likelihood (ML) algorithm based on 

binary methylation values. We used the MPI version of IQ-TREE62 v1.5.3, which exhibits 

improved performance compared to other ML fast phylogenetic programs in identifying 

trees of higher likelihood scores63. We selected a substitution model based on the binary 

alignment, inferred a maximum-likelihood tree, and computed bootstrap support values 

(1,000 bootstrap replicates). We opted for the new model selection procedure64 (-m 

TESTNEW), which additionally implements the FreeRate heterogeneity model inferring the 

site rates directly from the data (mixture of 4G and technical errors permitted in phylogeny 

reconstruction) instead of being drawn from a gamma distribution65. General time reversible 

model ‘GTR2’ consistently outperformed the other model tested (Jukes-Cantor type model) 

for our methylation binary data. IQ-TREE also incorporates an approach for calculating 

ultrafast bootstraps (UFBoot)66. We complemented UFBoot analysis with the Shimodaira–

Hasegawa-like (SH-like) approximate likelihood ratio test (SH-aLRT) and the approximate 

Bayes test to further assess support for single branches. Briefly, we initialized different tree 

search runs per batch of cells, each with a different random starting seed. In each run, a 

maximum-parsimony tree is first constructed directly from the alignment (methylation state 

mismatches between cells). Then, parameters of the given binary substitution models are 

estimated based on the maximum-parsimony tree. The log-likelihoods of this initial 

maximum-parsimony tree are computed for the many different given models along with the 

Akaike information criterion (AIC), corrected Akaike information criterion (AICc), and the 
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Bayesian information criterion (BIC). The model that minimizes the BIC score (the best-fit 

model) is then selected. The estimated model parameters are now used for initializing 

candidate tree set and further maximum-likelihood optimizations through an iterative, “hill-

climbing” optimization technique. Maximum-likelihood tree search starts by generating 100 

trees. From these 100 trees, all unique topologies are collected, and their approximate 

likelihoods computed. From the ranked list of maximum-likelihood values, the top 20 trees 

are selected and NNI are performed on each tree to obtain the locally optimal maximum-

likelihood trees. The top five topologies with highest likelihood (the candidate tree set) are 

then retained for further maximum-likelihood optimizations. An important weakness of pure 

hill-climbing methods is that they can be easily trapped in local optima. The locally optimal 

trees in the candidate tree set are, thus, randomly perturbed to allow to escape from local 

optima. IQ-TREE keeps the best maximum-likelihood tree while it searches the tree 

parameter space and stops searching after going through a user-defined number of trees. We 

extended this number to 1,000 trees to better explore tree parameter space. The final 

optimized best maximum-likelihood tree is then printed in NEWICK format. Trees were 

visualized with FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/).

Lineage tree structures were validated through cross-validation by restricting phylogeny 

reconstruction to only autosomes or chromosome X, holding-out chromosomes (three at a 

time), or downsampling the number of CpGs per cell to equal numbers, confirming the 

robustness of the lineage tree inference (Extended data Fig. 7). The inferred lineage trees 

were also found to be >3-fold more robust than maximum-parsimony-based reconstruction 

trees (Extended Data Fig. 7e), confirming that the lineage tree structure adds new 

information to the simple comparison of the DNAme profiles. Indeed, the haploid X 

chromosome in male patient samples showed an even greater robustness when compared 

with maximum-parsimony trees, likely due to the removal of the confounding random 

sampling of the two alleles in autosomes.

Methylation-based lineage trees integrating pre-treatment (T0) and post-treatment (T1) cells 

for CLL03, CLL04, CLL05, and CLL11 patient samples from joint MscRRBS and single-

cell RNA-seq were reconstructed by maximum-likelihood, followed by ultra-fast 

bootstrapping branch support analysis with 1,000 replicates (Fig. 4b; Extended Data Fig. 

9a). T1 enriched clades were defined based on clades occurring after the first major split in 

the lineage tree. Differential expression was compared between T1 cells that map to the T1 

enriched clades and T1 cells that map to the T0 enriched clades. We further matched the 

cells belonging to the T1-enriched clade identified from these T0-T1 lineage trees, by 

integrating the two groups of T1 cells into a maximum-likelihood tree search and computing 

bootstrapping branch support analysis with 1,000 replicates, as described above. In Extended 

Data Fig. 8e and Extended Data Fig. 9d, we defined genes with an absolute weighted 

average DNAme difference > 0.3 and a two-sided non-parametric permutation test P-value < 

0.05 as differentially methylated.

