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Abstract

Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic
aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate
carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic
machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible
and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective
in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses
the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating
compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.
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Background

Prostate cancer

Prostate cancer (PCa) is one of the most common malig-

nancies worldwide and a leading cause of cancer-related

morbidity and mortality [1]. When diagnosed at early

stages, it is potentially curable by radical prostatectomy or

radiotherapy [2]. Furthermore, in many men, the disease is

in fact indolent raising an important unmet need to better

understand the biology of those prostate cancers that will

never require exposure to treatment. However, for PCa that

recurs after failure of primary surgery/radiotherapy or

hormone-naive metastatic disease, androgen deprivation

therapy (ADT), combined with docetaxel chemotherapy in

suitably fit patients, is the mainstay of treatment [3–5]. Go-

nadotropin-releasing hormone (GnRH) agonists or an-

tagonists, initially combined with anti-androgens (e.g.,

bicalutamide), are used to lower androgen levels,

leading to tumor remission and a decline in serum

prostate-specific antigen (PSA). Although nearly all

patients respond to ADT, for patients with metastatic

cancer progression to a lethal stage of the disease, termed

castration-resistant prostate cancer (CRPC), occurs in

virtually all patients after a median of 11 months [6, 7].

Despite previously being termed “hormone refractory” in

fact, CRPC normally remains, at least initially, critically

dependent on androgen receptor (AR) signaling. The

mechanisms underlying castration resistance relating to

the AR itself include receptor amplification, activating

mutations, constitutively active truncating splice variants,

phosphorylation, and methylation. Persistent transcrip-

tional AR activity can also be mediated by altered respon-

siveness to, or increased expression of, alternative ligands

including progesterone and corticosteroids or by adrenal

production of androgens that is not responsive to GnRH

agonists/antagonists, as well as intraprostatic testosterone

and dihydrotestosterone (DHT) synthesis [8]. Finally,

components of the activated AR complex, including

epigenetic mediators as described in this review, may be

overexpressed (co-activators) or repressed (co-repressors)

and other signaling pathways may also be activated, for

example, including the MAPK, PI3K/Akt, and Wnt path-

ways [9, 10]. For metastatic CRPC (mCRPC), treatment

with next-generation hormonal therapies, such as the

CYP17A1 inhibitor abiraterone which depletes androgen
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synthesis pathway precursors or the AR antagonist enza-

lutamide, is an option; however, acquired resistance inev-

itably arises (within 1–2 years in the pre-docetaxel setting)

[11, 12]. It is becoming increasingly clear that this clinical

phenotype is commonly characterized by therapeutic cross

resistance, at least between available hormonal therapies,

making sequential use of limited benefit, and that current

treatment options drive the emergence of treatment-

resistant clonally convergent subpopulations [13, 14]. For

mCRPC, other agents that have an established survival

benefit include chemotherapy with either docetaxel or

cabazitaxel combined with prednisone, the radiopharma-

ceutical radium-223, and the autologous cellular im-

munotherapy sipuleucel T [15–19]. Unfortunately, none of

these agents are curative and the median survival from the

point of transition to mCRPC is 2–3 years [7], strengthen-

ing the urgent need for investigation of new therapeutic

approaches.

