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 Background A major problem in cancer chemotherapy is the existence of primary resistance and/or the acquisition of second-

ary resistance. Many cellular defects contribute to chemoresistance, but epigenetic changes can also be a cause.

 Methods A DNA methylation microarray was used to identify epigenetic differences in oxaliplatin-sensitive and -resistant 

colorectal cancer cells. The candidate gene SRBC was validated by single-locus DNA methylation and expression 

techniques. Transfection and short hairpin experiments were used to assess oxaliplatin sensitivity. Progression-

free survival (PFS) and overall survival (OS) in metastasic colorectal cancer patients were explored with Kaplan–

Meier and Cox regression analyses. All statistical tests were two-sided.

 Results We found that oxaliplatin resistance in colorectal cancer cells depends on the DNA methylation–associated inac-

tivation of the BRCA1 interactor SRBC gene. SRBC overexpression or depletion gives rise to sensitivity or resist-

ance to oxaliplatin, respectively. SRBC epigenetic inactivation occurred in primary tumors from a discovery cohort 

of colorectal cancer patients (29.8%; n = 39 of 131), where it predicted shorter PFS (hazard ratio [HR] = 1.83; 95% 

confidence interval [CI] = 1.15 to 2.92; log-rank P = .01), particularly in oxaliplatin-treated case subjects for which 

metastasis surgery was not indicated (HR = 1.96; 95% CI = 1.13 to 3.40; log-rank P = .01). In a validation cohort of 

unresectable colorectal tumors treated with oxaliplatin (n = 58), SRBC hypermethylation was also associated with 

shorter PFS (HR = 1.90; 95% CI = 1.01 to 3.60; log-rank P = .045).

 Conclusions These results provide a basis for future clinical studies to validate SRBC hypermethylation as a predictive marker 

for oxaliplatin resistance in colorectal cancer.

  J Natl Cancer Inst 

Colorectal cancer (CRC) is the second most common cause of 

cancer death in the western world (1). In metastatic CRC, poly-

chemotherapy based on fluoropyrimidines plus oxaliplatin or 

irinotecan, combined with biological agents such as cetuximab 

and panitumumab, is the gold-standard treatment (2). Oxaliplatin 

forms intrastrand adducts that disrupt DNA replication and tran-

scription (3,4). DNA damage induced by oxaliplatin is repaired in 

part by the nucleotide excision repair pathway (5), but the DNA 

double-strand breaks induced by the drug are also repaired by the 

BRCA1 complex (6–8). In this regard, epigenetic inactivation of the 

BRCA1 gene by promoter CpG island methylation has been associ-

ated with increased sensitivity to cisplatin and carboplatin in breast 

and ovarian cancer (9,10).

Genes critical to colorectal tumor biology are frequently inacti-

vated by hypermethylation of the CpG dinucleotides located in their 

5’-CpG island regulatory regions (11–13). We wondered whether 

this epigenetic alteration was involved in the resistance to oxalipl-

atin in CRC, where treatment failure due to primary or acquired 

resistance remains a major obstacle to the management of the dis-

ease. Herein, we demonstrate that the epigenetic inactivation of the 

BRCA1 interactor SRBC gene by promoter CpG island hypermeth-

ylation is associated with poor outcome upon oxaliplatin treatment.

Methods

Cell Lines

LoVo parental cell line (LoVo-S) and its derived 10-fold oxali-

platin-resistant cells (LoVo-R)(14) were cultured at 37ºC in an 

atmosphere of 5% (v/v) carbon dioxide in Dulbecco’s Modified 

Eagle’s Medium/Ham’s Nutrient Mixture F12 (DMEM-HAM’s 

F12) medium supplemented with 20% (w/v) fetal bovine serum, 

100 U penicillin, and 100 µg/L streptomycin (Invitrogen, Carlsbad, 

CA).The HCT-116, SW48, SW480, SW620, RKO, Co115, and 

HCT-15 CRC cell lines were obtained from the American Type 

Culture Collection (Manassas, VA). Cell lines were authenticated 

by short tandem repeat profiling.
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Determination of Drug Resistance