Maximum tree depths – defined as number of nodes along the longest path from the root 

node down to the farthest leaf – of lineage trees of CLL and normal B cells were computed 

by initializing ten independent tree search replicates per batch of randomly sampled 50 cells, 

each with a different random starting seed. Patristic distances – defined as the sum of the 
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lengths of the branches that link two tips in a given tree – between CLL and normal B cells 

were computed by analyzing one representative methylation-based lineage tree of randomly 

sampled cells for each sample. To compare between inferred lineage trees, we computed the 

pairwise Robinson-Foulds (RF) distance – a measure of tree structure similarity between two 

given trees67 – between them. Specifically, thirty independent tree search replicates per 

batch of randomly sampled 50 cells were initialized, each with a different random starting 

seed. To compute the RF distances, pairs of trees were then randomly sampled without 

replacement and the RF distance between the two trees computed. The RF distances were 

normalized by the total number of internal edges in respective pairs of trees (normalized RF 

distance). Node ages – estimated no. of divisions before present – were calculated by 

dividing node height (defined as the length of the longest downward path to a leaf from a 

given node) values by a rate of 0.0005 changes per CpG site per division29.

Statistical methods

Statistical analysis was performed with Python 2.7.13 and R version 3.4.2. Categorical 

variables were compared using the Fisher’s Exact test. Continuous variables were compared 

using the Mann-Whitney U-test, Welch’s t-test, Wilcoxon Signed Rank test, non-parametric 

permutation test or Kolmogorov–Smirnov test as appropriate. P-values were adjusted for 

multiple comparisons by Bonferroni FWER or Benjamini-Hochberg FDR adjustment 

procedure, as appropriate. All P-values are two-sided and considered significant at the 0.05 

level unless otherwise noted.

Data Availability

MscRRBS and single-cell Smart-seq2 datasets have been deposited to the NCBI Gene 

Expression Omnibus (GEO) under accession number GSE109085. ChIP-seq datasets have 

been deposited to the NCBI GEO under accession number GSE119103. Additional 

supplementary data is available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Extended Data
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Extended Data Figure 1. MscRRBS is an accurate and reproducible method for single-cell 
DNAme analysis
(a) Detailed schematic of multiplexed single-cell RRBS (MscRRBS) protocol. (b) Extended 

summary table of healthy donors and CLL patient samples used in this study. (c) 
Representative size distribution of the MscRRBS libraries assessed by Agilent Bioanalyzer 

before and after primer dimers removal. The DNA fragment size in MscRRBS libraries is 

typically 200–1000 bp, with some visible peaks corresponding to the MspI fragments for 

repeat elements, and primer dimer contaminants (~170 bp). (d) Number of CpGs observed 

in MscRRBS libraries across relevant genomic regions comparing MscRRBS (left) and bulk 

RRBS (right) assays for normal B (B01) and CLL (CLL01) cells. The enrichment in exons, 

promoters and CpG islands (CGIs) observed in MscRRBS libraries corresponded to ~40% 

of the total sequenced CpGs, akin to bulk RRBS assays. (e) Downsampling analysis showing 

that ~1.7 million paired-end reads per cell provided ~85% of unique CpGs with further 

sequencing resulting in a marginal increase in coverage. (f) Correlation of average CpG 

methylation across in silico merged single cells and bulk RRBS obtained from matched 

samples for normal B (B01, n = 40,257 CpGs) and CLL (CLL01, n = 9,578 CpGs) cells. P-
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values are indicated for two-sided Pearson’s correlation test. (g) Pooling individual single 

cells together rapidly increases the number of CpGs recovered, approaching bulk RRBS 

coverage with >48 cells. The percentage of CpG sites detected in single cell data (blue and 

red for normal B cells and CLL cells, respectively), the in vitro pooled single-cell datasets 

(light blue and light red, respectively) and matched bulk RRBS libraries (striped bars) is 

shown. Error bars represent 95% confidence interval. (h) Same as panel (g) for average CpG 

DNA methylation. Single, pooled cells and bulk RRBS showed a similar CpG methylation 

percentage, suggesting measured genome-wide DNAme profiles of individual cells 

accurately recapitulate bulk methylation profiles in the same cell type.
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Extended Data Figure 2. Single-cell DNA methylation coverage analysis
(a) The ~10% sampling of the MscRRBS DNA methylome leads to intersection decrease of 

individual CpGs across cells. Left: expected number of times of observing a given CpG 

across all k cells, (matching k indicated in the x-axis value). Right: expected number of 

measured CpGs given k-cells. (b) Biallelic coverage within a given single cell was detected 

in only 4.6±2% of ~230 germline SNPs available for analysis, suggesting that the observed 

single-cell CpG data largely represents only one of the two alleles of the near-diploid CLL 

genome. (c) Histograms of the distribution of CpG methylation values for single normal B 

(blue) and CLL (red) cells and matched bulk RRBS libraries showing highly-digitized 

pattern of DNAme in single cells (i.e., CpG sites either methylated or unmethylated) in 

contrast to bulk RRBS which shows intermediate DNAme values. (d) Representative 

analysis for three non-contiguous genomic windows around the promoter region of Twist2, 

previously shown to be implicated in CLL pathogenesis68. Shown from top to bottom are the 

annotation of the Twist2 promoter locus with CGI sites indicated (green); the estimated 

methylation rate of in-silico pooled single cells for healthy donors and CLL; and the CpG 

methylation patterns (black circles: methylated; white circles: unmethylated) of single cells. 