DNA methylation and histone modifications in prostate

cancer

PCa is a complex and heterogeneous disease that arises

from both genetic and epigenetic alterations [20]. Concer-

ning epigenetic modifications, DNA methylation is the best

well-studied epigenetic alteration [21]. It consists of the

addition of a methyl group by DNA methyltransferases

(DNMTs): DNMT1, DNMT3A, and DNMT3B, donated by

S-adenosylmethionine (SAM), to cytosine residues within

CpG dinucleotides. Whereas DNMT1 ensures the mainte-

nance of tissue-specific methylation patterns over cellular

replication, DNMT3A and DNMT3B are involved in the

maintenance and de novo methylation of DNA strands [22,

23]. Aberrant alterations of the methylation patterns are

common features of PCa development and progression

(Fig. 1). Global DNA hypomethylation increases as the dis-

ease progresses, with a lower overall content of 5-

methylcytosine (m5C) found in metastatic tissues [24], pro-

moting chromosome instability, activation of retrotranspo-

sons, and aberrant gene expression. Loss of imprinting of

IGF2 (with consequent biallelic expression) was found in

cancerous as well as in associated histologically normal

peripheral zone prostatic tissue, which indicates that it

might predispose the development of carcinogenesis over a

long latency period [25]. Promoter hypomethylation may

result in the activation of proto-oncogenes, although this is

a relatively underexplored event. One example is urokinase

plasminogen activator (PLAU), a gene involved in tumor

invasion and metastasis and whose expression has been

associated with CRPC [26]. Heparanase, an endo-β-D-glu-

curonidase, is also highly expressed in PCa, especially in

metastatic lesions, but not in prostatic intraepithelial neo-

plasia (PIN) [27]. Conversely, DNA hypermethylation at

specific gene loci is a key molecular hallmark of PCa. In

fact, this is one of the first aberrations, seen as early as in

pre-invasive lesions, such as PIN, and persisting throughout

disease progression [28]. Tumor suppressor genes silenced

by promotor hypermethylation in PCa are involved in

important cellular pathways, including cell cycle control,

apoptosis, DNA damage repair or hormonal response. Thus

far, more than 100 genes have been shown to be inactivated

by promoter hypermethylation in PCa. Remarkably, gluta-

thione S-transferase pi 1 (GSTP1), a gene involved in DNA

repair, is hypermethylated in more than 90 % of PCa cases,

as well as in over 50 % of PCa precursor lesions, suggesting

this as an early event in prostate carcinogenesis [29–32].

Methylation of Ras association domain family protein 1,

isoform A (RASSF1A) promoter was strongly correlated

with an increased risk of PCa recurrence, aggressiveness,

and tumor progression [33, 34]. Progression to CRPC was

also linked with AR silencing by hypermethylation [35].

In fact, AR hypermethylation was described in about 30 %

of CRPC [36]. Several other genes were described as

frequently hypermethylated in morphologically normal

prostate tissue and in PIN (e.g., ATP binding cassette

subfamily B member 1 (ABCB1), adenomatous polyposis

coli (APC), cyclin D2 (CCND2), O-6-methylguanine-DNA

methyltransferase (MGMT), retinoic acid receptor beta 2

(RARβ2), RASSF1A, prostaglandin-endoperoxide synthase

2 (PTGS2)) further implicating DNA hypermethylation in

PCa initiation [37–39].

In addition to DNA methylation, histone modifications

were also implicated in prostate carcinogenesis (Fig. 1).

The N-terminal tails of histones may undergo a variety of

post-translational covalent modifications, which are cata-

lyzed by various histone-modifying enzymes (Fig. 2). At

least 16 different post-translational modifications (PTMs)

have been reported, including acetylation, methylation,

phosphorylation, ubiquitination, and glycosylation [40].

These changes constitute the “histone code” which acts as

a layer of epigenetic regulation of gene expression affec-

ting chromatin structure and remodeling [41]. In general,

acetylation enables transcriptional activity and is catalyzed

by histone acetyltransferases (HAT). Conversely, histone

deacetylases (HDACs) remove acetyl groups leading to

condensed and repressive chromatin. In PCa, HDAC 1, 2,

and 3 are strongly expressed, especially in CRPC [42, 43].

Moreover, HDAC1 and HDAC2 were found to be highly

expressed in PCa with high Gleason score and might be

correlated with increased proliferative capacity [43] but

only HDAC2 expression has been associated with shorter

PCa patient relapse-free survival time after radical pros-

tatectomy. Additionally, HATs and HDACs may change

the acetylation status of non-histone proteins, such as

AR [44]. Indeed, AR co-activators and co-repressors

influence transcriptional activity by regulating AR itself

or its responsive genes, via their respective HAT or

HDAC activities. Acetylation of coactivators enhances the

transcriptional activity of AR facilitating its binding to
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Fig. 1 Epigenetic alterations involved in PCa development and progression. Several epigenetic aberrations, as silencing of tumor suppressor
genes by promoter hypermethylation, aberrant expression of histone modulating proteins, and DNA hypomethylation contribute
not only to PCa onset but also to its progression to advanced and castration-resistant cancer

