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Epigenetic modifications are associated with
inter-species gene expression variation in
primates
Xiang Zhou1,2,4†, Carolyn E Cain1†, Marsha Myrthil1, Noah Lewellen1,3, Katelyn Michelini1,3, Emily R Davenport1,

Matthew Stephens1,2, Jonathan K Pritchard1,3,5* and Yoav Gilad1*

Abstract

Background: Changes in gene regulation have long been thought to play an important role in evolution and

speciation, especially in primates. Over the past decade, comparative genomic studies have revealed extensive

inter-species differences in gene expression levels, yet we know much less about the extent to which regulatory

mechanisms differ between species.

Results: To begin addressing this gap, we perform a comparative epigenetic study in primate lymphoblastoid cell

lines, to query the contribution of RNA polymerase II and four histone modifications, H3K4me1, H3K4me3, H3K27ac,

and H3K27me3, to inter-species variation in gene expression levels. We find that inter-species differences in mark

enrichment near transcription start sites are significantly more often associated with inter-species differences in the

corresponding gene expression level than expected by chance alone. Interestingly, we also find that first-order

interactions among the five marks, as well as chromatin states, do not markedly contribute to the degree of

association between the marks and inter-species variation in gene expression levels, suggesting that the marginal

effects of the five marks dominate this contribution.

Conclusions: Our observations suggest that epigenetic modifications are substantially associated with changes in

gene expression levels among primates and may represent important molecular mechanisms in primate evolution.

Background
Differences in gene expression level have long been

thought to underlie differences in phenotypes between

species [1-4], and in particular, to contribute to adaptive

evolution in primates [5,6]. Consistent with this, previous

studies have identified a large number of genes differen-

tially expressed among primates [7-16], and in a few cases,

have also found that the inter-species changes in gene ex-

pression level might explain differences in complex phe-

notypes between primates [17-22]. However, we still know

little about the underling regulatory mechanisms leading

to the differences in gene expression levels across species.

In particular, although a few studies have shown that the

inter-species differences in certain epigenetic mechanisms

can explain (in a statistical sense) a small proportion of

variation in gene expression levels between species [23-25],

the relative importance of evolutionary changes in different

epigenetic regulatory mechanisms remains largely elusive.

The present study aims to take another step towards

understanding gene regulatory evolution in primates, by

focusing on inter-species differences in epigenetic regu-

latory mechanisms that are functionally associated with

the regulation of transcription initiation. By studying a

number of regulatory mechanisms in parallel in multiple

primate species, we can assess the extent to which such

differences are associated with inter-species variation in

gene expression levels.

We focused on mechanisms associated with transcrip-

tion initiation, a major determinant of overall steady-state

gene expression levels [26-28]. Transcription of mRNA is

preceded by the assembly of large protein complexes that

coordinate the recruitment, initiation, and elongation of

RNA polymerase II (Pol II) [29]. Assembly of these large
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protein complexes relies on epigenetic information, in-

cluding various histone modifications [30], not only to

provide an additional layer of targets for regulatory pro-

teins, but also to directly affect chromatin accessibility of

the promoter region to DNA-binding proteins [31]. As a

result, Pol II occupancy and abundance of histone modifi-

cations are highly predictive of gene expression levels in

multiple cell types [27,32-35].

A natural hypothesis is that inter-species variation

in epigenetic modifications and Pol II abundance could

in part contribute to gene expression differences between

species. In support of this, a number of examples showed

associations between the two. For instance, in Arabidopsis

leaves, the enrichment of both H3K9ac and H3K4me3

in promoters is associated with transcript abundance

between species [36]. During adipogenesis, orthologous

genes with similar expression levels in mouse and human

are often marked by similar histone modifications,

and orthologous genes associated with inter-species dif-

ferences in histone modifications are often differentially

expressed between species [37]. In human, mouse, and pig

pluripotent stem cells, the difference in the abundance of

several histone modifications correlates with gene expres-

sion difference between species [38].

Recent comparative studies of certain epigenetic modi-

fications in primates provide further support for the as-

sociation between epigenetic modification variation and

gene expression variation [23-25,39]. For example, Pai et al.

showed that inter-species differences in DNA methyla-

tion pattern correlate with differences in gene expres-

sion level across species [24], and Cain et al. found that

inter-species differences in the profile of the histone modi-

fication H3K4me3 are associated with changes in gene

expression level between species [25]. However, the

abundance difference in either of the two marks accounts

for only a small proportion of gene expression differ-

ence between primates, and it remains unclear whether

changes to epigenetic marks play a major role in regula-

tory evolution.

Here, we performed a comparative epigenetic study

in primates to query the contribution of Pol II and four

histone modifications (H3K4me1, H3K4me3, H3K27ac,

and H3K27me3) to inter-species variation in gene ex-

pression levels. We choose these five marks not only

because their molecular functions have been relatively

well studied, but also because they represent a wide

variety of transcription initiation regulators. In par-

ticular, the four histone modifications mark important

regulatory regions: H3K4me1 is present at both active

and poised enhancers [34,40-42], H3K4me3 marks ac-

tive transcription start sites (TSSs) [34,43-45], H3K27ac

marks active enhancers and promoters [32,46-48], and

H3K27me3 marks repressed genomic regions [49,50].

In turn, Pol II directly interacts with chromatin

remodeling factors [51] and catalyzes the transcription

of mRNA [52].

In what follows, we evaluate the association of each of

the five marks with gene expression level variation across

species, and further, the joint contribution of all of them

to the association with variation in gene expression, both

within, but more importantly between, species.

Results
Genome-wide profiling of Pol II, four histone marks, and

mRNA

We used chromatin immunoprecipitation (ChIP) followed

by massively parallel sequencing (ChIPseq) to identify

genomic regions associated with Pol II as well as with four

histone modifications (H3K4me1, H3K4me3, H3K27ac,

and H3K27me3) in lymphoblastoid cell lines (LCLs) from

eight individuals from each of the three primate species,

humans, chimpanzees, and rhesus macaques (a total of 24

samples for all marks except H3K27ac, for which a rhesus

macaque sample is missing; Table S1 in Additional file 1;

Additional file 2). We also extracted RNA from the same

24 LCLs and performed gene expression profiling in each

sample by high-throughput sequencing (RNAseq; Table S1

in Additional file 1; Additional file 2).

As a first step of our analysis we used BWA [53] to align

sequence reads to their respective reference genomes (hu-

man, hg19; chimpanzee, panTro3; rhesus macaque, rhe-

Mac2; Tables S2 to S4 in Additional file 1). Following

convention, we then used RSEG [54] to identify enriched

(broad) regions for H3K27me3 and used MACS [55] to

identify (narrow) peaks for the other four marks (Tables

S5 to S6 in Additional file 1). To minimize the number of

falsely identified mark enrichment differences between

species, we used two-step cutoffs to classify the enriched

regions/peaks for each mark [25]. Our approach reflects

the assumption that epigenetic profiles in orthologous re-

gions will more often be shared than divergent. Briefly

(see Materials and methods for more details), we first used

a stringent cutoff to identify enriched regions with high

confidence. Conditional on observing an enriched region

in one individual using the stringent cutoff, we then classi-

fied the same or orthologous regions as enriched in other

individuals with a more relaxed second cutoff (Additional

file 3). Effectively, the more relaxed second threshold

borrows information across species to increase power to

detect enriched regions in any individual (regardless of

species), and reduces the tendency to falsely detect differ-

ences in mark abundance between species. Once peak re-

gions were identified, we obtained ‘normalized peak read’

counts for each individual by subtracting the number of

mapped reads in the control sample from the number of

mapped reads in the ChIPseq sample and further normal-

izing the resulting values to reads per kilobase per million

mapped reads (RPKM) [56].
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To facilitate comparisons between species that are fo-

cused on regions centered on expressed genes, we used

liftOver [57] to identify orthologous TSSs and followed a

previously described approach [16] to identify ortholo-

gous exons. We annotated orthologous TSSs and ortholo-

gous exons in a total of 26,115 genes. In order to analyze

our data in a broader context, we considered 15 different

chromatin state annotations previously identified in

LCLs in the human genome [33,58]. We followed a pre-

viously published approach (of using liftOver [16]) to

identify 308,514 orthologous regions with chromatin state

annotations in all three genomes.