Note the higher level of DNAme percentage in CLL compared with healthy donor cells at 

these selected regions.
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Extended Data Figure 3. CLL epigenomes show elevated epimutation rate across all genomic 
regions, with low cell-to-cell variability in epimutation rates
(a) Representative analysis of the WT1 locus. CpG island is indicated in green, along with 

the CpG methylation patterns (black circles: methylated; white circles: unmethylated) in 

single cells. We note that CLL cells exhibit lower cell-to-cell variation in epimutation rate 

compared with normal B cells. (b) Comparison of cell-to-cell epimutation rate difference per 

genomic region between CLL (M-CLL [CLL01-CLL07], n = 309 pairs; U-CLL [CLL08-

CLL12], n = 218 pairs) and normal B (B01-B06, n = 333 pairs) cells. P-values were 

computed for two-sided Mann-Whitney U-test by comparing the median cell-to-cell PDR 

differences of healthy donor samples (n = 5) with the median cell-to-cell PDR differences of 

CLL samples (n = 12) for each genomic region, followed by a Bonferroni adjustment 

procedure. (c) Difference in average CpG methylation per genomic region between CLL (n 

= 12) and normal B (n = 6) samples (CLL01-CLL12 [M-CLL, n = 619 cells; U-CLL, n = 

436 cells] and B01-B06 [n = 666 cells]). (d) Percentage of CpG methylation change at CpG 

islands (CGI) when comparing DNAme level of individual cells in each sample to baseline 

(defined as the average DNAme level across all samples) for CLL and normal B cells 

(CLL01-CLL12 [M-CLL, n = 619 cells; U-CLL, n = 436 cells] and B01-B06 [n = 666 

cells]). (e) Multivariable linear regression model that account for potential technical 
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confounders (bisulfite conversion rate, number of aligned reads, number of covered CpGs). 

CLL01-CLL12 (M-CLL, n = 619 cells; U-CLL, n = 436 cells) and B01-B06 (n = 666 cells) 

samples were used in the analysis. (f) Single-cell epimutation rate across index-sorted 

normal B cells (B04, n = 96 cells; B05, n = 96 cells; B06 = 92 cells). P-values are indicated 

for two-sided Mann-Whitney U-tests. (g) Same as panel (f) for cell-to-cell epimutation 

difference (B04, n = 48 pairs; B05, n = 48 pairs; B06 = 46 pairs). P-values are indicated for 

two-sided Mann-Whitney U-tests. (h) Direct comparison of cell-to-cell epimutation 

difference between CLL (M-CLL [CLL01-CLL07], n = 309 pairs; U-CLL [CLL08-CLL12], 

n = 218 pairs) and index-sorted B cells (B04-B06; NBC, n = 35 pairs; loMBC, n = 35 pairs; 

intMBC, n = 35 pairs; hiMBC, n = 35 pairs). P-values are indicated for two-sided Mann-

Whitney U-tests. Throughout the figure, boxplots represent median and bottom and upper 

quartile; lower and upper whiskers correspond to 1.5 x IQR. Error bars represent 95% 

confidence interval.
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Extended Data Figure 4. Long-range DNA methylation concordance decay
(a) Concordance odds ratio (COR) of DNA methylation state between any two neighbouring 

CpGs as function of their genomic distance (see Methods for details). (b) Left: Scaled COR 

(0–1) for CpG islands at transcription start sites (CGI at TSS; B01 and CLL01 samples are 

shown as a representative example). Right: average rate of decay (slope of the first order fit 

line) in COR for normal B (n = 6) and CLL (n = 12) samples for CGI at TSS (B01-B06 [n = 

666 cells; n = 48,065,000 CpGs] and CLL01-CLL12 [M-CLL, n = 619 cells, n = 38,968,846 

CpGs; U-CLL, n = 436 cells, n = 37,464,310 CpGs]). P-value was computed for two-sided 

Mann-Whitney U-test by comparing the average rate of decay in COR of healthy donor 

samples (n = 6) with the average rate of decay in COR of CLL samples (n = 12). (c) Same as 

panel (b) for CGI at TSS of genes belonging to the TP53 gene set69. Normal B cells, n = 666 

cells, n = 6,308,174 CpGs; M-CLL, n = 619 cells, n = 5,113,493 CpGs; U-CLL, n = 436 

cells, n = 4,982,039 CpGs. P-value was computed for two-sided Mann-Whitney U-test by 

comparing the average rate of decay in COR of healthy donor samples (n = 6) with the 
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average rate of decay in COR of CLL samples (n = 12). (d) Same as panel (b) for CGI at 