Fig. 2 Writers, Erasers, and Readers. Epigenetic Writers (HATs, HDMs, and PRMTs) are responsible to establish epigenetic marks on amino acid
residues of histone tails. Epigenetic Erasers (HDACs, KDMs and phosphatases) participate on the removal of the epigenetic marks. Epigenetic
Readers (bromodomain, chromodomain and Tudor domain proteins) recognize and bind to a specific epigenetically modified mark
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target DNA sequences. Contrarily, AR activity is abro-

gated by HDAC1, HDAC2, and sirtuin 1 (SIRT1) [45].

SIRT1 was shown to be downregulated in PCa, compared

to normal prostatic tissue, leading to H2A.Z overexpres-

sion and consequent upregulation of v-myc avian myelo-

cytomatosis viral oncogene homolog (MYC) and other

oncogenes [46].

Histone methylation may be associated with transcrip-

tional activation or repression, depending on the amino

acid residue and the number of methyl groups added.

Specifically, methylation of lysines 4, 36, and 79 of histone

3 (H3K4me3, H3K36me, and H3K79me) are marks of

active transcription, whereas methylation of lysines 9 and

27 of histone 3 (H3K9 and H3K27) results in silent chro-

matin state [40, 47]. In PCa, H3K4me, H3K9me2, H3K

9me3, and acetylation of H3 and H4 were shown to be

reduced in comparison with non-malignant tissue. It was

also demonstrated that CRPC patients displayed increased

levels of H3K4me, H3K4me2, and H3K4me3 [48]. In fact,

high levels of lysine-specific demethylase 1A (KDM1A)

was correlated with increased risk for disease relapse [49]

and AR function [50]. The histone methyltransferase

(HMT) polycomb protein enhancer of zeste homolog 2

(EZH2) is by far the most studied epigenetic enzyme in

PCa. This enzyme, responsible for H3K27 trimethylation,

was found to be overexpressed in PCa, particularly in

mCRPC [51] and was associated with promoter hyperme-

thylation and repression of some tumor suppressor genes,

suggesting its involvement in PCa progression [51, 52].

Interestingly, in CRPC, the oncogenic role of EZH2 was

independent of its polycomb transcriptional repressor ac-

tivity, functioning as a co-activator of several transcription

factors such as AR [53]. Thereby, epigenetic deregulation

of co-activators may contribute to failure of androgen

deprivation therapy in PCa patients. Lysine-specific

demethylase 1 (LSD1) is another enzyme involved in

prostate carcinogenesis. It acts both as co-activator

and co-repressor of transcription by targeting H3K4 or

H3K9, respectively [49, 54, 55]. In fact, LSD1 was found to

form a complex with AR, stimulating its activity. More-

over, increased levels of LSD1 were associated with ag-

gressive CRPC and high risk of disease relapse [49,

55].

Several other histone-modifying enzymes, like JHDM2A,

JMJD2C, SET9, and SMYD3 have already been shown

to play a role in prostate carcinogenesis [50, 56–59].

Moreover, in addition to changes in chromatin modifier

enzymes, some histone modifying patterns, like H3K18Ac,

H3K4me2, and H3K4me1 were also associated with

increased risk for PCa recurrence [48, 60].

Evidence acquisition

We searched PubMed for publications on PCa and

epigenetic therapy using the keywords: prostate

cancer, DNA methylation, histone modifications, epi-

genetic drugs, DNMT inhibitors, HDAC inhibitors,

histone modulators, HAT inhibitors, histone demethy-

lase (HDM) inhibitors, and every drug mentioned on

the manuscript, on January 15, 2016. Only articles

written in English were retrieved. Original reports

were selected based on the detail of analysis, mechan-

istic support of data, novelty, and potential clinical

usefulness of the findings. A total of 283 papers were

included in this review.

Epigenetic silencing as a therapeutic target in

prostate cancer
The interest in epigenetic modulators as targets for cancer

therapy has been growing in recent years (Fig. 3) [61].