Oxaliplatin (5 mg/mL) and 5-fluorouracil (50 mg/mL) were 

obtained from TEVA (North Wales, PA) and Accord Healthcare 

SLU (Barcelona, Spain), respectively. Cell viability was deter-

mined by the 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-

2H-tetrazolium bromide (MTT) assay. Briefly, 1 × 103 cells were 

plated onto 96-well plates. Cells were treated for 120 hours with 

different drug concentrations (oxaliplatin: 0–250  µM; 5-fluoro-

uracil: 0–35  µM). MTT was added at a final concentration of 

0.1%. After 2.5 hours of incubation (37 ºC; 5% carbon dioxide), 

the MTT metabolic product formazan was dissolved in dime-

thyl sulfoxide (DMSO), and absorbance was measured at 570 nm. 

Prism Software (La Jolla, CA) was used to calculate the drugs’ 

half-maximal inhibitory concentration (IC50).

DNA Methylation Analyses

DNA was subjected to bisulfite using EZ DNA methylation kit 

(Zymo Research, Orange, CA) as previously described (15). To per-

form the genome-wide DNA methylation profiling we used the 

Illumina Infinium HumanMethylation27 BeadChip (Illumina, San 

Diego, CA) microarray following the manufacturer’s instructions 

(15).The Infinium assay quantifies DNA methylation levels at spe-

cific cytosine residues adjacent to guanine residues (CpG loci), by 

calculating the ratio (β value) of intensities between locus-specific 

methylated and unmethylated bead-bound probes. The β value is 

a continuous variable, ranging from 0 (unmethylated) to 1 (fully 

methylated). This microarray assesses the DNA methylation level 

of 27 578 CpG sites located at the promoter regions of 14  495 

protein-coding genes. DNAs were processed on the same microar-

ray to avoid batch effects. The array was scanned by a Bead Array 

Reader (Illumina), and intensity data were analyzed using Genome 

Studio software (version 2011.1; Illumina). Further details are 

described in the Supplementary Methods (available online). The 

data is freely avalilable at GeneExpressionOmnibus (http://www.

ncbi.nlm.nih.gov/geo/) under GEO accession code GSE44446.

We established SRBC CpG island methylation status using 

three different polymerase chain reaction (PCR)–based techniques: 

bisulfite genomic sequencing of multiple clones, methylation-specific 

PCR, and pyrosequencing. Further technical details are described 

in the Supplementary Methods (available online).The used primer 

sequences are shown in Supplementary Table 1 (available online).

mRNA and Protein Expression Analyses

mRNA extraction, cDNA synthesis, conventional and quantitative 

real-time PCR (RT-PCR) using Hs00376942_m1Taqman Gene 

Expression assay (Applied Biosystems. Madrid, Spain) were per-

formed as previously described (16). Primer sequences are shown 

in Supplementary Table  1 (available online). Anti-SRBC (1/1000) 

from Cell Signaling and anti-β-actin-HRP antibody (1/20 000) from 

Sigma (St. Louis, MO) were used to develop the western blot analysis.

SRBC Transfection and Depletion Experiments

Human short hairpin RNAs and cDNA plasmids for SRBC were 

obtained from Origene (Rockville, MD). After Escherichia coli trans-

formation, we proceeded to plasmid DNA purification. Forty-eight 

hours after electroporation, cells transfected with short hairpin 

RNAs (TR317747; Origene) were grown in medium containing 

0.8 or 0.6  µg/mL of puromycin (LoVo-S and HCT-116). Cells 

transfected with SRBC cDNA (SC320781; Origene) were grown 

with DMEM containing 0.8 or 0.6 mg/mL of geneticin (G418, 

LoVo-R, and HCT-15) to perform clonal selection. Once selected, 

clones were picked, grown, and tested by Western blot.

Patients

In our study, we analyzed two independent cohorts of white, stage IV 

CRC patients (17). In the discovery set, 131 metastatic CRC primary 

tumors that received oxaliplatin plus fluoropirimidines–based therapy 

were retrospectively included. Formalin-fixed paraffin-embedded 

tumors obtained by surgical resection came from three different hos-

pitals (ICO-Hospitalet, ICO-Badalona, and Niguarda Ca’ Granda). 