TSS of housekeeping genes70. Normal B cells, n = 666 cells, n = 2,087,432 CpGs; M-CLL, 

n = 619 cells, n = 1,686,295 CpGs; U-CLL, n = 436 cells, n = 1,620,802 CpGs. P-value was 

computed for two-sided Mann-Whitney U-test by comparing the average rate of decay in 

COR of healthy donor samples (n = 6) with the average rate of decay in COR of CLL 

samples (n = 12). (e) Average rate of decay in COR for normal B (n = 6) and CLL (n = 12) 

samples for CGI at TSS of genes belonging to gene sets previously reported to be affected 

by high epimutation rate6. Normal B cells, n = 666 cells, n = 48,065,000 CpGs; M-CLL, n = 

619 cells, n = 38,968,846 CpGs; U-CLL, n = 436 cells, n = 37,464,310 CpGs. P-value was 

computed for two-sided Mann-Whitney U-test by comparing the average rate of decay in 

COR of healthy donor samples (n = 6) with the average rate of decay in COR of CLL 

samples (n = 12). Throughout the figure, error bars represent 95% confidence interval.
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Extended Data Figure 5. Epimutations at single CpG resolution
(a) Frequency of 4-gametes according to the level of average methylation of each individual 

CpG site in each CLL sample (CLL01-CLL12; randomly sampled CpGs shown out of the 

total CpGs assessed in each CLL sample; range [156,662–2,371,498] CpGs/sample covered 

in >5 cells in each sample). Smooth local regression line (LOESS) is shown in red. (b) Low 

epimutation (loEpi) CpGs are defined as being 1.5*median absolute deviation (MAD) away 

from the median frequency of 4-gametes in each DNAme window of 0.05 [0.1–0.9] for a 

given sample. Shown is a representative example of this procedure for DNAme window of 

[0.5–0.55] in CLL04 patient sample. (c) Percentage of loEpi CpGs (average of 1.22%±0.42 

[average±SEM]; range [0.04–2.9%]) out of the total CpGs assessed in each CLL sample. 

CLL01, n = 14,711 loEpi CpGs; CLL02, n = 2,573 loEpi CpGs; CLL013, n = 25,270 loEpi 

CpGs; CLL04, n = 29,114 loEpi CpGs; CLL05, n = 16,603 loEpi CpGs; CLL06, n = 11,413 

loEpi CpGs; CLL07, n = 19,330 loEpi CpGs; CLL08, n = 19,916 loEpi CpGs; CLL09, n = 

11,440 loEpi CpGs; CLL10, n = 18,614 loEpi CpGs; CLL11, n = 7,067 loEpi CpGs; 

CLL12, n = 308 loEpi CpGs. (d) Additional sequence logos of the DNA motifs determined 
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to be significantly over-represented in low epimutation CpGs (+/− 25bp around CpGs at 

promoters [TSS +/− 1 Kb] or at enhancers) across all CLL samples. For each motif, the E-

value and the TOMTOM P-value are shown. See Methods for details on the de novo motif 

enrichment analysis and the statistical tests used. (e) Median protein expression (log10 

normalized iBAQ intensity) of transcription factors for which motifs were enriched in 

regions with low epimutation CpGs, confirming that the identified TFs are expressed at the 

protein level in B-lymphocytes and/or hematopoietic compartments. Error bars represent 

95% confidence interval. All available human proteome data from lymphoid/hematopoietic 

lineages are displayed71.
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Extended Data Figure 6. Methylation-transcription relationships at the single-cell level
(a) Number of reads (left) and expression of Immunoglobulin Heavy Chain (IGH) genes 

(right) in index-sorted B cells validating our index-sorting strategy (CD27−IgM+IgD+++IgG− 

[NBC, n = 24 cells], CD27−IgM+IgD+IgG− [loMBC, n = 24 cells], CD27+IgM+IgD++IgG− 

[intMBC, n = 24 cells], and CD27+IgG+ [hiMBC, n = 23 cells]). Violin plots represent 

kernel density estimation showing the distribution shape of the data. (b) Proportion of cells 

with gene expression (read count > 0) and exhibiting above-threshold DNAme. Full circles 

(and whiskers) represent the mean (±SEM) proportion across all genes with sufficient RNA 

(expression seen in > 5 cells) and DNAme (> 5 CpGs per promoter) information across the 

three samples (n = 1,816 genes). (c) Mean (±SEM) across cells of transcriptional entropy 

(see Methods) showing higher transcriptome entropy in CLL (CLL03, n = 94; CLL04, n = 

92) compared with normal B cells (B04, n = 84) across various downsampling regimes 