Indeed, six epigenetic compounds that target either DNA

methylation or histone deacetylation have already been

approved by the Food and Drug Administration (FDA) for

cancer treatment (Table 1) [62–68]. Herein, we will focus

on the advances of the use of DNMT inhibitors (DNMTi)

and histone modulators for PCa therapy.

DNMT inhibitors

Among the epigenetic inhibitors, DNMTi are those in

more clinically advanced stage of development. This

family of compounds, depending on the mode of action,

is divided in two classes: nucleoside and non-nucleoside

inhibitors [69, 70].

Nucleoside analogues are composed of a modified cyto-

sine ring that is attached to either a ribose or deoxyribose

moiety and, therefore, can be incorporated into DNA or

RNA, replacing cytosines. When incorporated into DNA

during replication, these drugs covalently bind and cap-

ture DNMTs on the DNA strand. DNMTs are subse-

quently depleted due to passive demethylation during

continuous replication. These agents induce cell death by

obstructing DNA synthesis and/or inducing DNA damage

through structural instability at the sites of incorporation

[69, 71]. The two most studied nucleoside analogues are

5-azacytidine, a ribose nucleotide which is mostly incorpo-

rated into RNA interfering with protein synthesis, and

5-aza-2′-deoxycytidine which is incorporated preferen-

tially into DNA. These DNMTi are approved for treat-

ment of Myelodysplastic syndrome (MDS) and are

currently in clinical trials in a range of other cancers [72].

However, azanucleosides have some pitfalls, including

their higher instability and their short half-life owing to

fast degradation by cytidine deaminase [69, 73]. Zebularine

was shown to be more stable and less toxic than the 5-aza-

nucleosides, since it was able to inhibit cytidine deaminase,

it incorporates only in DNA via the ribonucleotide reduc-

tase pathway and induced minimal toxic effects in animals

[74, 75]. This compound has proven anti-proliferative activ-

ity in cell lines and induces cancer cell death through
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alterations in DNA methylation status [74, 76–78]. CP-

4200, an elaidic acid ester analog of 5-azacytidine, is a nu-

cleoside transporter-independent drug which has shown

superior efficacy to 5-azacytidine in an orthotopic acute

lymphocytic leukemia (ALL) mouse tumor model [79]

and was recently shown to overcome 5-azacytidine re-

sistance mechanisms related to the cellular uptake in

leukemia cells [80]. SGI-110 (guadecitabine) is a dinucleo-

tide of 5-aza-2′-deoxycytidine and deoxyguanosine which

confers relative resistance to cytidine deaminase and so an

enhanced exposure to the active 5-aza-2′-deoxycytidine

moiety. It was reported to be effective in inhibiting DNA

methylation both in vitro and in vivo, and also acts as an

immune modulator [81, 82]. Moreover, a phase I clinical

trial showed good tolerance as well as clinical and biologic

activity in MDS and acute myeloid leukemia (AML) pa-

tients [83].

One major limitation of nucleoside analogues is the

requirement for DNA incorporation and active DNA

synthesis, which limits the activity of these drugs in

hypoproliferative cancers. This may be the major reason

for their limited efficacy in the majority of solid tumors

[84]. Because the nucleoside analogues are intrinsically

cytotoxic, several efforts are being made to discover

compounds that directly target DNMTs, without requi-

ring prior incorporation into DNA. Presently, the non-

Fig. 3 Epigenetic modifying drugs. This figure illustrates several epigenetic compounds classified accordingly to their respective epigenetic target
that have been reported as having a role on PCa cell phenotype reversion either in pre-clinical or clinical assays

Table 1 Epigenetic drugs for cancer therapy approved by FDA

Drug Comercial name Company Class Year of approval Treatment type Cancer

5-Azacytidine Vidaza® Celgene Corporation DNMTi 2004 Single agent Myelodysplastic
syndrome

5-Aza-2′-
deoxycytidine

Dacogen® Eisai DNMTi 2006 Single agent Myelodysplastic
syndrome

Vorinostat/SAHA Zolinza® Merck Pan-HDACi 2006 Single agent Cutaneous T cell
lymphoma

Romidepsin Istodax® Celgene Corporation Class I HDACi 2009 Single agent Cutaneous and peripheral
T cell lymphoma

Belinostat Beleodaq® Spectrum
Pharmaceuticals, Inc.