We confirmed that both the ChIPseq and RNAseq

data are of high quality and that marks for individuals

within each species are highly correlated (Additional file 4).

Our chromatin marks data also show the expected enrich-

ment pattern in the 15 chromatin states [33,58] across the

genome. Specifically, H3K4me1 is enriched in strong and

weak enhancers, H3K4me3 is enriched in promoters,

H3K27ac is enriched in both promoters and enhancers,

H3K27me3 is enriched in both poised promoters and re-

pressed regions, while Pol II is enriched in strong pro-

moters (Additional file 5).

Pol II and four histone modifications are enriched near

transcription start sites

We expected the five marks (Pol II and four histone

modifications) to be enriched near TSSs in all three

primates, as has been shown previously in other contexts

[25,27,35,38,50]. To examine this, we considered the aver-

age normalized peak read counts in ±2 kb regions near

TSSs across all genes for each individual (more precisely,

the regions begin at 2 kb upstream of the TSSs and end at

the start of the second orthologous exon or 2 kb down-

stream of the TSSs, whichever is shorter). Similarly, for

each individual, we obtained the normalized peak read

counts over the entire genome. We then calculated fold

enrichment in regions near TSSs for each mark by consid-

ering the ratio of these two values for each individual. We

also performed non-parametric Mann-Whitney one-sided

tests, based on data from all eight individuals in each spe-

cies, to determine whether the normalized peak read

counts in TSS regions are significantly higher than their

genome-wide counterparts. The results of these analyses

clearly indicate that all five marks are significantly

enriched near TSSs, regardless of species (Figure 1A). The

enrichment pattern is robust with respect to the choice of

Figure 1 Marks are enriched near transcription start sites. (A) Fold enrichment of the five marks in ±2 kb regions near TSSs in the three

primates. Error bars indicate standard deviation calculated across eight individuals in each species. Asterisks indicate significance levels based on

Mann-Whitney one-sided tests (*P < 0.05, **P < 0.01, ***P < 0.001). (B) Distribution of normalized peak read counts for five marks around TSSs for

each of the three primates. Units are in square root of RPKM (that is, RPKM0.5) and are averaged across individuals and across genes.
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the size of the TSS region, but gradually decreases for in-

creasingly larger regions around TSSs (Additional file 6).

To explore the localization pattern of the five marks near

TSSs, we generated, for each species, the distributions of

normalized peak read counts averaged across all genes and

all individuals (Figure 1B). Consistent with previous stud-

ies [25,27,34,35,38,50,59], all five marks display bimodal

distribution patterns near TSSs - albeit to a lesser extent

for H3K27me3 - with two modes flanking the TSSs.

Levels of the five marks are also highly correlated with

each other in regions near TSSs (Additional file 7). Specif-

ically, H3K27me3 levels are negatively correlated with the

other four marks, while H3K4me1, H3K4me3, H3K27ac

and Pol II levels are positively correlated with each other.

Mark abundance near transcription start sites correlates

with gene expression levels within species

To explore the relationship between mark abundance and

gene expression levels, we first obtained quantitative mea-

surements and performed appropriate transformations for

both mark enrichment level and RNA expression level

(see Materials and methods for details). Next, we divided

genes evenly (thus, arbitrarily) into the following three sets

based on their expression levels: highly expressed, inter-

mediately expressed and expressed at low levels. We

obtained the distribution of the mark enrichment

levels near TSSs, averaged across individuals within a species

and across genes in each given set (Figure 2A; Figure S7A

in Additional file 8; Figure S8A in Additional file 9).

Regardless of species, we found that the repressive mark

H3K27me3 [49,50] is enriched near TSSs of genes expressed

at low levels, whereas Pol II and the other four active his-

tone marks [32,34,40-48,52] are highly enriched near TSSs

of highly expressed genes. To verify that these patterns are

robust, we arbitrarily divided genes into a larger number

of groups based on absolute gene expression levels, such

that each group contains 200 genes (except the first group,

which contains all non-expressed genes, and the last

group, which contains fewer than 200 genes). We plotted

the mean mark enrichment levels in the ±2 kb region near

TSSs against the mean gene expression levels in each

group, both averaged across individuals within a species

and across genes in that group (Figure 2B; Figure S7B

in Additional file 8; Figure S8B in Additional file 9;

Additional file 10). We again observed a negative trend

between the enrichment levels of H3K27me3 and gene

Figure 2 Mark enrichment levels are correlated with gene expression levels in human. (A) Density of enrichment level for five marks

around TSSs for genes with low, medium, and high expression levels. Values are averaged across individuals and across genes in each category.

(B) Mark enrichment levels plotted against gene expression levels for sliding windows of genes (n = 200) ordered from low to high expression

levels. Enrichment levels are obtained in ±2 kb regions near TSSs and scaled to be between 0 and 1. All values are averaged across individuals

and across genes in the window. (C) Proportion of variance in gene expression levels explained (R squared) by individual marginal effects (five

colored bars), combined mark marginal effects (grey bars), all first-order interaction effects in addition to marginal effects (black bars), and all

chromatin state-specific effects in addition to marginal effects (white bars) of the five marks. Results are shown for enrichment levels in

TSS regions with increasing length. Error bars indicate standard deviation calculated based on 20 split replicates.
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expression levels, as well as positive trends for the cor-

relations between the enrichment levels of the other

four marks and gene expression levels. These trends

were robust with respect to the choice of TSS region size

(Additional file 10).

To quantitatively measure the relationship, namely the

extent of association, between mark abundance and gene

expression levels across genes within each species, we

fitted a linear model for all genes, with gene expression

level as response and mark enrichment level in regions

near TSSs as covariates (averaged across individuals). In

addition, to avoid model over-fitting, we used a 10-fold

cross-validation (with 20 split replicates) and calculated

R squared, in the test set (Figure 2C; Figure S7C in

Additional file 8; Figure S8C in Additional file 9;

Additional file 11). We found that the R squared by

H3K4me3, H3K27ac, or Pol II is much higher than the R

squared by the other two marks. Our observations with

respect to individual marks are in close agreement with

results from previous studies in other tissues [27,32,60].

In a statistical sense, levels of the five marks combined

explain approximately 58% of the variance in gene expres-

sion levels within species (59% in human, 58% in chim-

panzee, and 57% in rhesus macaque).

Because the marks show strong correlation patterns

near TSSs (Additional file 7), and because previous stud-

ies have shown that combinatorial patterns of histone

modifications and Pol II (that is, chromatin states) could

be of biological importance [33,58], we asked if adding

interaction effects increases the R squared. To do so, we

considered all first-order interactions among marks -

including all interactions between two marks, among

three marks, and so on - in addition to their marginal

effects. We used a Bayesian variable selection regression

(BVSR) model [61-64] with gene expression level as re-

sponse and all marginal and interaction terms as covari-

ates. BVSR provides a 'posterior inclusion probability'

(PIP) for each covariate, which indicates the confidence

that the covariate contributes to prediction of phenotype.

In addition, BVSR can produce reliable estimates of the

proportion of variance explained by all covariates [61,64].