Clinical features of the patients are showed in Table  1. From this 

cohort, 65 patients could undergo surgery to remove metastases. 

After neoadjuvant regimen, 34 could be operated, and 31 received 

palliative regimen. The rest of the patients (n = 66) showed unresect-

able metastases and directly underwent palliative regimen. The great-

est time of follow-up of this group was near 10 years. The validation 

cohort consisted of 58 stage IV CRC patients from the Hospital Vall 

d’Hebron with a follow-up of nearly 3 years (Table 1). According to 

discovery set results, we selected patients with unresectable metas-

tases who received oxaliplatin plus fluoropirimidines–based therapy 

in a neoadjuvant (n = 20) or palliative regimen (n = 38). The distri-

bution of patients according to the different clinical features was 

similar in both cohorts. Signed informed consent was obtained from 

each patient, and the Clinical Research Ethical Committee from 

ICO-Hospitalet provided approval for the study. DNA from all case 

patients was obtained from formalin-fixed paraffin-embedded tissue 

sections (10 µm) by xilol deparafination and digestion by proteinase 

K (Qiagen, Manchester, UK). Tumor specimens were composed of 

at least 70% carcinoma cells. DNA extraction was performed using 

a commercial kit (Qiagen) following the manufacturer’s instructions.

Statistical Analysis

In both independent cohorts we analyzed SRBC promoter methyla-

tion status and its association with response rate, progression-free 

survival (PFS), and overall survival (OS). The associations between 

categorical variables were assessed by χ2 tests or Fisher exact test 

whenever required. Kaplan–Meier plots and log-rank test were used 

to estimate PFS and OS. The association between epigenetic vari-

ant and clinical parameters with PFS and OS was assessed through 

univariate and multivariable Cox proportional hazards regression 

models. The proportional hazards assumption for a Cox regression 

model was tested under R statistical software (Boston, MA) (cox.

zph function). Statistical analysis was performed by using SPSS for 

Windows, (Armonk, NY) and P values less than .05 were considered 

statistically significant. All statistical tests were two-sided.

Results

Identification of Epigenetics Changes Associated 

With Oxaliplatin Resistance Using a DNA Methylation 

Microarray

To address in an unbiased manner whether epigenetic changes 

can be associated with oxaliplatin resistance, we adopted a whole 

genomic approach by comparing the DNA methylation status of 
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27 000 CpG sites (15) in an oxaliplatin-sensitive CRC cell line 

(LoVo-S) and an oxaliplatin-resistant clone (LoVo-R) that we 

derived by exposure to increasing concentrations of the drug (14).

This approach yielded only three differentially methyl-

ated target genes: SRBC (protein kinase C delta binding pro-

tein), FAM111A (family with sequence similarity 111, member 

A) and FAM84A (family with sequence similarity 84, member A) 

(Supplementary Figure 1A, available online). The most noteworthy 

gene with the highest difference in DNA methylation was SRBC; 

thus, it was the logical option to pursue. However, we also stud-

ied initially the other two genes. For FAM111A, bisulfite genomic 

sequencing of multiple clones showed that indeed the CpG site 

included in the DNA methylation microarray was distinctly meth-

ylated in LoVo-S and LoVo-R cells; however, the remaining sites of 

the CpG island were unchanged (Supplementary Figure 1B, availa-

ble online). Thus, we excluded this gene from further experiments. 

For FAM84A, bisulfite genomic sequencing confirmed the differ-

ential methylation of the CpG island, but both conventional and 

quantitative RT-PCR did not show any difference in gene expres-

sion (Supplementary Figure 1, D and E, available online). Thus, we 

also excluded this second gene from further analyses. For the main 

target gene, SRBC, the DNA methylation microarray data showed 

that it had a CpG site located in its 5’-CpG island (−155 base-pair 

position) that was hypermethylated in LoVo-R but unmethylated in 

LoVo-S (Supplementary Figure 1A, available online). Interestingly, 

SRBC CpG island methylation-associated silencing has already 

been found in cancer (18,19), including colorectal tumors (20). 