(range [5,000–100,000]; step-size of 1,000). (d and e) Single-cell transcriptional entropy (d) 
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and epimutation rate (e) between normal CD27− B (NBC and loMBC) and CD27+ B 

(intMBC and hiMBC) cells. (f) Left: distribution of the Spearman’s rho between expression 

and promoter DNAme rate (n = 3,094 genes with sufficient RNA [expression seen in > 5 

cells] and DNAme [> 5 CpGs per promoter] information) in CLL04. The observed 

spearman’s rho values were compared to values obtained by randomly permuting cell labels 

for the methylation values (see Methods). P-value is indicated for two-sided Kolmogorov–

Smirnov (KS) test. Right: heatmaps of spearman’s rank-order correlation for representative 

genes with positive or negative single-cell expression-methylation correlation. Scale bar 

represents promoter methylation and RNA read counts scaled by maximal value. (g) Same 

as panel (f) for individual normal B cells (n = 5,729 genes; n = 16 permutations; see 

Methods for details). (h) Same as panel (g) for CLL03 (n = 2,699 genes; n = 16 

permutations). (i) Same as panel (g) for CLL04 (n = 3,094 genes; n = 16 permutations). (j) 
Absolute change in Spearman’s rho when comparing matched vs. scrambled DNAme and 

RNA single-cell data in CLL (CLL03 and CLL04) and normal B (B04) cells. From the pool 

of genes used in panel (g-i), only overlapping genes (n = 951) across the three samples were 

used in the comparison. P-values are indicated for two-sided Wilcoxon Signed Rank test. (k) 
Same as panel (f) for individual normal B cells (n = 2,500 most variable genes with 

sufficient RNA [expression seen in > 5 cells] and DNAme [> 5 CpGs per promoter] 

information; n = 16 permutations; see Methods for details). (l) Same as panel (k) for CLL03. 

(m) Same as panel (k) for CLL04. (n) Absolute change in Spearman’s rho when comparing 

matched vs. scrambled DNAme and RNA single-cell data in CLL (CLL03 and CLL04) and 

normal B (B04) cells. From the pool of genes used in panel (k-m), only overlapping genes 

(n = 459) across the three samples were used in the comparison. P-values are indicated for 

two-sided Wilcoxon Signed Rank test. (o) Mean (±SEM) hydroxymethylation (5-hmC) level 

at genes with positive correlation between expression and promoter DNA methylation (top 

correlated 10% of genes) compared with negatively correlated genes (top anti-correlated 

10% of genes) in both normal B (B04; n = 336 and 330 genes, respectively) and CLL 

(CLL03 [n = 290 and 278 genes, respectively]; CLL04 [n = 320 and 314 genes, 

respectively]) cells. Error bars represent 95% confidence interval. P-values are shown for 

two-sided Welch’s t-test. Published 5-hmC data were used for the analysis20. Throughout 

the figure, boxplots represent median and bottom and upper quartile; lower and upper 

whiskers correspond to 1.5 x IQR.
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Extended Data Figure 7. Methylation-based lineage trees provide a native lineage tracing system
(a) Additional representative (random cell subsampling) methylation-based lineage trees of 

CLL cells. (b) Same as panel (a) for index-sorted normal B cells, showing that naïve CD27− 

B cells (NBC; CD27−IgM+IgD+++IgG−) precede CD27+ memory terminally-differentiated B 

cells (hiMBC; CD27+IgG+) in the lineage tree. (c) Representative (cell subsampling) 

methylation-based lineage trees of CLL cells reconstructed using only autosomes or 

chromosome X. Tree topologies are similar to when using whole genome information (see 

Fig. 3d and panel (a)), showing rapid drift after the initial malignant transformation. (d) 
Same as panel (c) for lineage trees of CLL cells obtained by holding-out chromosomes 

(hold-out three chromosomes at a time before phylogeny reconstruction; e.g., excluding 

chromosomes 1–3, left), or downsampling the number of CpGs per cell to equal numbers 

(120K CpGs per cell; right). (e) Normalized Robinson-Foulds (normRF) distances between 

any two trees (n = 30 tree replicates; see Methods) of CLL01 reconstructed by maximum-

likelihood (ML) vs. maximum-parsimony (MP). Differences in median normRF between 

ML and MP are indicated on the top, with P-values for two-sided Mann-Whitney U-test. (f) 
Average maximum tree depth of lineage trees (n = 10 tree replicates; see Methods) of CLL 

(CLL01) and normal B (B02) cells when using whole genome information compared to 

lineage trees obtained by holding-out chromosomes (hold-out three chromosomes at a time 

before phylogeny reconstruction). P-values were computed for Welch’s t-test by comparing 

the maximum tree depths (one value per tree) between CLL and normal B samples. Error 

bars represent 95% confidence interval. (g) Distribution of root-to-tip branch lengths (i.e., 
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the length from the root to each tip in the lineage tree) between CLL and normal B cells (M-