Pan-HDACi 2014 Single agent Peripheral T cell
lymphoma

Panobinostat Farydak® Novartis Pan-HDACi 2015 Combination with bortezomid
and examethasone

Multiple myeloma
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nucleoside family includes compounds that have already

been approved by FDA for non-neoplastic conditions,

specifically hydralazine (anti-hypertensive drug), procaine

(local anesthetic), and procainamide (anti-arrhythmic

drug) and small molecules designed to directly block the

active site of human DNMTs, like RG108. The major

advantage of the former class is that the pharmaco-

dynamic profile is well-known, and their adaptation for

cancer therapy may be more cost-effective. The latter

class, moreover, exhibits higher specificity, since the com-

pounds are designed for direct enzyme inhibition [69, 73].

Hydralazine is a potent arterial vasodilator drug whose

demethylating activity was suspected based in one of its

secondary effects: the induction of Lupus-like syndrome

[85–87]. Hydralazine was shown to induce tumor sup-

pressor genes’ demethylation/reactivation in several can-

cer models and its activity is synergized with that of the

histone deacetylase inhibitors (HDACi) valproic acid,

both in vitro and in vivo [88–90]. Several clinical trials

using hydralazine in combination with valproic acid in

MDS and in solid tumors demonstrated no significant

toxic effects [91–93]. Procaine and procainamide are two

closely related small molecules that have been proposed to

function as DNMTi also due to their ability to bind CpG-

rich sequences, thereby interfering with DNMTs bind-

ing. Procainamide specifically inhibits DNMT1 but not

DNMT3a and 3b, suggesting that this drug might be a

highly specific inhibitor [94]. Both procaine and procai-

namide were reported to reduce DNA methylation in

cancer cells [95, 96]. The antibiotic nanaomycin A was

recently reported as a selective inhibitor of DNMT3b,

with the ability to reduce methylation and induce expres-

sion of the tumor suppressor gene RASSF1A [97].

Disulfiram, a drug used in the clinics for the treatment of

alcohol abuse, was described as a DNMT inhibitor with

the ability to decrease the global levels of 5-

methylcytosine, as well as to demethylate and reactivate

the expression of epigenetically silenced tumor suppressor

genes [98, 99]. SGI-1027, a quinoline-based compound, has

demonstrated inhibitory activity against DNMT1,

DNMT3a, and DNMT3b, possibly by interacting with the

DNA substrate, which results in demethylation and reacti-

vation of tumor suppressor genes [100]. RG108 was the

first DNMTi designed to directly inhibit DNMT1 catalytic

site. In fact, this compound was able to inhibit DNMT ac-

tivity in a cell-free assay and to reduce global methylation

levels in human cancer cells. [101–103]. Recently, this com-

pound was also reported to induce differentiation of pro-

myelocytic leukemia cells in combination with HDACi

[104, 105]. MG98, a 20-bp anti-sense oligonucleotide,

whose sequence is complementary to 3′-untranslated re-

gion (UTR) of DNMT1, was developed to block the trans-

lation of this enzyme [106]. Despite the DNMT1 inhibitory

activity displayed in xenograft mouse models and in some

patients, this compound did not achieve significant re-

sponse in clinical trials [107–109]. Soy isoflavones (e.g.,

genistein) and their metabolites are also DNMTs inhibi-

tors, with promising roles in cancer prevention and treat-

ment [110]. The green tea polyphenol, (−)-epigallocatechin-

3-O-gallate (EGCG) is an anti-tumoral agent that targets

DNA methylation through DNMTs’ inhibition [111].

