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Abstract 

Objectives: Immunological tolerance is mediated by  CD4+CD25+ regulatory T (Treg) cells. Studies have shown that 

thymic and peripheral generations of Treg cells depend on the CD28 signaling pathway. T helper 17 (Th17) cells are 

involved in the pathophysiology of various inflammatory diseases. Cytokines, such as interleukin (IL)-6 and TGF-β, reg-

ulate the reciprocal development of Th17 and Treg cells. In  CD4+ T cells, signal transducer and activator of transcrip-

tion 3 (STAT3) play a critical role in the induction of Th17 cell differentiation and inhibition of Treg cell development.

Results: In this study, we investigated the STAT3 methylation and gene expression status in patients with MS. Our 

study demonstrated that the level of STAT3 methylation decreased in relapsing–remitting MS patient compared to 

control groups, which the decreases were statistically significant. STAT3 gene expression increased in patient group 

relative to healthy one, and the increases were found to be statistically significant. According to our findings, it can be 

suggested that DNA hypermethylation of STAT3 affects the gene expression. In addition, there is a strong and signifi-

cant negative correlation between the methylation status and mRNA level of STAT3.

Keywords: STAT3, Multiple sclerosis, Methylation, Iran

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea-
tivecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Multiple sclerosis (MS), a chronic inflammatory disease 

of the central nervous system (CNS), has been evidenced 

to cause demyelination and axonal degeneration within 

the brain and spinal cord [1, 2]. �e exact etiopathology 

of MS has not yet been clarified, but most studies have 

recognized MS as an autoimmune disease mediated by 

autoreactive  CD4+ T cells [3].

Immunological tolerance is a critical factor in the pre-

vention of chronic infection, cancer, and autoimmune 

diseases [4]. Central tolerance operates in the thymus 

where autoreactive T cells with high affinity for self-anti-

gens are negatively deleted [5]. Given that not all antigens 

are present in the thymus, self-reactive T cells can enter 

the peripheral blood [5]. �erefore, central tolerance 

alone is insufficient, and peripheral tolerance mecha-

nisms are required [6].  CD4+CD25+ regulatory T (Treg) 

cells are major suppressor T lymphocytes and mediate 

peripheral tolerance [7, 8]. Forkhead box P3 (FOXP3) 

transcription factor is also necessary for the differentia-

tion of Treg cells [9, 10]. Although Treg cells differentiate 

naturally in the thymus, these cells can also be generated 
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from  CD4+CD25+ naive T cells into adaptive Tregs in the 

periphery [11–13]. Adaptive Treg cells can be induced in 

the periphery when encountered with repeated antigens 

[14].

Researchers have suggested that the CD28/B7 costim-

ulatory molecule is essential for the expression of CD25 

and FOXP3 on Tregs [15–17]. It has also been indicated 

that in the absence of the CD28 costimulatory path-

way, the peripheral number of Tregs decreases [16]. 

Besides, Lck-binding motif in the cytosolic tail of CD28 is 

required for Tregs generation [18]. However, it is uncer-

tain how CD28 leads to the FOXP3 expression and Treg 

development [16]. Treg cells are involved in maintaining 

anergic state and exert suppressive function in various 

inflammation and autoimmune diseases, including rheu-

matoid arthritis, systemic lupus erythematosus, and MS 

[17, 19–21].

In MS patients, autoreactive  CD4+ T cells display 

mainly T helper 17 (�17) phenotype [3]. Cytokines, 

such as TGF-β and interleukin (IL)-6, play a key role in 

regulating �17 cell differentiation [3, 22]. Retinoic acid 

receptor-related orphan receptor (ROR) γt transcription 

factor induces the differentiation of naive  CD4+ T cells 

into �17 cells [22, 23], which are pathogenic in MS due 

to the production of cytokines such as IL-17, IL-21, and 

IL-22 [24]. In MS, IL-17 leads to blood–brain barrier dis-

ruption and clinical disease activity and symptoms [25]. 

�e upregulation of RORγt is dependent on STAT3 [26]. 

Following the binding of IL-6 to IL-6R, STAT3 is phos-

phorylated on  Tyr705, dimerizes, moves into the nucleus 

and regulates the gene expression [27, 28]. STAT3 func-

tions distinctly in the �17 development and regulation 

of the �17/Treg balance [23], and STAT3 deficiency 

impairs RORɣt expression, giving rise to the increased 

expression of FOXP3 [29]. �erefore, dysregulation of 

STAT3 results in the development of various inflamma-

tory diseases, and loss of STAT3 in naïve  CD4+ T cells 

inhibits the development of CNS inflammatory diseases 

[30, 31]. Several studies have introduced STAT3 as a risk 

factor allele for MS disease susceptibility [32–34]. �ese 

observations persuaded us to investigate whether the 

hypo- or hyper-methylation of STAT3 in  CD4+ T cells is 

associated with the susceptibility of MS.