We used the posterior means as coefficient estimates and

calculated R squared in the test set. Using this approach,

we found that all marginal effects, except for H3K4me1,

are important features that are consistently selected by

the model (PIP >0.9; Additional file 12). Among the inter-

action features, interactions H3K4me1-H3K4me3 with

or without Pol II, H3K4me1-H3K27ac with or without

Pol II, H3K4me1-H3K27me3 with or without H3K4me3,

H3K4me3-H3K27ac with or without Pol II, H3K27ac-

Pol II are consistently selected as important features

(PIP >0.9; Additional file 12). Somewhat surprisingly,

however, considering all interaction features does not in-

crease much the association of the marks with variation

in gene expression levels across genes within species

(black bars versus grey bars in Figure 2C; Figure S7C in

Additional file 8; Figure S8C in Additional file 9).

To further explore the importance of mark combin-

atory patterns, we directly looked at state-specific mark

effects with respect to the 15 different chromatin states

near TSSs. Fitting a BVSR with both marginal effects

and mark enrichment levels in the 15 chromatin states

as covariates, we again found that all marginal effects,

except for H3K27ac, are important features (Additional

file 13). Among the mark enrichment levels in different

chromatin states, H3K4me1 and H3K27ac in strong en-

hancers (state 4), as well as H3K4me1 and Pol II in re-

petitive regions (state 13 and state 14, respectively) are

consistently selected as important features (Additional

file 13), which is not unexpected given their importance

in various interaction terms we identified when we consid-

ered our own data alone. Again, somewhat surprisingly,

considering state-specific mark effects in all chromatin

states does not explain much additional variance in

gene expression levels within species (white bars ver-

sus grey bars in Figure 2C; Figure S7C in Additional

file 8; Figure S8C in Additional file 9). In fact, consider-

ing chromatin states as far as 250 kb away from TSSs does

not increase the explained variance (R squared are still

0.60 ± 0.01, 0.58 ± 0.01, 0.58 ± 0.01 in human, chimpanzee,

and rhesus macaque, respectively).

Differences in mark enrichment are associated with gene

expression differences across species

Next, we considered differences between species. As a

first step, we identified differentially expressed (DE) genes

across species, as well as orthologous TSS regions that are

associated with inter-species differences in enrichment of

histone marks or Pol II. As expected, we found a smaller

number of differences between humans and chimpanzees

than between either humans or chimpanzees and rhesus

macaques (Table 1; Tables S7 and S8 in Additional file 1;

Additional file 14).

We found that DE genes, compared with non-DE

genes, are more likely to show inter-species differences

in mark enrichment at the TSSs (Figures 3A). The direc-

tions of the associations are consistent with our expecta-

tions (namely, we observed increased gene expression

associated with decrease in H3K27me3 and increase in

the other marks and Pol II). In addition, for those genes

where the mark enrichment levels and the gene expres-

sion levels differ in the expected direction between spe-

cies (that is, opposite direction for H3K27me3, same

direction for the other four marks), DE genes are gener-

ally more often associated with inter-species differences

in mark enrichment at their TSS regions than expected

by chance alone (Figure 3B). These observations are

robust with respect to the choice of false discovery
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rate (FDR) cutoff for classifying DE genes (Additional

file 15).

The association of inter-species DE genes and differ-

ences in mark enrichment in the corresponding TSS re-

gions across species encouraged us to further explore

this relationship. We performed analyses similar to those

described above, except that we focused on differences

in gene expression level and mark enrichment level be-

tween pairs of species.

Considering data from each pair of species at a time

(for example, human and chimpanzee), we divided genes

into 200-gene groups based on inter-species expression

level difference and plotted the mean mark enrichment

level differences against the mean gene expression level

differences across the species (Figure 4A). We found that

differences in mark enrichment level correlate with dif-

ferences in gene expression level between primates. In

particular, the difference in H3K27me3 enrichment level

is negatively correlated with gene expression level dif-

ferences between species, and the enrichment level differ-

ences of the other four marks are positively correlated

with inter-species differential expression. A few represen-

tative patterns are shown in Additional file 16. These ob-

servations are robust with respect to the chosen size of

the TSS regions (Additional file 17).

To quantitatively measure the proportion of variance

in inter-species gene expression level differences explained

by the five marks, either individually or combined, we

again used a 10-fold cross-validation strategy and ap-

plied linear models to calculate R squared in DE genes

(Figure 4B; Additional files 18 and 19). We focused on

the ±2 kb regions near TSSs as we found these to be

most predictive in the analysis of data within species.

Each of the five marks explained an appreciable pro-

portion of variance in gene expression level differences

between any pairs of species (Figure 4B). The relative

importance of the five marks is consistent with that

observed within species (Figures 2C and 4B). Together,

the five marks explain (in a statistical sense) approximately

40% of the variance in LCL gene expression levels across

species (42% between human and chimpanzee, 40% be-

tween human and rhesus macaque, and 38% between

chimpanzee and rhesus macaque; FDR <5%).

Finally, we used BVSR to select important marginal

and first-order interaction features (Figures 4B and 5A;

Additional file 18). Again, we found that all marginal ef-

fects are important features that are consistently selected

by the model (PIP >0.9 for all FDR cutoffs; Figure 5A).

However, only the H3K4me3-Pol II term is consistently

selected as an important feature for pairs of species

across a range of FDR cutoffs. In addition, modeling the

interaction features in addition to the marginal effects

does not increase the overall explained variance in gene

expression level differences between primates (Figure 4B;

Additional file 18).

Finally, we again used BVSR to select important state-

specific mark effects with respect to the 15 different chro-

matin states near TSSs (Figures 4B and 5B; Additional

file 18). We found all marginal effects, except for Pol II

(which still shows strong evidence in two of the three

comparisons), to be consistently selected by the model

(Figure 5B). None of the state-specific mark effects in

different chromatin states are selected in addition to

the marginal effects. Moreover, chromatin states do not

contribute much to the variance in gene expression level

differences between species, in addition to their marginal

effects (Figure 4B; Additional file 18).

Discussion
Correlation and causality

As we briefly mention in the results section, it is import-

ant to clarify that we use the words 'contribute' and 'ex-

plain' to mean a purely statistical conditional relationship

between the mark abundance and gene expression levels.

Previous work that focused on molecular mechanisms

indicates that variation in Pol II and histone modifica-

tions directly affect gene regulation. Specifically, it is well

established that Pol II directly transcribes mRNA [52]. It

has been shown that H3K4me3 recruits chromatin-

remodeling complexes to increase the accessibility of

the chromatin to transcriptional machinery and there-

fore promote gene expression [44,45,65]. It is also gener-

ally believed that the other three histone modifications

(H3K4me1, H3K27ac, H3K27me3) act in a similar fashion

to H3K4me3 to either promote or inhibit gene expression

by regulating chromatin accessibility [31]. In particular,

the clearance of H3K4me1 is shown to be necessary for

the subsequent binding of some transcription factors [66].

On the other hand, recent work (from our lab as well)

indicates that oftentimes differences in histone marks

Table 1 Number of transcription start site regions associated with interspecies differences in enrichment of marks and

number of differentially expressed genes from pairwise comparisons among three primates at a false discovery rate

cutoff of 5%

H3K4me1 H3K4me3 H3K27ac H3K27me3 Pol II RNA

H versus C 137 3,037 3,176 438 1,577 3,824

H versus R 3,298 5,257 5,549 1,487 3,708 6,567

C versus R 3,421 4,928 5,456 1,017 3,299 5,914

C, chimpanzee; H, human, R, rhesus macaque.
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Figure 3 (See legend on next page.)
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are mediated by changes in transcription factor binding

[67-69]. Transcription factor binding may be the principle

determinant of chromatin state, which is then stabilized

or marked by histone modifications. In that sense, the as-

sociation between changes in histone modification across

species and variation in gene expression levels may not in-

dicate a direct causal relationship, but rather an indirect

one, possibly mediated by inter-species differences in tran-

scription factor binding.