Pre-clinical activity of DNMT inhibitors in prostate cancer

In a pre-clinical assay, PCa cells chronically exposed to

5-aza-2′-deoxycytidine for 21 days, exhibited a marked

decrease in tumor cell proliferation and AR reactivation,

with concomitantly increased PSA protein levels. The res-

toration of AR-sensitized CRPC cells in xenograft models

to the anti-androgen bicalutamide [112, 113]. 5-Aza-2′-

deoxycytidine was able to decrease PCa stem-cellness and

induce cell differentiation. In vitro and in vivo assays dem-

onstrated that AR re-expression by 5-aza-2′-deoxycytidine

led to in vitro and in vivo suppression of PCa stem cell

proliferation, decreasing PCa tumorigenesis [114]. Zebura-

line was able to restore GST-pi and GST-mu expression,

both in vitro and in xenografts, enhancing the activity of

brostallicin, a DNA minor groove binder with anti-cancer

activity [115]. Additionally, PCa cell lines and xenografted

mice exposed to procainamide demonstrated a reversion

of GSTP1 hypermethylation, with concomitant gene re-

expression [96]. However, one study comparing the two

non-nucleoside inhibitors with 5-aza-2′-deoxycytidine in

PCa cell lines, demonstrated that 5-aza-2′-deoxycytidine

was considerably more effective in demethylating and re-

activating tumor suppressor genes [116]. Recently, synthe-

sized procainamide conjugates proved to be more potent

inhibitors of murine catalytic Dnmt3A/3L complex and

human DNMT1, decreasing DU145 cell viability more ef-

ficiently than the parent compound [117]. Concerning

RG108, we have demonstrated a dose- and time-

dependent growth inhibition and apoptosis induction in

LNCaP, 22Rv1, and DU145 PCa cell lines. This compound

repressed DNMT activity and expression, reducing global

DNA methylation in androgen-responsive PCa cells.

Furthermore, exposure of LNCaP and 22Rv1 to RG108

significantly decreased promoter methylation levels of GST

P1, APC, and RAR-β2, although mRNA re-expression was

only achieved for GSTP1 and APC [118]. We have also re-

cently demonstrated that hydralazine was able to restrain

PCa cell growth and promote apoptosis in a time and

dose dependent manner. Moreover, hydralazine decreased

cellular invasiveness and induced cell cycle arrest and

DNA damage in PCa cell lines. Additionally, PCa cells

exposed to hydralazine exhibited lower DNMT1, DNM

T3a, and DNMT3b mRNA levels as well as lower DNMT1

protein, which may have contributed to the observed

decrease in GSTP1, B cell CLL/lymphoma 2 (BCL2) and

CCND2 promoter methylation levels, and concomitant
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gene re-expression. Importantly, hydralazine restored AR

expression and upregulation of its target protein p21, in

DU145 cells. The attenuation of tumor phenotype was

particularly effective in the castration-resistant PCa cell

line DU145, and this feature was associated with epider-

mal growth factor (EGF) receptor signaling disruption

[119]. SGI-1027 was able to entirely deplete DNMT1

expression in LNCaP cells [100]. SGI-1027 and two

analogues (paralmeta and metalmeta) inhibited effect-

ively PC-3 proliferation and viability, at concentration of

100 μM [120]. Mahanine, a plant-derived carbazole alkal-

oid, inhibits DNMT activity inducing RASSF1A expression

in LNCaP and PC-3 cells [121]. Moreover, this drug also

inhibited LNCaP and PC-3 cells’ proliferation and induced

apoptosis [122]. In a large study, the DNMT inhibitory ef-

fect of 1120 compounds was evaluated, from which 12 were

selected for cytotoxicity tests in DU145 cells. Remarkably,

the majority of the compounds with activity at low micro-

molar concentration displayed very limited cytotoxicity

[123]. Genistein reduced RARβ2, RASSF1A, and GSTP1

promoter methylation, entailing gene re-expression in

PCa cell lines [124, 125]. Interestingly, this compound

was able not only to reduce estrogen receptor-β (ER-β)

promoter methylation, with corresponding increase in ER-

β expression, but also decrease LNCaP and LAPC-4 cell

proliferation [126]. Likewise, EGCG through DNMT1 ac-

tivity inhibition induced re-expression of transcriptionally

silenced genes in PCa cell lines [127, 128]. Finally,

disulfiram exposure promoted PCa cells apoptosis and cell-

cycle arrest, reduced tumor volume in xenograft mice, and

restored expression of tumor suppressor genes, APC, RAR-

β and ER-β through inhibition of DNMTactivity [99, 129].