From a functional standpoint, it is biologically plausible that SRBC 

is responsible for the different sensitivity to oxaliplatin because its 

protein interacts with the product of the BRCA1 gene (18), which 

is widely accepted as being a mediator of response to DNA damage 

induced by platinum compounds (21).

To further demonstrate the presence of SRBC 5’-CpG island 

methylation in resistant cells, we undertook bisulfite genomic 

sequencing analyses. We found CpG island hypermethylation 

in LoVo-R but mostly an unmethylated CpG island in LoVo-S 

(Figure  1A). Importantly, SRBC expression was diminished 

in LoVo-R, showing CpG island methylation, whereas it was 

expressed in the unmethylated LoVo-S at the mRNA and protein 

levels (Figure 1B). SRBC re-expression was observed upon treat-

ment with the DNA demethylating agent 5-aza-2’-deoxycytidine 

in LoVo-R cells (Figure 1B).

SRBC Epigenetic Inactivation and Oxaliplatin Resistance

We next sought to demonstrate that the epigenetic inactivation 

of this gene functionally contributed to oxaliplatin resistance. We 

restored the expression of SRBC in LoVo-R by stably transfecting 

an exogenous expression vector (Figure 1C). Upon SRBC transfec-

tion, the cells proved to be statistically significantly more sensitive 

to the antiproliferative activity of oxaliplatin measured by the MTT 

Figure  1. Epigenetic inactivation of SRBC is associated with resist-

ance to oxaliplatin in colon cancer cells. A) Bisulfite genomic sequenc-

ing of eight individual clones in the SRBC promoter CpG island was 

used to determine DNA methylation status. Presence of a methylated 

or unmethylated cytosine is indicated by a black or white square, 

respectively. Black arrows indicate the position of the bisulfite genomic 

sequencing primers. B) SRBC expression determined by semiquanti-

tative real-time polymerase chain reaction analyses (left) and Western 

blot (right). GAPDH and β-actin were used as controls, respectively. 

The oxaliplatin-resistant cell line (LoVo-R) features a hypermethylated 

CpG island that is associated with the downregulation of the SRBC 

transcript and protein, in comparison with the SRBC-unmethylated 

and expressing oxaliplatin-sensitive cells (LoVO-S). Pharmacological 

treatment with the DNA demethylating agent 5-aza-2’-deoxycytidine 

(5-AZA) restores SRBC expression. C) Western blot showing the in vitro 

enhancement (transfection in LoVo-R, left) or depletion (short hairpin 

[sh] RNA approach in LoVo-S, right) of the SRBC protein. D) Cell viability 

determined by the 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazo-

lium bromide assay upon use of oxaliplatin. External intervention by 

inducing SRBC overexpression (in LoVo-R cells) or depletion (in LoVo-S 

cells) gives rise to sensitivity or resistance to oxaliplatin, respectively 

(left panels). 5-Fluorouracil sensitivity is not dependent on SRBC activ-

ity (right panels). The corresponding half-maximal inhibitory concentra-

tion (IC50) values are also shown. SD = standard deviation.
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assay (Figure  1D) than were the empty vector-transfected cells 

(LoVo-R + SRBC 1 and 2: P =  .02 and P < .001, respectively). In 

sharp contrast, we observed that SRBC stable downregulation by 

the short hairpin RNA approach in SRBC-expressing and unmeth-

ylated sensitive cells (LoVo-S) (Figure 1C) had the opposite effect: a 

considerable enhancement of the resistance to the antiproliferative 

effect mediated by oxaliplatin (Figure 1D) (LoVo-S short hairpin 

SRBC A and B: P = .04 and P < .001, respectively). The observed 

effects were specific for oxaliplatin because the in vitro depletion 

or enhancement of SRBC activity did not change the sensitivity to 

5-fluorouracil (Figure 1D), other drug commonly used in CRC.