CLL [CLL07], U-CLL [CLL10], B05 shown as representative examples). (h) Patristic 

distances between index-sorted B cells from B04, B05 and B06 healthy donor samples 

(NBC, n = 24 cells for each sample; loMBC, n = 24 cells for each sample; intMBC, n = 24 

cells for each sample; hiMBC, n = 23 cells for each sample). P-values were computed for 

two-sided Mann-Whitney U-test. (i) Patristic distances between CLL (CLL01) and normal B 

(B02) cells obtained from lineage trees reconstructed by using only autosomes, chromosome 

X, holding-out chromosomes (hold-out three chromosomes at a time before phylogeny 

reconstruction), or downsampling the number of CpGs per cell to equal numbers (120K 

CpGs per cell), respectively. P-values are indicated for two-sided Mann-Whitney U-test. 

Throughout the figure, boxplots represent median and bottom and upper quartile; lower and 

upper whiskers correspond to 1.5 x IQR.
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Extended Data Figure 8. MscRRBS integration with single-cell transcriptomes and genotyping
(a) Schematic of the joint MscRRBS, transcriptome, and genotyping capture protocol. (b) 
Normalized Robinson-Foulds (normRF) distances between any two trees (n = 30 tree 

replicates; see Methods) of CLL12 (n = 56 cells; see Fig. 3h) reconstructed by maximum-

likelihood (ML) vs. maximum-parsimony (MP). Differences in median normRF between 

ML and MP are indicated on the top, with P-values for two-sided Mann-Whitney U-test. (c) 
Proportion of SF3B1 wild type (white) and SF3B1 mutated cells (black) in each clade 

identified from the lineage tree shown in Fig. 3h. P-value is indicated for two-sided Fisher’s 

Exact test. (d) Comparison of number of unique CpGs (left) and CpG methylation level 

(right) between the SF3B1 wild-type enriched clade cells and the SF3B1 mutated enriched 

clade of cells identified from the lineage tree in Fig. 3h. P-values are indicated for two-sided 

Mann-Whitney U-test. (e) Volcano plot of differentially methylated gene promoters 

(absolute weighted average DNAme difference > 0.3 and two-sided non-parametric 

permutation test P-values < 0.05) between the SF3B1 wild type and SF3B1 mutated cells 

from lineage tree shown in Fig. 3h. (f) Single-cell alternative 3’ splicing score (fraction of 

reads that map downstream to the 3’ end [up to 100 bp] of the exons vs. within the exons) 

for cells belonging to SF3B1 wild type (n = 30) and SF3B1 mutated (n = 26) clades 

identified from the lineage tree shown in Fig. 3h. P-value is indicated for two-sided Mann-

Whitney U-test. (g) Volcano plot of differentially expressed genes between the SF3B1 wild 

type enriched clade and SF3B1 mutated enriched clade. Genes (n = 57) with absolute 

log2(fold-change) > 0.5 and Benjamini-Hochberg FDR adjusted weighted F test P-values < 

0.2 are shown in red. Genes that were previously reported to be affected by SF3B1 

mutation22 are also labelled. (h) Gene expression projections on lineage trees for two 

representative genes identified in panel (g). (i) Comparison of transcriptional distances 
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(measured as Euclidean distances of the first three principal components after PCA) as a 

function of lineage distance between cell pairs from the lineage tree shown in Fig. 3h. P-

value is indicated for two-sided Mann-Whitney U-test. (j) Cells belonging to SF3B1-

mutated enriched clade show significantly lower relative node heights (i.e., height of internal 

tree nodes relative to the root node; see Methods) compared with SF3B1 wild type enriched 

clade, consistent with SF3B1 mutation being a later subclonal event in CLL15. P-value is 

indicated for two-sided Mann-Whitney U-test. (k) Same as panel (j) for root-to-tip branch 

lengths (i.e., the length from the root to each tip in the lineage tree). (l) Distribution of node 

ages (estimated no. of divisions before present; see Methods) between the SF3B1 wild type 

enriched clade (white, n = 30 nodes) and SF3B1 mutated enriched clade (grey, n = 25 

nodes). P-value is indicated for two-sided Mann-Whitney U-test. Throughout the figure, 

boxplots represent median and bottom and upper quartile; lower and upper whiskers 

correspond to 1.5 x IQR.
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Extended Data Figure 9. Joint single-cell methylomics and RNAseq link epigenetic and 
transcriptional information in CLL evolution with therapy
(a) Representative methylation-based lineage trees integrating pre-treatment (T0; white 

circle; n = 40 randomly sampled cells out of 96 cells) and post-treatment (T1; red circle; n = 