Indeed, we did not perform experiments here that allow

us to directly infer causality. The well-established links from

previous studies imply that the quantitative relationship

between mark abundance and gene expression level likely

reflect, at least in part, a (direct or indirect) causal contri-

bution. In particular, the larger R squared by H3K4me3,

H3K27ac and Pol II compared with the other two marks

is consistent with the key functions of the three in pro-

moting transcription [44,45,51,65,70]. To better learn the

statistical relationship among the marks and gene expres-

sion levels, we constructed Bayesian networks using the

data in the present study. Interestingly, both within spe-

cies and between species, only H3K27ac, H3K27me3, and

Pol II send directed edges towards RNA, suggesting that

the effects from H3K4me1 and H3K4me3 are mediated

(See figure on previous page.)

Figure 3 Differentially expressed genes associate with inter-species differences in mark enrichment at transcription start sites.

(A) Enrichment level differences for the five marks around TSSs of DE genes (black) and non-DE genes (grey) for each pair of species. Mark differences

are considered with respect to the species associated with the lower gene expression level. DE genes are determined based on an FDR cutoff of 5%.

(B) TSS regions associated with inter-species differences in any mark are enriched for DE genes. Plotted is the fold enrichment of TSS regions

associated with inter-species differences in enriched marks in DE genes across pairs of species, for genes where the mark enrichment

levels and the gene expression levels differ in the expected direction (that is, opposite for H3K27me3, same for the other four marks). Both the TSS

regions associated with inter-species differences in enriched marks and DE genes are determined based on an FDR cutoff of 5%. Asterisks indicate

significance levels from binomial tests (*P < 0.05, **P < 0.01, ***P < 0.001). C, chimpanzee; H, human; R, rhesus macaque.

Figure 4 Differences in mark enrichment level correlate with differences in gene expression level between pairs of primates. (A) Differences

in mark enrichment level is plotted against differences in gene expression level for sliding windows of genes (n = 200) ordered based on the differential

expression effect size, for all genes. Differences in enrichment level were obtained in ±2 kb regions near TSSs and scaled to be between -1 and 1. All

values are averaged across individuals and across genes in the window. (B) Proportion of variance in gene expression level differences explained

(R squared) by mark enrichment level differences, for all pairwise comparisons among the three primates. Different linear models are fitted

to account for individual marginal effects (five colored bars), combined marginal effects (grey bars), all first-order interaction effects in

addition to marginal effects (black bars), and all chromatin state-specific effects in addition to marginal effects (white bars) of the five

marks. The DE genes are determined based on an FDR cutoff of 5%. Enrichment level differences are obtained in ±2 kb regions. Error

bars indicate standard deviation calculated across 20 split replicates. C, chimpanzee; H, human; R, rhesus macaque.
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through the three marks. In addition, both H3K27me3

and Pol II are the critical nodes that receive most input/

edges from the other marks (Additional file 20). However,

though the Bayesian network is sometimes referred to as

the causal network, it only describes the statistical de-

pendency rather than causal relationship among the co-

variates; the statistical dependency between two covariates

could still result from an indirect relationship mediated by

unmeasured factors, or induced by some common un-

measured confounding factors.

Therefore, we caution against the over-interpretation

of these association results and Bayesian networks, and

defer the interrogation of both the direct and directional

effects of epigenetic marks on gene expression levels to

future studies. It is also possible that other molecular

mechanisms are responsible for the correlation and de-

pendency between mark abundance and gene expression

levels, at least for a subset of the marks and in a subset

of the genes. For example, in some cases a true causal

factor may independently affect both gene expression

Figure 5 Importance of marginal and interaction effects from five marks, and their enrichment in different chromatin states, for

explaining gene expression level differences between primates. (A) The left panel lists marginal (M) or interaction terms (I2 to I5) among

the five marks, where each row represents an interaction term and each column represents the presence (black) or absence (grey) of a particular

mark effect for that interaction term. For example, the first row represents the marginal effect of H3K4me1, and the sixth row represents the

interaction effect between H3K4me1 and H3K4me3. The right panel lists the corresponding PIP of each term between any pairs of primates for

DE genes classified with different FDR cutoffs. (B) The left panel lists marginal (M) or chromatin state-specific terms for 15 chromatin states

(S1 to S15) near TSSs, where each column represents the presence (black) or absence (grey) of a particular mark effect for that term. For

example, the sixth row represents the state-specific effect of H3K4me1 in chromatin state S1. The right panel lists the corresponding PIP.

The PIP measures the importance of each interaction term with higher values indicating higher significance. Mark enrichment level differences

and mark enrichment level differences inside chromatin states within ±2 kb regions near TSSs were used for fitting. C, chimpanzee; H, human; R, rhesus

macaque. M, marginal effects; I2, interaction term between pairs of marks; I3, interaction term among three marks; I4, interaction term among four

marks; I5, interaction term among five marks; S1, active promoter; S2, weak promoter; S3, poised promoter; S4, strong enhancer; S5, strong enhancer;

S6, weak enhancer; S7, weak enhancer; S8, insulator; S9, transcription transition; S10, transcription elongation; S11, weak transcription; S12, repressed;

S13, heterochroma/lo; S14, repetitive/copy number variation; S15, repetitive/copy number variation.
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level and histone modifications at the same location (this has

been demonstrated previously in other contexts [71,72]),

causing correlations or dependency between the two. Our

study was not designed to distinguish between all of these

possible scenarios.

Regardless of whether the abundance of the four his-

tone modifications and Pol II are truly causally related

to variation in gene expression levels, they are only in-

volved in some of the many intermediate steps that a

complex machinery takes to convert genome sequence

variation, including both cis- and trans-acting sequence

differences, into gene expression variation. The amount

of gene expression variation explained by the five marks,

therefore, still reflects, at best, only part of the causal

contribution of the sequence variation to gene expres-

sion variation through transcriptional processes (as op-

posed to other aspects of the mRNA life cycle, such as

decay, splicing and polyadenylation). If the abundance

levels of the four histone modifications and Pol II are in-

deed causal, then the proportion of variance in gene ex-

pression levels tracing back to the sequence variation

through the five marks is likely smaller than what we

have observed here (because the mark abundance vari-

ation is at a later step than the sequence variation). If

the abundance levels of the five marks are not causal but

are by-products of some true causal factors (such as

variation in transcription factor binding), then the pro-

portion of variance in gene expression levels tracing

back to the sequence variation through these true causal

factors could be larger than what we have observed here

(because the mark abundance levels are noisy measure-

ments of these causal factors). Moreover, the effects from

the sequence variation could be in complicated forms, be-

cause simple measurements of sequence conservation and

sequence divergence do not predict gene expression level

difference between species (Additional file 21). It will be

of great interest to reveal the detailed steps of this process

and the ultimate contribution of sequence variation to

gene expression variation by mapping all the different

regulatory checkpoints.