We extended our study to seven additional CRC cell lines 

(Co115, HCT-15, HCT-116, SW48, SW480, SW620, and RKO), 

in which we found SRBC promoter CpG island hypermeth-

ylation (Figure 2A) and the associated loss of expression only in 

HCT-15 cells (Figure 2B). Interestingly, these cells were the only 

ones showing resistance to oxaliplatin (IC50 ± standard devia-

tion  =  3.81 ± 0.18  µM); the remaining cells were sensitive to the 

drug (Figure 2C) (IC50 values ranging from 0.30 to 0.83 µM). As 

we did with LoVo-S and LoVo-R, we also sought to demonstrate 

that SRBC epigenetic inactivation functionally contributed to 

oxaliplatin resistance in these cells. We restored the expression of 

SRBC in the resistant cell line HCT-15 by stably transfecting an 

exogenous expression vector (Supplementary Figure 2A, available 

online). Upon SRBC transfection, the cells proved to be statisti-

cally significantly more sensitive to the antiproliferative activity of 

oxaliplatin (HCT15 + SRBC: P = .02) (Supplementary Figure 2B, 

available online). The opposite effect was observed with SRBC 

stable downregulation using the short hairpin RNA approach in 

SRBC-expressing and unmethylated sensitive cells (HCT-116): a 

noteworthy increase in the resistance to the antiproliferative effect 

mediated by oxaliplatin was found (Supplementary Figure  2B, 

available online) (HCT-116 short hairpin SRBC A and B: P < .001). 

The described effects were specific for oxaliplatin because the in 

vitro depletion or enhancement of SRBC activity did not change 

the sensitivity to 5-fluorouracil (Supplementary Figure 2B, avail-

able online). Western blot analyses showed that the level of expres-

sion of the SRBC protein in the transfected clones was similar to 

Figure  2. Epigenetic inactivation of SRBC is associated with oxaliplatin 

resistance in colorectal cancer cell lines. A) Bisulfite genomic sequencing 

of eight individual clones in the SRBC promoter CpG island was used to 

determine DNA methylation status. Presence of a methylated or unmethyl-

ated cytosine is indicated by a black or white square, respectively. Black 
arrows indicate the position of the bisulfite genomic sequencing primers. 

HCT-15 cells are the only cells that present SRBC promoter CpG island 

hypermethylation. Normal colon mucosa samples (NC1 and NC2) are 

unmethylated. B) Western blot analyses for SRBC expression show that the 

hypermethylated CpG island in HCT-15 cells is associated with loss of pro-

tein in comparison with the remaining SRBC-unmethylated and -express-

ing colon cancer cell lines. C) Half-maximal inhibitory concentration (IC50) 

values, determined by the 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-

2H-tetrazolium bromide assay assay, upon use of oxaliplatin in the panel 

of colon cancer cell lines. All the studied cells are sensitive to oxaliplatin 

except the SRBC-hypermethylated and -silenced HCT-15 cell line.
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that observed in unmethylated CRC cell lines (Supplementary 

Figure 2A, available online).

SRBC Hypermethylation and PFS in Oxaliplatin-Treated 

Cases of Unresectable Colorectal Cancer

Given these in vitro findings that colon cancer cells with SRBC 

methylation-associated silencing were resistant to oxaliplatin, we 

wondered whether the same effect could be observed in clinical 

samples. The study of a first clinical cohort of 131 stage IV colorec-

tal adenocarcinoma patients (termed “discovery cohort”) (Table 1), 

all of whom were treated with oxaliplatin in combination with a 

fluoropyrimidine, showed SRBC methylation in 29.8% (n  =  39 

of 131) of the case patients analyzed by both methylation-specific 

PCR and pyrosequencing analyses (Figure  3A; Supplementary 

Figure  3, available online). The described occurrence of SRBC 

hypermethylation in colorectal tumors was identical to the one 

available in the The Cancer Genome Atlas datasets (30.2%; n = 70 

of 232). Considering the whole population of studied advanced 

CRC case patients (n = 131), we observed that SRBC hypermethyl-

ation was associated with PFS (HR = 1.83; 95% confidence interval 

[CI] = 1.15 to 2.92; log-rank P = .01) (Figure 3B). For the 105 case 

patients for whom OS information was available, SRBC hyper-

methylation was not associated with this variable (Figure 3C).