40 randomly sampled cells out of 96 cells) cells for sample CLL03, CLL04, and CLL05. See 

Fig. 4c for the percentage of T1 cells in each of the two clades (defined as the ones 

occurring after the first major split in the lineage tree) inferred from these lineage trees. (b) 
Comparison of CpG methylation level between the T1-enriched clade of cells and the 

remaining T1 cells identified from the lineage trees in Fig. 4b and panel (a) for CLL03, 

CLL04, CLL05, and CLL11, respectively. Boxplots represent median and bottom and upper 

quartile. Lower and upper whiskers correspond to 1.5 x IQR. P-values are indicated for two-

sided Mann-Whitney U-test. (c) Same as panel (b) for number of unique CpGs. Boxplots 

represent median and bottom and upper quartile. Lower and upper whiskers correspond to 

1.5 x IQR. P-values are indicated for two-sided Mann-Whitney U-test. (d) Volcano plot of 

differentially methylated genes (absolute weighted average DNAme difference > 0.3 and 

two-sided non-parametric permutation test P-values < 0.05) between the T1-enriched clade 

of cells and the remaining T1 cells identified from the lineage trees in Fig. 4b and panel (a) 
for CLL03 (n = 515 genes), CLL04 (n = 429 genes), CLL05 (n = 690 genes), and CLL11 (n 

= 578 genes), respectively.
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Extended Data Figure 10. Cells preferentially expelled from the lymph nodes are marked by a 
distinct transcriptional profile
(a) Gene sets (CP) enriched in differentially expressed genes (n = 336) between the T1-

enriched clade of cells and the remaining T1 cells identified from the lineage trees in Fig. 4b 

and Extended Data Fig. 9a. A two-sided hypergeometric test was used to measure the 

enrichment of these genes in each gene-set, followed by a Benjamini-Hochberg FDR 

procedure (cut-off of adjusted P-value < 0.2). (b) Gene expression projections on lineage 

tree for Toll-like receptor (TLR) pathway genes from Fig. 4d for sample CLL04, CLL05, 

and CLL11, respectively. Scale bar represents RNA read counts scaled by maximal value. 

Expression value projection is performed only for T1 cells, comparing T1 vs. T0 enriched 

clades. Asterisk indicates cell without RNA information. (c) Fold-change gene expression of 

NF-κB-related genes between the T1-enriched clade of cells and the remaining T1 cells 

identified from the lineage trees in Fig. 4b and Extended Data Fig. 9a.
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Figure 1. Consistently elevated epimutation rate defines the CLL epigenome
(a) Schematic of multiplexed single-cell RRBS (MscRRBS) protocol. See also Extended 

Data Fig. 1a. (b) Summary of healthy donors and CLL samples (naïve [NBC]; low-, 

intermediate-, high-maturity memory B cells [loMBC, intMBC, hiMBC]; IGHV mutated 

and unmutated CLL [M-CLL, U-CLL]). (c) Epimutations are measured as the proportion of 

discordant reads (PDR). (d) Single-cell epimutation rate across normal B (B01–02, B04–06) 

and CLL (CLL01–12) cells. Mann-Whitney U-test compared the median PDR values of 

healthy donor (n = 5) and CLL (n = 12) samples. (e) Cell-to-cell epimutation rate difference 

across normal B (B01–02, B04–06) and CLL (CLL01–12) cells. Mann-Whitney U-test 

compared the median absolute cell-to-cell PDR difference of healthy donor (n = 5) and CLL 

(n = 12) samples. (f) Single-cell epimutation rate across index-sorted normal B (B04–06) 

cells. Mann-Whitney U-tests. (g) Schematic of 4-gamete test procedure (see Methods). (h) 
Frequency of 4-gametes according to the level of average methylation of each CpG across 
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CLL cells (CLL04 shown as a representative example, n = 29,114 low epimutation CpGs out 

of 1,835,994 total CpGs assessed; see also Extended Fig. 5a). Smooth local regression line is 

shown in red. Low epimutation CpGs are indicated in red. (i) Sequence logos of the DNA 

motifs significantly over-represented in low epimutation CpGs (+/−25bp) at promoters or 

enhancers, across CLL samples. For each motif, the E-value and the TOMTOM P-value are 

shown. See Methods for details on de novo motif enrichment analysis, and Extended Data 

Fig. 5d for additional motifs. Throughout figures, boxplots represent median, bottom and 

upper quartile; whiskers correspond to 1.5 x IQR.
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Figure 2. CLL higher epimutation rate is associated with higher transcriptional entropy 
consistent with transcriptional dysregulation
(a) Schematic of the joint methylomics and transcriptomics method, applied to normal B 

cells (B04, n = 84) and CLL cells (CLL03, n = 94; CLL04, n = 92). (b) Single-cell 

transcriptome entropy19 and epimutation rate for normal B and CLL cells. Mann-Whitney 