In this study, we display that in  CD4+ T cells, 

STAT3 methylation decreases in relapsing–remitting 

MS (RRMS), whereas the gene expression of STAT3 

increases.

Main text
Methods

Study groups

A total of 50 MS patients (36 males and 14 females) aged 

between 19 and 65  years with clinically RRMS were 

collected from the Imam Reza Hospital of Tabriz Univer-

sity of Medical Sciences, East Azerbaijan Province, Iran. 

All the patients had RRMS according to the McDonald’s 

diagnostic criteria and were in the remission clinical 

phase. Disease remission was defined as improvement 

from baseline clinical status for at least three months. 

�e cases were weekly being treated with interferon beta. 

Normal controls enrolled in this study were composed of 

50 age, gender, and ethnically matched healthy subjects 

without any clinical or laboratory signs of autoimmune 

or inflammatory diseases. A written informed consent 

was obtained from each case, and the study protocol was 

approved by the Ethics Committee of the Tabriz Univer-

sity of Medical Sciences. �e clinical/pathological data of 

both RRMS and controls are summarized in Table 1.

Blood sampling and cell isolation

Peripheral blood samples (20  ml) were obtained from 

all the patients with RRMS. After the blood collection, 

peripheral blood mononuclear cells were isolated using 

Ficoll-Paque™plus gradient centrifugation (Biosera, UK) 

within 12 h. �e isolation of  CD4+ T cells from periph-

eral blood mononuclear cells was carried out with the 

Miltenyi Biotech’s MACS System. �e  CD4+ MACS Iso-

lation Kit was applied to positively select  CD4+ T cells. 

�e purity of the  CD4+ T cells was assessed with flow 

cytometry and assigned to be greater than 90%.

DNA extraction and methylation-speci�c quantitative 

polymerase chain reaction (MS-qPCR)

Total DNA isolated from the  CD4+ T cells was gathered 

in EDTA-containing tubes by the salting-out method. 

STAT3 promoter sequences and data were obtained from 

the NCBI (National Center for Biotechnology Informa-

tion) database. STAT3 expression primers were designed 

by the aid of the PrimerQuest Tool, and the methylation- 

and demethylation (DM)-specific primers for STAT3 

were designed using MethPrimer online database and 

OLIGO software. �e primer sequences and product size 

for STAT3 are shown in Table 2. �e methylation status 

of STAT3 was analyzed by applying the MS‐qPCR. Power 

Table 1 Clinical characteristics of  RRMS and  control 

subjects

Data are shown as mean ± SD or frequencies

NA non-applicable, EDSS expanded disability status scale

Characteristics RRMS group (n = 50) Control group (n = 50)

Age 35.08 (19–65) 33.01 (22–51)

Gender (female/male) 36/14 31/19

EDSS 1.75 ± 0.31 NA

Disease duration 4.9 ± 1.6 (2–15 years) NA
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SYBR Green reagent (�ermo Fisher Scientific, USA) was 

utilized for MS-qPCR. �e DM rate of STAT3 was calcu-

lated by a previously described formula [35, 36] in which 

DM is the ratio of amplification efficiency of the methyl-

ated to unmethylated samples:

RNA isolation and reverse transcriptase (RT)-PCR

Total RNA from the collected  CD4+ T cells was isolated 

using TRIzol Reagent (Life Technologies, USA) based 

on the manufacturer’s instructions. RNA was then 

reverse transcribed with the Prime Script™ RT reagent 

Kit (Takara, Japan) as per the protocol recommended 

by manufacturer. Subsequently, SYBR Green reagent 

(�ermo Fisher Scientific) was used for quatitative 

real‐time (qRT‐PCR). Pfaffl method [37] was applied 

to calculate the relative gene expression. PCR cycles 

included a holding cycle at 95 °C for 15 min and held at 

80 °C before the addition of 1.25 units of Taq polymer-

ase (Invitrogen, USA). �e forward and reverse primers 

used for STAT3 expression were comprised of 5′-TGG 

AGC TGC GGC AGT TTC TG-3′ and 5′-CCG CAT CTG 

GTC CAG CGC AG-3′, respectively [38]. For STAT3, 

the temperature condition was as follows: 30 cycles of 

95 °C for 1 min, 63 °C for 1 min, followed by one cycle 

of 72 °C for 5 min. �e mRNA expression level was nor-

malized against glyceraldehyde-3-phosphate dehydro-

genase (GAPDH) mRNA. STAT3 primer sequences are 

listed in Table 2.

Statistical analysis

Statistical analysis was performed with SPSS software 

version 25 (IBM Corp., Armonk, NY, USA). All the data 

were presented as mean ± standard error of mean (SEM). 