According to Cox regression multivariable test, surgery of metas-

tases showed to be an independent PFS (HR = 0.43; 95% CI = 0.24 

to 0.76; log-rank P  =  .004) and OS (HR = 0.16; 95% CI = 0.04 

to 0.52; log-rank P  =  .003) prognostic factor (Supplementary 

Figure 4, available online). Taking this into account, our cohort was 

stratified in relation to this clinical feature and was divided into 

two groups: patients that underwent metastases resection (n = 34) 

and patients with unresectable metastases (n  =  97). Subdividing 

the discovery cohort into these resectable or unresectable groups, 

SRBC hypermethylation did not have any predictive effect in PFS 

and OS for those case patients that received oxaliplatin as neoadju-

vant therapy followed by the successful resection of the metastases 

(Supplementary Figure 5, available online).

However, the scenario was completely different in the context 

of patients with colorectal adenocarcinomas with unresectable 

metastases who received oxaliplatin as neoadjuvant therapy and 

were subsequently not eligible for surgery (n = 31) or patients with 

tumors that were originally classified as unresectable and were 

given oxaliplatin as palliative chemotherapy (n  =  66). For these 

97 oxaliplatin-treated advanced CRC case patients with unresect-

able metastases, SRBC CpG island hypermethylation was statisti-

cally significantly associated with shorter PFS (HR  =  1.96; 95% 

CI  =  1.13 to 3.40; log-rank P  =  .01) (Figure  3D). In this set of 

case patients, for whom OS data were available for 79 patients, we 

also observed that SRBC hypermethylation was statistically signifi-

cantly associated with shorter OS (HR = 2.01; 95% CI = 1.13 to 

3.40; log-rank P =  .04). These interesting results prompted us to 

study the SRBC methylation status in a second independent set of 

CRC patients with unresectable metastasis who also received oxali-

platin-based therapy (n = 58) (Table 1). In this validation cohort, 

we confirmed that the presence of SRBC hypermethylation was 

associated with shorter PFS (HR = 1.90; 95% CI = 1.01 to 3.60; 

log-rank P  =  .045) (Figure  4). Thus, the clinical data are similar 

to the results from the aforementioned cell cultures that suggest 

increased chemoresistance of SRBC hypermethylated colorectal 

tumors to oxaliplatin treatment.

Discussion

The preexistence (primary resistance) or the de novo development 

(secondary resistance) of cellular mechanisms to escape the anti-

tumoral effects mediated by the anticancer compounds probably 

involve a wide repertoire of genetic and epigenetic (22) events. 

From a genetics perspective in CRC, it has been described that 

the presence of KRAS mutations and gene amplification of the 

EGFR or MET genesis is associated with resistance to overall 

anti-EGFR therapies (23,24,25). However, from an epigenetics 

perspective, very little is known. In spite of promising pharmacoe-

pigenetics biomarkers, such as the example of MGMT hypermeth-

ylation and good response to temozolamide in gliomas (26), have 

been described for other tumor types, the examples in colorectal 

neoplasms are scarce, even more so if we just focus on resistance 

biomarkers. Herein, we provide an example to help fill this niche 

by showing that SRBC hypermethylation predicts resistance to 

the commonly used agent oxaliplatin in metastatic CRC, a disease 

stage that represents the second most common cause of death from 

cancer (1).

A role of SRBC in mediating different sensitivity to oxaliplatin 

can be clearly justified by its protein interaction with the product of 

the BRCA1 gene (18). The BRCA1 protein exerts an important role 

in DNA double-strand break repair through homologous recom-

bination 2, so its deficiencies can impair the capacity of cancer cells 

to repair DNA cross-links caused by chemotherapy drugs such 

as platinum derivatives (3–7).Two independent studies reported 

greater primary chemotherapy sensitivity to platinum-based chem-

otherapy agents in patients with ovarian cancer who were carriers 

of BRCA1 germline mutations (5,6). These observations have also 

been extended to BRCA1 epigenetic silencing in sporadic breast 

and ovarian tumors, where it also predicts a good response to cispl-

atin and carboplatin (9,10,27). However, the biology of mammary 

tumors is very different from colorectal malignancies, and in all 

cases of colon cancer, the BRCA1 promoter has always been found 

in an unmethylated status (28–30). Interestingly, in addition to its 

BRCA1-related roles, SRBC might have other functions related to 

the observed chemoresistance phenotype, such as its interaction 

with caveolin 1, which may putatively affect intracellular vesicle 

traffic of the drug (31).