U-test. See also Extended Data Fig. 6c. Distribution of Spearman’s rho of expression and 

promoter DNAme correlation (genes expressed >5 cells, DNAme >5 CpGs/promoter) across 

normal B cells (c; 3,239 genes), or CLL cells (d; CLL03, 2,699 genes). Spearman’s rho 

value distribution was compared to the distribution of values obtained through randomly 

permuted cell labels. Kolmogorov–Smirnov test. See also Extended Data Fig. 6g–n. (e) 
Absolute change in Spearman’s rho when comparing matched vs. permuted DNAme and 

RNA single-cell data in CLL and normal B cells, across 990 genes overlapping between the 

three samples. Wilcoxon Signed-Rank test. Representative genes with negative (f) or 
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positive (g) single-cell expression-methylation correlation, with Spearman correlation. Scale 

bar represents promoter methylation and RNA read counts scaled by maximal value.
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Figure 3. Lineage relationships inferred from single-cell DNA methylomes
(a) Epimutation as a somatic cell molecular clock, where each division has a given 

likelihood of generating epimutations. (b) Schematic of methylation-based lineage tree 

inference (see Methods). (c and d) Representative (random cell subsampling) methylation-

based lineage trees of index-sorted normal B (B05, NBC and hiMBC cells) and CLL (M-

CLL [CLL07]; U-CLL [CLL10]) cells. See also Extended Data Fig. 7. (e) Maximum tree 

depth of lineage trees. Mann-Whitney U-test compared the maximum tree depths (one value 

per tree) between CLL (M-CLL [CLL07]; U-CLL [CLL10]) and normal B (B05) samples (n 

= 10 tree replicates; see Methods). Black lines represent averages. (f) Patristic distances 

between CLL and normal B cells. One representative tree of randomly sampled cells for 

each sample was used. Mann-Whitney U-test compared the medians of the patristic 

distances between healthy donor (n = 6) and CLL (M-CLL, n = 7; U-CLL, n = 5) samples. 

(g) Normalized Robinson-Foulds (normRF) distances between any two trees (n = 30 tree 
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replicates; see Methods) of CLL (M-CLL [CLL07]; U-CLL [CLL10]) and normal B (B05) 

cells reconstructed by maximum-likelihood (ML) vs. maximum-parsimony (MP). 

Differences in median normRF between ML and MP are indicated on top. Mann-Whitney 

U-tests. (h) Methylation-based lineage tree of CLL12 with projection of SF3B1 mutation 

status. Asterisk indicates bootstrap values <50%. Tree was rooted by including five normal 

B cells as outgroup (not shown). (i) Ranked node ages relative to the youngest node in the 

tree in panel (h). Difference in average node ages between the SF3B1 wild type clade and 

SF3B1 mutated clade is shown. Node ages (estimated no. of divisions before present) are 

calculated by dividing node heights by a rate of 0.0005 changes per CpG site per division29 

(see Methods). 21.8 divisions translate to 2,180 days at a 1% cell proliferation rate per 

day30. Error bars represent 95% confidence interval.
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Figure 4. Joint single-cell methylomics and RNA-seq link lineage and transcriptional information 
in CLL evolution
(a) Absolute lymphocyte counts for the first months on ibrutinib. Serial MscRRBS and joint 

MscRRBS-RNAseq was performed prior to (T0) and at one month after ibrutinib initiation 

(T1). (b) Top: representative lineage tree integrating pre-treatment (T0; white circles) and 

post-treatment (T1; red circles) cells of CLL11. Each sample is represented by 40/96 

randomly sampled cells. Asterisk indicates bootstrap values <50%. Bottom: Percentage of 

T1 cells in each of the two clades inferred from the lineage tree. Fisher’s Exact test. (c) 
Same as panel (b, bottom) for CLL03, CLL04, and CLL05. Fisher’s Exact test. (d) Volcano 

plot of gene expression comparing T1 cells from T1 enriched clades and T1 cells from T0 

enriched clades (CLL03–05, CLL11). P-values were combined across patient samples (n = 

8,372 genes expressed >5 cells in ≥3 samples) using Fisher’s combined probability test. (e) 
Scaled average gene expression across Toll-like receptor (TLR) pathway genes from panel 

(d) for each T1 cell from T1 enriched clades and each T1 cell from T0 enriched clades 

Gaiti et al. Page 43

Nature. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(CLL03–05, CLL11). Mann-Whitney U-test. (f) Gene expression projections on lineage tree 

for TLR pathway genes from panel (d) for sample CLL03. Scale bar represents RNA read 

counts scaled by maximal value. Expression value projection is performed only for T1 cells, 

comparing T1 vs. T0 enriched clades. Asterisk indicates cell without RNA information.
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