Kolmogorov–Smirnov test with P–P plot and Q–Q plot 

was employed for normal distributions. �e differences 

DM% = 100/[1 + 2(Ct.TG − Ct.CG)].

in the mRNA level of STAT3 between RRMS patient 

and control groups were evaluated by unpaired t-test. A 

P-value < 0.05 was considered as statistically significant 

difference.

Results

STAT3 expression in the study groups

Our results showed that the STAT3 expression level 

increased in patients in comparison with the control 

group (P-value < 0.0001; Fig. 1a).

STAT3 methylation status in the study groups

Methylation level (% M) of the promoter region of STAT3 

was present in 23% (12/50) of MS cases, while this level 

was found in 62.9% (45/50) of the controls. �e decrease 

level was statistically significant (P-value < 0.0001). In 

addition, a significant and strong negative correlation 

was found between the STAT3 gene methylation level 

and mRNA expression level for the methylation assay 

(Figs. 1b–e).

Discussion

FOXP3 is an essential transcription factor in the differ-

entiation of Treg cells [40, 41]. Immunodysregulation, 

polyendocrinopathy, enteropathy, X-linked syndrome 

are disorders found in patients with FOXP3 mutations 

[22, 40]. FOXP3-deficient mice also exhibit eosinophilia, 

hyperimmunoglobulinemia E syndrome, and dysregu-

lated production of �1 and �2 cytokines [42]. �ese 

observations verifies the major role of FOXP3 in Treg 

development, control immune tolerance, and homeo-

stasis [15]. �e CD28 costimulatory molecule is another 

factor required for the Treg development and peripheral 

conversion. �17 cells have immunopathogenic poten-

tial, and their responses have been associated with the 

murine models of collagen-induced arthritis and experi-

mental autoimmune encephalitis.

STAT3 is one of the regulating factors in the recipro-

cal development of �17 cells and Tregs. A previous 

study has been shown that STAT3 is directly involved in 

the FOXP3 expression and Treg development [27]. In the 

present study, we observed STAT3 hypormethylation in 

RRMS patients and found that the STAT3 gene expres-

sion increases in RRMS patients, but not in the control 

subjects.

�e results of the STAT3 methylation level and 

gene expression status in our study demonstrated 

the decreased level of methylation and the increased 

mean of mRNA expression in the patient group com-

pared to the healthy one (hypomethylated). �erefore, 

our findings reveal a critical novel epigenetic event 

and new insights into the pathogenesis of MS disease. 

Table 2 PCR primers, melting temperature, and  product 

size

Primers Sequence Melting 
temperature

Product 
Sizes 
(bp)

STAT3 MF TAT CGT TTT TTG TAT TCG TTT 
GTA C

58.2 192

MR CCT ACT TTA AAC TTC AAT TTC 
TAC GTA 

59.0

UMF TTG TTT TTT GTA TTT GTT TGT 
ATG G

57.5

UMR CCT ACT TTA AAC TTC AAT TTC 
TAC ATA 

57.5 190
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Fig. 1 The gene expression and promoter methylation level of the STAT3 gene in MS and control groups. a STAT3 gene expression in patients 

compared with control subjects. Mean fold change in MS patients and control group was 1.000 ± 0.024 and 0.250 ± 0.014, respectively 

(P-value < 0.0001). b The methylation level (% M) of STAT3 in MS patients compared with control group. The red dots are individual values, and boxes 

are the mean methylation for patient (30.56 ± 1.317) and control groups (59.08 ± 1.986). c, d Correlation analysis between methylation status and 

gene expression level of STAT3 in patients (R2 = 0.8967, P-value < 0.0001, regression analysis) and control (R2 = 0.9256, P-value < 0.0001, regression 

analysis) group. e Negative and positive controls for methylation assays. 5-Azacytidine and DNA sample treated with SssI methyltransferase were 

used as negative and positive controls, respectively [39]. (*P-value < 0.05, **P-value < 0.01, ***P-value < 0.001, ****P-value < 0.0001).
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Regulation of the STAT3 in the present study maybe 

a novel promising treatment for MS as it has formerly 

been demonstrated that highly activated �17 activity 

is related to STAT3 mutations [43]. Moreover, germline 

mutations in STAT3 causes the lymphoproliferation 

and early-onset autoimmunity [44]. An earlier investi-

gation has reflected that STAT3-targeted therapeutics 

prevents experimental autoimmune uveitis mediated 

by �17 cells [45]. STAT3 inhibitors are also effective in 

CNS autoimmune diseases [46].

Taken together, these findings affirm the role of 

STAT3 in �17-mediated immune diseases. However, 

further studies are needed to fully elucidate the exact 

role of STAT3 in MS disease. STAT3 induction in the 

autoimmune therapy protocol is recommended.

Limitations
�e major concern of this study is the examination of 

STAT3 methylation on limited MS patients. �e test 

of methylation on samples from various regions and in 

large areas in the country is suggested.
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