It is worth mentioning two possible avenues of further research. 

First, there is the possibility to detect SRBC hypermethylation by 

sensitive user-friendly techniques, such as methylation-specific 

PCR and pyrosequencing, which could be useful in the clinical 

setting. Instead of always requiring the use of the surgical tumor 

sample, stool or serum/plasma DNA could be useful alterna-

tive biological materials to predict oxaliplatin resistance in CRC 

patients. In this regard, DNA methylation changes are also ame-

nable for the development of new powerful molecular techniques, 

such as those recently referred to as “liquid biopsies” (32). Second, 

our observation that sensitivity to oxaliplatin can be restored by 

the re-expression of the SRBC gene could represent a revival of 

the DNA demethylating agents in the therapy of solid tumors. 

With little therapeutic options against metastatic CRC once it has 
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Figure 3. SRBC promoter hypermethylation occurs in primary tumors 

from colorectal cancer patients, where it predicts shorter progression-

free survival (PFS) in oxaliplatin-treated case patients. A) Analysis by 

methylation-specific polymerase chain reaction (MSP) of the promoter 

region of SRBC in primary colorectal tumors. The presence of a vis-

ible polymerase chain reaction product in lanes marked U indicates 

unmethylated SRBC sequences; the presence of a product in lanes 

marked M indicates methylated sequences. In vitro methylated DNA 

(IVD) was used as a positive control for methylated SRBC sequences. 

DNA from normal lymphocytes (NL) was used as a negative control 

for methylated SRBC sequences. MSP of SRBC in five colon cancer 

patients demonstrates SRBC promoter hypermethylation in tumors 1, 

3, and 5. B) Kaplan–Meier analysis of PFS among the whole popula-

tion of advanced colorectal cancer cases by SRBC methylation status. 

Numbers of events (progression) are shown from 24 to 240 months in 

unmethylated (U) and methylated (M) groups. C) Kaplan–Meier analy-

sis of overall survival (OS) among the whole population of advanced 

colorectal cancer cases by SRBC methylation status. Numbers of 

events (exitus) are shown from 6 to 36 months in unmethylated (U) 

and methylated (M) groups. D) Kaplan–Meier analysis of PFS among 

the oxaliplatin-treated advanced colorectal cancer case patients with 

unresectable metastases by SRBC methylation status. Numbers of 

events are shown from 24 to 240  months in unmethylated (U) and 

methylated (M) groups. E) Kaplan–Meier analysis of OS among the 

oxaliplatin-treated advanced colorectal cancer case patients with unre-

sectable metastases by SRBC methylation status. Numbers of events 

are shown from 6 to 36 months in unmethylated (U) and methylated 

(M) groups.
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become insensitive to oxaliplatin, DNA methylation inhibitors, 

such as 5-azacytidine and 5-aza-2′-deoxycytidine, could be used to 

resensitize these tumors to the oxaliplatin therapy. This idea has 

been recently explored in non–small cell lung carcinoma patients 

who had reached the last line of chemotherapy. The subsequent 

administration of 5-azacytidine was able to rescue previous chemo-

sensitivity (33).

Limitations of our study to be addressed in further research 

include the lack of knowledge about the molecular mechanisms 

linking SRBC activity and DNA damage repair triggered by oxali-

platin, the use of nonquantitative DNA methylation assays that will 

require transformation to quantitative DNA methylation tests to 

get specific cut offs for a future clinical application, and the exten-

sion of our CRC patient data source to stage II and III tumors and 

samples from other geographical origins.

In conclusion, we have demonstrated that DNA methyla-

tion–associated silencing of the BRCA1 interactor gene SRBC 

is associated with the acquisition of chemoresistance to the 

DNA damaging agent oxaliplatin in CRC both in vitro and in 

vivo. The validation of SRBC hypermethylation as a predictive 

marker will require further prospective studies. If successful, 

clinical trials would also be necessary to develop strategies to 

overcome or prevent the development of SRBC-mediated epi-

genetic resistance.
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