The chain of events

In our work, we followed the example of previous stud-

ies [27,58] and treated the abundance of Pol II and his-

tone modifications equivalently in investigating their

relationship to gene expression level variation. We note

that numerous studies have established a direct role of

Pol II in transcription initiation while pointing to indir-

ect roles of the four histone modifications in transcrip-

tion initiation through Pol II [31,44,45,51,52,65]. These

observations suggest that it might make sense to apply a

two-stage analysis to the data. First, we might investigate

the contribution of the four histone modifications to Pol

II abundance (Figure S20A,C in Additional file 22), and

then investigate the contribution of Pol II abundance to

gene expression levels (Figures 2C and 4B). However, such

naïve analyses ignore the contribution of the four histone

modifications to gene expression levels through mecha-

nisms other than regulating the recruitment of Pol II and

its abundance levels. For example, studies have shown that

Pol II abundance itself is not the sole determinant of tran-

scription initiation, and Pol II can remain in a pausing

state without initiating active transcription [73-76]. Such a

pausing state can be predicted by histone modifications

[70]. Indeed, the constructed Bayesian networks revealed

directed effects from H3K27ac and H3K27me3 to gene

expression, bypassing Pol II (Additional file 22). In the

present study, we also show that modeling the five marks

together explains a higher proportion of variation in gene

expression level than would be explained by Pol II alone

(Figures 2C and 4B). In fact, for both within-species and

inter-species analysis, the R squared by the four histone

modifications is only slightly smaller than that by the

four histone modifications and Pol II (Figure S20B,D in

Additional file 22). In addition, the PIPs for each inter-

action term among the four histone modifications are not

sensitive to whether Pol II is included in the analysis or

not (that is, the PIPs for each interaction term analyzed

without Pol II are similar to those obtained by first analyz-

ing with Pol II but then marginalizing out Pol II; data not

shown). As a result of these considerations, we chose to

treat the abundance of Pol II and histone modifications

equivalently in our study.

The contribution of interactions between marks

In addition to the marginal effects of the five marks, we

also explored the importance of all first-order interaction

effects among them. In particular, we identified several

notable interaction effects that are important to explaining

(in a statistical sense) gene expression level variation within

species. Many of these effects are present in important

chromatin states identified by other computational methods

[33,58]. Two of these interactions, one between H3K4me1

and H3K27ac, and the other between H3K4me1 and

H3K27me3, have been recognized to be part of important

classes of genomic elements during early development in

humans [77]. In addition, we also explored the importance

of chromatin states in explaining gene expression vari-

ation. We found that H3K4me1 and H3K27ac levels in

strong enhancer regions are important to explaining vari-

ation in expression level, and both marks have previously

shown enrichment in enhancers. However, we found it

surprising that the explained proportion of variance in

gene expression levels (within or between species) remains

largely similar, whether or not we consider all first-order

interactions, or whether or not we consider all state-

specific mark effects in 15 chromatin states, in addition to

the marginal effects in the model. Our results imply that
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the marginal effects of the five marks dominate the contri-

bution; interaction effects and chromatin state-specific

mark effects contribute only a small proportion.

It is possible that we are underpowered to identify im-

portant interactions and/or chromatin-specific mark ef-

fects. Indeed, measurement noise for any interaction

effect is likely the multiplication of noise levels accompany-

ing each marginal effect, and in the case of the inter-species

analysis, the sample size is small (because we focused on

differentially expressed genes). Additionally, computational

models in identifying chromatin states and annotation of

TSSs may not be accurate. The statistical challenges

notwithstanding, the lack of important and consistent

interaction effects as well as chromatin state-specific

mark effects in our data is nevertheless an intriguing

observation.

Using lymphoblastoid cell lines as a model system

In the present study, we chose to work with LCLs be-

cause they provide abundant material and represent a

homogenous cell type from all three species. We note

that using LCLs has been criticized previously for two

main reasons: that LCLs are cultured cells instead of a pri-

mary tissue and are susceptible to batch effects [78,79],

and that LCLs require an initial virus transformation that

may causes artifacts [80-82]. However, numerous previous

studies have demonstrated the usefulness of LCLs in gen-

omics studies [83-92], and have shown that the regulatory

architectures identified in LCLs are highly replicable in

primary tissues [93-97]. In particular, it has been shown

that the patterns of inter-species gene expression level dif-

ferences in LCLs highly resemble those in primary tissues

between primates [98]. In the present study, we also found

that the contribution of the five marks to gene expression

level variation within species highly resembles those ob-

tained in other tissues or organisms [27,32,60], suggesting

that a similar quantitative relationship between the five

marks and gene expression level variation exists across

multiple species and tissues. In addition, the number of

DE genes detected from LCLs in the present study is simi-

lar to that obtained from liver tissue in a different study

[16], and an average of 28% of the DE genes from our

study are also identified as DE genes in theirs (20% be-

tween human and chimpanzee, 33% between human and

rhesus macaque, and 31% between chimpanzee and rhesus

macaque; FDR <5%). Furthermore, the DE genes (human

versus chimpanzee and human versus rhesus macaque)

detected in the present study are enriched with cerebel-

lum human lineage-specific genes found with a different

method in a previous study [99] (53% more than expected;

Fisher’s exact test P-value = 9.8 × 10-6), suggesting their

functional relevance in human brain evolution. Therefore,

although we acknowledge the potential pitfalls of using

LCLs, we believe that they provide a useful and reasonable

system, and that the genomic mechanisms we interrogated

in LCLs are likely representative of those in primary

tissues.

Final remarks

Even if we assume direct or indirect causality, we note

that Pol II and all four histone modifications together do

not explain all intra- or inter-species gene expression

level variation. Indeed, even with an overly simplified

model that accounts for noise in mark enrichment meas-

urement or gene expression measurement (see Materials

and methods for details), the 'maximal contribution' from

the five marks together to gene expression variation is still

estimated to be only 59% within species (60% for human,

59% for chimpanzee, and 58% for rhesus macaque), and

43% for DE genes between species (47% between human

and chimpanzee, 43% between human and rhesus ma-

caque, and 40% between chimpanzee and rhesus macaque;

FDR <5%). It is likely that other molecular mechanisms

(for example, those affecting transcription initiation,

mRNA decay, splicing, polyadenylation, and microRNA

regulation [100-102]) account for the remaining portion

of variation in gene expression levels. We hope that, by

collecting comparative genomic data on additional epigen-

etic and genetic regulatory mechanisms, obtaining more

accurate measurements and furthering our analysis on

various interactions in the future, we could eventually ob-

tain a better understanding of the detailed molecular

mechanisms underlying the evolution of gene expression

levels in primates.

Conclusions
We have explored the extent to which inter-species dif-

ferences in Pol II and four histone modifications are as-

sociated with differences in gene expression levels across

primates. We found that all five marks combined explain

40% of the variation in LCL gene expression levels between

pairs of species (when we focused on DE genes), which is

5% more than the single most informative mark. These ob-

servations suggest that epigenetic modifications are sub-

stantially associated with changes in gene expression level

among primates and may represent important molecular

mechanisms in primate evolution.

Materials and methods
Samples and cell culture

Eight LCLs each from human, chimpanzee, and rhesus

macaque individuals were obtained from Coriell Institute

[103], New Iberia Research Center (University of Louisiana

at Lafayette), and New England Primate Research Center

(NEPRC, Harvard Medical School). In addition, one input

sample from each of the three species was used as control.

Cell lines were grown at 37°C in RPMI media with 15%
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fetal bovine serum, supplemented with 2 mM L-glutamate,

100 IU/ml penicillin, and 100 μg/ml streptomycin.

ChIPseq and RNAseq

ChIP was performed largely as previously described [25].

In addition to the data collected in this study, we incorpo-

rated data from six H3K4me3 ChIP assays performed in

one previous study [25] and five Pol II ChIP assays per-

formed in another [101]. For newer samples that were

not described in these two previous studies, chroma-

tin was sheared with a Covaris S2 (settings: 40 minutes,

duty cycle 20%, intensity 8, 200 cycles/burst, 500 μl at a

time in 12 × 24 mm tubes). The amount of antibody used

for each ChIP was separately optimized for H3K4me3 (4 μg;

Abcam ab8580, Cambridge, MA, USA), H3K4me1

(12 μg; Millipore 07-436, Billerica, MA, USA), H3K27ac

(4 μg; Abcam ab4729), H3K27me3 (4 μg; Millipore 07-

449), and Pol II (10 μg; Santa Cruz sc-9001, Dallas, TX,

USA). Some of the data for the human samples is also

used in another study [69].

The quality of each immunoprecipitation was assessed

by RT-PCR of positive and negative control genomic re-

gions previously shown to be enriched or not enriched

in ENCODE LCL ChIP data for each feature [104]. Suc-

cessful ChIP assays showed enrichment at the positive

control regions relative to the negative control regions

in the immunoprecipitated sample compared with the

input whole-cell extract from the same individual. We

prepared Illumina sequencing libraries from the DNA

from each ChIP sample, and from a pooled input sample

from each species (containing equal amounts of DNA by

mass from each individual in a species) as previously de-

scribed [105], starting with 20 μl of ChIP output or 4 ng

pooled input sample.

Libraries were sequenced in one or more lanes on an

Illumina sequencing system using standard Illumina pro-

tocols. H3K4me1, H3K4me3, H3K27ac, and H3K27me3

samples were sequenced on a Genome Analyzer II (GAII)

system (single end, 36 bp), and Pol II and input samples

were sequenced on a HiSeq system (single end, 28 bp and

50 bp, respectively). Input reads were trimmed to 28 bp

and 36 bp, where appropriate, for comparison with the

reads generated from ChIP samples.

For RNAseq, RNA was extracted and processed to cre-

ate Illumina sequencing libraries as previously described

[25,105]. Each sample was sequenced on one or more

lanes of an Illumina GAII system.

Reads alignment

All sequenced reads were aligned to human (hg19, February

2009), chimpanzee (panTro3, October 2010), or rhesus ma-

caque (rheMac2, January 2006) genome builds with BWA

[53] version 0.5.9. Each genome was slightly modified to

exclude the Y chromosome, mitochondrial DNA, and re-

gions labeled as random.

We excluded ChIPseq and input reads that were

assigned a quality score less than 10, contain more than

2 mismatches or any gaps compared with the reference

genome, or are duplicates. We excluded RNAseq reads

that were assigned a quality score less than 10 or contain

more than 2 mismatches or any gaps relative to the ref-

erence genome.

Classifying genomic regions as enriched

MACS version 1.4.1 [55] was used to identify sharp peaks

of enrichment for H3K4me1, H3K4me3, H3K27ac, and Pol

II; RSEG version 0.4.4 [54] was used to classify enrichment

of broad genomic regions of enrichment for H3K27me3.

For MACS, we specified an initial P-value threshold that

was optimized for each feature (H3K4me1, 0.01; H3K4me3,

0.0001; H3K27ac, 0.001; and Pol II, 0.001), with the appro-

priate species’ input control file for comparison. Because

the chimpanzee sequenced input sample yielded roughly

twice the number of reads as the other input samples, to

avoid any species bias related to number of input reads, we

subsampled the chimpanzee input data to a final number of

40 million reads, which is now comparable to the human

and rhesus macaque input samples. For RSEG, we used the

'rseg-diff' function with input control data, with the recom-

mended 20 maximum iterations for hidden Markov model

training.

Enriched regions or peaks identified by MACS or

RSEG were next filtered to exclude regions or peaks that

could not be mapped uniquely in all three primate ge-

nomes. To do so, we first divided the genome into 200 bp

windows, and we retained those windows that could be

mapped to all three primate genomes with gaps less than

100 bp using liftOver [57], and that have at least 80% of

bases mappable across all three species (where mapp-

ability was measured by the ability of 20 bp sequences to

be uniquely mapped to a genome). We then excluded

enriched regions or peaks that did not overlap this set of

200 bp windows. To further ensure that regions or peaks

of enrichment for features have orthologous positions in

human, chimpanzee, and rhesus macaque genomes, we

also mapped each region or peak coordinates to the other

two genomes with liftOver and excluded enriched regions

and peaks that failed to map with at least 20% of the bases

aligning to the other genomes.

To minimize the number of falsely identified differences

in enrichment status between individuals, we applied two-

step cutoffs [25] to classify enriched regions or peaks for

each mark. (We chose to present data with this two-step

cutoffs procedure because this procedure was also used in

other stages of the analysis, though the results presented

here are not very sensitive to whether this procedure is ap-

plied.) Specifically, for the features analyzed with MACS,
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we chose a first, stringent FDR cutoff based on the distri-

butions of FDR values associated with identified peaks.

A first cutoff of 5% FDR was chosen because we observe

a clear enrichment below that value for all features. To

select the more relaxed cutoff, we examined the distribu-

tions of FDR values for peaks overlapping orthologous

positions of peaks that pass the first cutoff (where the

orthologous regions were classified by liftOver). These

distributions are enriched for small values, which is con-

sistent with individuals of the same or a closely related

species having similar epigenetic profiles. We chose sec-

ondary FDR cutoffs to capture this enrichment for each

feature (H3K4me1, 15%; H3K4me3, 10%; H3K27ac, 15%;

and Pol II, 10%).

For H3K27me3, which was analyzed with RSEG, we

could not choose cutoffs exactly the same way as de-

scribed above because RSEG does not produce an FDR

value for each enriched region. Instead, for each region

classified as enriched, RSEG assigns a domain score, which

is the sum of the posterior scores of all bins within the

domain. To choose a first, stringent score cutoff, we cal-

culated the proportion of regions classified as enriched

by RSEG that overlap regions classified as enriched in

ENCODE LCL data [104] at a range of score cutoffs. We

chose a first, stringent, score cutoff of 20 because approxi-

mately 85% of regions classified as enriched with a score

of at least 20 overlapped regions classified as enriched in

ENCODE data. To choose a second, more relaxed, score

cutoff, we examined all the regions classified as enriched

that overlap the orthologous positions of regions classified

as enriched by the first cutoff. As expected, over 80% of

these regions overlap ENCODE enriched regions, consist-

ent with a low rate of false-positive calls of enrichment

among this set of regions. We therefore chose the second,

more relaxed cutoff for enrichment to be classification as

enriched by RSEG, without a score requirement.

Mark enrichment level and RNA expression level

We mapped RNA sequencing reads to each orthologous

exon, summed values across exons for each gene, and

normalized them with respect to the total mapped reads

and total exon length to obtain the normalized reads (in

RPKM) for each gene. Following convention [27,60,106],

we transformed these normalized reads by log2 trans-

formation (after adding a small value to ensure positive

values [60,106]), and we termed the resulting value 'gene

expression level'. For the five marks, we divided the num-

ber of normalized peak reads in different sized regions

surrounding the TSSs for each gene by the genome-wide

average to obtain mark fold enrichment in these regions.

In the case of chromatin state analysis, we retained the

peak reads within each given chromatin state, overlapped

them with the regions surrounding the TSSs, and normal-

ized for each gene by the genome-wide average. Notice

that we did not use the nearest TSS for read assignment

because of the potential inaccuracy of TSS annotations.

Instead, if a read is close to multiple TSSs then it will be

assigned multiple times. We performed square root trans-

formation following previous studies [107], and termed

the resulting value 'mark enrichment level', which serves

as a measurement of mark abundance. We note that the

normalized peak read counts require a step to subtract

reads in the corresponding region from input controls,

but the final results presented here are not sensitive to

whether this step is performed or not.

Analysis with Bayesian variable selection regression models

BVSR specifies sparse priors on covariates, and has been

proven to be effective in selecting important features as

well as to be accurate in estimating the proportion of

variance in phenotypes explained by all covariates

[61,64]. To fit BVSR, we first standardized each covariate

to have unit standard deviation. We then used the Markov

chain Monte Carlo method (10,000 burn-in iterations and

100,000 sampling iterations) to obtain posterior samples

of parameters, using the software GEMMA [64,108,109].

For R squared estimation, we fitted the model in the train-

ing set and used the posterior means as coefficient estimates

to calculate R squared in the test set. For PIP calculation, we

fitted the model using both training and test sets.

Classifying DE genes and TSS regions associated with

inter-species differences in mark enrichment

We tested all genes whose median mark enrichment level

or gene expression level across 16 individuals in the spe-

cies being compared is above zero. To ensure that values

are comparable across individuals, we first quantile trans-

formed either the gene expression level or the mark en-

richment level across genes in each individual into a

standard normal distribution. Afterwards, to guard against

model misspecification, for each gene, we further quantile

transformed either the gene expression level or the mark

enrichment level (in the ±2 kb region near the TSSs) in 16

individuals from the two species being compared into a

standard normal distribution. We then fitted a linear

model in these individuals with sex as a covariate and spe-

cies label as a predictor. We tested whether the coefficient

for the species label is significantly different from zero. At

the same time, we constructed a null distribution by per-

muting every possible combination of the species label

(a total of 6,435 combinations for H3K27ac and 12,870

combinations for the other four marks and RNA), and we

calculated the FDR based on this empirical null.

Overlap between DE genes and TSS regions associated

with inter-species differences in mark enrichment

In Figure 3B, for each mark, we focused on genes where

the gene expression levels and mark enrichment levels
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differ between pairs of species in the expected direction.

Specifically, for H3K27me3, we focused on genes where

the inter-species gene expression level and the mark en-

richment level differences are in the opposite direction.

For the other four marks, we focused on genes where the

inter-species gene expression level and the mark enrich-

ment level differences are in the same direction. After-

wards, we divided the proportion of DE genes that also

have TSS regions that are associated with inter-species dif-

ferences in mark enrichment, by the proportion of non-

DE genes that have TSS regions that are associated with

inter-species differences in mark enrichment, in order to

calculate fold enrichment. We used the binomial test to

obtain the corresponding P-values.

Constructing Bayesian networks for five marks and gene

expression levels

We used gene expression levels and mark enrichment

levels within 2 kb of TSSs to construct Bayesian net-

works. For each data set, we employed the hill climbing

greedy search algorithm to obtain a graph with maximum

Bayesian Gaussian score. For interpretation purposes, we

encouraged sparsity in the graph by specifying a sparsity-

inducing prior on the number of edges (1% prior inclusion

probability for each edge in each direction; varying the

prior value from 0.1% to 10% does not change the results;

in fact, the results are not sensitive to the prior specifica-

tions because of the large number of genes used for model

fitting). We used the R package bnlearn for model fitting.

For biological reasons, we only allowed directed edges

from the five marks to RNA but not the other way around.

However, even if we do not have this restriction, the

graphs learned are largely similar, with the only exception

that the RNA-H3K27me3 edge changes direction in rhe-

sus or rhesus-involved comparisons.

Measuring sequence conservation and difference

between species

We used four different measurements for sequence con-

servation as well as sequence difference between pairs of

species in the TSS region. To measure sequence conserva-

tion, we obtained the average Phastcons score [110] and

the PhyloP score [111,112] in the TSS region. To measure

sequence difference, we first used blastn to obtain a list of

aligned sequences between pairs of species. We then cal-

culated the proportion of aligned sequence in the TSS re-

gion between pairs of species as one measurement, and

calculated the average percentage of identity in these

aligned sequence in the TSS as another measurement.

Estimating 'maximal' R squared by accounting for

measurement noise

Here, we estimated the 'maximal' R squared by the five

marks, by taking into account the measurement noise

accompanying both mark enrichment levels and gene

expression levels. We considered the following linear

model:

yog ¼
X5

j¼1

Xo
gjβjþεg ; εg e N 0; σ2

� �
;

where yog is the observed phenotype (that is, gene expres-

sion level or gene expression level difference, averaged

across individuals) for the gth gene, xogj is the observed

jth covariate (that is, enrichment level or enrichment

level difference for jth mark, averaged across individuals)

for the gth gene, εg is the error term, which follows a

normal distribution with variance σ2. For convenience,

we assumed that both phenotypes and covariates were

already mean centered.

We assumed that both yog and xogj are noisy measure-

ments of the true underlying phenotype yg and covariate

xgj, with the corresponding noises following independent

normal distributions:

yog ¼ yg þ εyg ; ε
y
g e N 0; σ2

y

� �
;

xogj ¼ xgj þ εxjg ; εxjg e N 0; σ2
xj

� �
;

where ε
y
g and εxig are assumed to be independent across

genes and independent of each other.

With the above assumptions, we have

E XO
� �T

XO
� �

¼ E XTX
� �

þ G � D;

E XO
� �T

yO
� �

¼ E XTy
� �

;

E yO
� �T

yO
� �

¼ E yTy
� �

þ G � σ2y ;

where G is the number of genes, Xo is a G by 5 matrix

with gjth element xogj;X is a G by 5 matrix with gjth elem-

ent xgj, y
o is a G-vector with gth element yog ; y is a G-vector

with gth element yg, and D ¼ diag σ2x1; σ
2
x2; σ

2
x3; σ

2
x4; σ

2
x5

� �

is a diagonal matrix.

Therefore, we could approximate the 'maximal' R squared

by:

R2 ¼
yYX XTX

� �
−1
XTy

yY y
≈

yoð ÞTXo Xoð ÞTXo
−G � D

� �
−1

Xoð ÞTyo

yoð ÞTyo−G � σ2
y

;

and we replaced σ2
y and σ2xi with the estimated values:

σ̂ 2
y ¼

1

N2G

XN

i¼1

XG

g¼1

yoig−�y
o
g

� �2

;
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σ̂ 2
xj ¼

1

N2G

XN

i¼1

XG

g¼1

xoigj−�x
o
gj

� �2

;

where N is the number of individuals.

Data availability

The data for chimpanzee and rhesus macaque are avail-

able in Gene Expression Omnibus (GEO) under accession

GSE60269. The data for human were previously deposited

under accessions GSE47991 and GSE19480.

Additional files

Additional file 1: Table S1. Characteristics and sources of

lymphoblastoid cell lines. Table S2. Number of total sequenced reads for

each feature for each individual. Table S3. Number of total mapped

reads with quality score >10 for each feature for each individual. Table S4.

Number of sequenced and mapped reads for pooled input samples.

Table S5. Number of enriched regions/peaks identified for each feature

for each individual. Table S6. Number of mapped reads in enriched

regions/peaks for each mark for each individual. Table S7. Number

of tested TSS regions and genes. Table S8. Number of TSS regions

associated with inter-species differences in enriched marks and number of

differentially expressed genes identified at different FDR cutoffs.

Additional file 2: Figure S1. An illustration of the study design.

Additional file 3: Figure S2. Choices of cutoffs for classifying regions

as enriched. (A-H) Histograms of peaks of H3K4me3 (A,B), H3K4me1

(C,D), H3K27ac (E,F), and Pol II (G,H) enrichment, as classified by MACS, at

various FDR thresholds. (A,C,E,G) All peaks with FDR ≤50%; the dashed

line indicates the stringent 5% cutoff. (B,D,F,H) Peaks with FDR ≤50% that

overlap a peak with FDR ≤5% in another individual; the relaxed FDR

cutoff for each feature is marked by a dashed line. (I,J) Number of

H3K27me3-enriched regions (dark squares, left axis) as classified by RSEG,

and the proportion of those regions overlapping ENCODE H3K27me3

peaks (light triangles, right axis) at various score cutoffs up to 200. (I) All

enriched regions; the dashed line indicates the stringent 20 score cutoff.

(J) Enriched regions that overlap enriched regions with ≥20 score from

another individual; the relaxed score cutoff is 0 - that is, any region

classified as 'enriched' by RSEG.

Additional file 4: Figure S3. Pairwise Spearman’s rank correlations

between individuals from the three primates for four histone marks, Pol

II, and RNA. Calculations are based on mark abundance in ±2 kb regions

near orthologous TSSs for five marks, and on gene expression level in

orthologous exons for RNA. C, chimpanzee; H, human; R, rhesus

macaque.

Additional file 5: Figure S4. Enrichment of Pol II and four histone

marks in 15 different chromatin states across the genome in three

primates. Error bars indicate standard deviation calculated across

individuals. Asterisks indicate significance levels.

Additional file 6: Figure S5. Fold enrichment of the five marks in (A)

±10 kb and (B) ±50 kb regions near TSSs in three primates. Error bars

indicate standard deviation calculated across all genes and all individuals.

Asterisks indicate significance levels (*P < 0.05, **P < 0.01, ***P < 0.001).

Additional file 7: Figure S6. Pairwise Spearman’s rank correlations

between marks in each of the three primates. Calculations are based on

mark abundance in (A) ±2 kb, (B) ±10 kb, and (C) ±50 kb regions near

orthologous TSSs.

Additional file 8: Figure S7. Mark enrichment levels are correlated

with gene expression levels in chimpanzee. Legends are identical to

those in Figure 2.

Additional file 9: Figure S8. Mark enrichment levels are correlated

with gene expression levels in rhesus macaque. Legends are identical to

those in Figure 2.

Additional file 10: Figure S9. Mark enrichment levels are plotted

against gene expression levels for sliding windows of genes (n = 200)

ordered by increasing expression levels in the three primates. Enrichment

levels are obtained in either ±10 kb or ±50 kb regions near TSSs and

scaled to be between 0 and 1. All values are averaged across individuals

and across genes in the window.

Additional file 11: Figure S10. Scatterplot of predicted gene

expression levels against true gene expression levels for all analyzed

genes in human. Predicted values are obtained based on linear models

with either individual marginal effects (colored plots) or all marginal mark

effects (grey plot) using mark enrichment levels in ±2 kb regions near TSSs.

Additional file 12: Figure S11. Importance of the marginal and first-order

interaction effects from the five marks for explaining gene expression levels

in the three primates. The left panel lists all interaction terms among the

five marks; each row represents an interaction term, and each column

represents the presence (black) or absence (grey) of a particular mark

effect for that interaction term. For example, the first row represents

the marginal effect of Pol II, and the seventh row represents the

interaction effect of H3K4me1, H3K4me3, and Pol II. The right panel

lists the corresponding posterior inclusion probability of each term in

the BVSR in the three species. The posterior inclusion probability measures

the importance of each interaction term, with values ranging between 0

and 1; higher values indicate more importance. Mark enrichment

levels ±2 kb regions near TSSs are used for fitting. C, chimpanzee;

H, human; R, rhesus macaque.

Additional file 13: Figure S12. Importance of the mark enrichment in

different chromatin states for explaining gene expression levels in the

three primates. The left panel lists marginal terms (M) or chromatin

state-specific terms for 15 chromatin states (S1 to S15) near TSSs,

where each column represents the presence (black) or absence (grey)

of a particular mark effect for that term. For example, the first row

represents the marginal effect of H3K4me1, and the sixth row represents

the effect of H3K4me1 in chromatin state 1 (active promoter) near TSSs.

The right panel lists the corresponding posterior inclusion probability

of each term in the BVSR in the three species. The posterior inclusion

probability measures the importance of each interaction term, with values

ranging between 0 and 1; higher values indicate more importance. Mark

enrichment levels ±2 kb regions near TSSs are used for fitting. C, chimpanzee;

H, human; R, rhesus macaque. M, marginal effects; S1, active promoter; S2,

weak promoter; S3, poised promoter; S4, strong enhancer; S5, strong

enhancer; S6, weak enhancer; S7, weak enhancer; S8, insulator; S9,

transcription transition; S10, transcription elongation; S11, weak transcription;

S12, repressed; S13, heterochroma/lo; S14, repetitive/copy number variation;

S15, repetitive/copy number variation.

Additional file 14: Table S9. List of gene names, peak regions, and

their differential expression evidence for pair-wise comparisons (P-values

and empirical FDRs).

Additional file 15: Figure S13. TSS regions associated with inter-species

differences in enriched marks are enriched for differentially expressed (DE)

genes. TSS regions associated with inter-species differences in enriched

marks and DE genes are determined by various FDR cutoffs (2.5%, 7.5%, and

10%). Legends are identical to those in Figure 3. C, chimpanzee; H, human;

R, rhesus macaque.

Additional file 16: Figure S14. An example of mark abundance and

gene expression levels across three species. The x-axis is the distance

along a genomic region containing the gene REX02. The y-axes show

RNAseq reads (black), as well as ChIPseq reads for the five marks (color)

and input controls (grey), all scaled with respect to the total mapped

read counts.

Additional file 17: Figure S15. Differences in mark enrichment level

plotted against differences in gene expression level for sliding windows

(n = 200) of genes ordered by increasing differences in expression level.

Differences in enrichment level are obtained in either ±10 kb or ±50 kb

regions near TSSs and scaled to be between -1 and 1. All values are averaged

across individuals and across genes in the window. C, chimpanzee; H, human;

R, rhesus macaque.

Additional file 18: Figure S16. Proportion of variance in gene

expression level differences explained (R squared) by mark enrichment
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level differences, for all pairwise comparisons among the three primates.

Different linear models are fitted to account for individual effects (five

colored bars), combined marginal effects (grey bars) and all first-order

interaction effects in addition to marginal effects (black bars), and all

chromatin state-specific effects in addition to marginal effects (white

bars) of the five marks. DE genes are determined based on an FDR cutoff

of 5%. Enrichment level differences are obtained in ±2 kb regions. Error

bars indicate standard deviation calculated across 20 split replicates. C,

chimpanzee; H, human; R, rhesus macaque.

Additional file 19: Figure S17. Scatterplot of predicted gene expression

level differences plotted against true gene expression level differences for

DE genes between human and chimpanzee. Predicted values are obtained

based on linear models using either individual mark effects (colored plots)

or all marginal mark effects (grey plot) with mark enrichment level

differences in ±2 kb regions near TSSs. DE genes are determined

based on an FDR cutoff of 5%. C, chimpanzee; H, human; R, rhesus

macaque.

Additional file 20: Figure S18. Bayesian networks describing the

statistical dependency among RNA, Pol II, and four histone marks.

(A) A Bayesian network (left) describes the common statistical

dependency among gene expression levels and mark enrichment levels,

based on networks inferred from the three species separately (right).

(B) A Bayesian network (left) describes the common statistical dependency

among gene expression differences and enrichment level differences for the

five marks, based on networks inferred from the three pair-wise comparisons

(right).

Additional file 21: Figure S19. Scatterplot of gene expression level

differences plotted against sequence conservation and sequence

divergence between pairs of species. Two sequence conservation

measurements and two sequence divergence measurements are

used. DE genes are determined based on an FDR cutoff of 5%. C,

chimpanzee; H, human; R, rhesus macaque.

Additional file 22: Figure S20. R squared by four histone modifications

and Pol II or by four histone modifications alone. (A) Proportion of variance

in Pol II enrichment level explained by enrichment level of histone

modifications. (B) Proportion of variance in gene expression level

explained by mark enrichment level. (C) Proportion of variance in Pol

II enrichment level differences explained by enrichment level differences

of histone modifications in DE genes. (D) Proportion of variance in gene

expression level differences explained by mark enrichment level differences

in DE genes. Different linear models are fitted to account for combined

marginal effects (grey bars) and all first-order interaction effects in addition

to marginal effects (black bars). DE genes are determined based on an FDR

cutoff of 5%. Enrichment level differences are obtained in ±2 kb regions.

Error bars indicate standard deviation calculated across 20 split replicates. C,

chimpanzee; H, human; R, rhesus macaque.
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