Clinical evaluation of DNMT inhibitors in prostate cancer

Although aberrant DNA promoter methylation is a major

phenomenon in prostate carcinogenesis, there are only a

few clinical trials testing DNMTi in PCa patients (Table 2).

A phase II trial (NCT00384839) testing 5-azacytidine

enrolled 36 PCa patients. PSA-doubling time (DT) less

than 3 months was recorded in 19 patients, and the over-

all median PSA-DT was prolonged compared to baseline

(2.8 vs. 1.5 months). One patient showed a 30 % PSA

decline, whereas in 14 patients, only a slight PSA decline

was observed. Grade 3 toxicities were reported and four

patients had to stop therapy. DNA LINE-1 methylation

levels in plasma were also significantly decreased [130].

In a small phase II clinical trial, in which 14 patients with

mCRPC were enrolled, 5-aza-2′-deoxycytidine was admi-

nistered intravenously every 8 h at a dose of 75 mg/m2,

every 5 to 8 weeks. Although well tolerated, only two

patients showed disease stabilization with delayed time to

progression for as long as 10 weeks [131].

Histone modulators (HDAC, HMTs, HDMi, and BET

inhibitors)

Several compounds with the ability to modulate the ex-

pression of key enzymes involved in establishing (writers),

removing (erasers), and maintaining (readers) epigenetic

Table 2 DNMT inhibitors in clinical trials for PCa

Drug Clinical
trial ID

Phase Status Protocol Outcome Ref.

5-Azacytidine (Vidaza) NCT00384839 II Completed Patients with CRPC received 75 mg/m2

of 5-azacytidine for five consecutive days
of a 28-day cycle. Patients were treated
until clinical progression up to a maximum
of 12 cycles. n = 36

5-Azacytidine modulates PSA
(doubling time > 3 months) in
56 % of patients. Clinical
progression-free survival of 12.4 weeks

[130]

5-Aza-2-deoxycytidine
(decitabine)

– II Completed 14 patients with metastatic prostate
cancer recurrent after total androgen
blockade and flutamide withdrawal
received three doses of
5-aza-2-deoxycytidine infusion
(75 mg/m2). Cycles of therapy were
repeated every 5 to 8 weeks. n = 14

Two of 12 patients evaluable for
response had stable disease with a
time to progression of more than
10 weeks. Modest clinical activity

[131]

5-Azacytidine,
docetaxel, and
prednisone

NCT00503984 I/II Ongoing
not recruiting

mCRPC patients, who progressed
during or within 6 months of docetaxel
chemotherapy, were eligible. In phase I,
5-azacytidine and docetaxel were
alternately escalated in a three weekly
cycle. All patients received prednisone
5 mg twice daily continuously. n = 22

Toxicity: myelosuppression
Reduction in GADD-45
methylation on day 5

[273]

5-Azacytidine,
phenylbutyrate

NCT00006019 II Completed Patients received 5-azacytidine
subcutaneously on days 1–7 and
phenylbutyrate I.v. over 1–2 h on days 8–12.
Additional course was repeated every
21 to 28 days in the absence of disease
progression or unacceptable toxicity. n = 20

Not available
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profiles have been identified as promising therapeutic

tools for PCa (Fig. 3) [61, 132].

HDAC inhibitors

HDACs overexpression is a common feature of human

malignancies. Therefore, targeting HDACs has been a

major research area in cancer therapy; although to date,

the established clinical utility has remained rather mo-

dest. Thus far, various structurally different compounds

have been tested in a broad range of cancers [133]. By

altering the expression of several genes and/or function

of several proteins, HDACi disrupt cancer cell pathways,

such as cell proliferation, angiogenesis, differentiation,

and apoptosis, culminating in cell cytotoxicity. In general,

HDACi contain a zinc-binding domain connected by a

straight chain linker to a capping group [134, 135]. HDCAi

are chemically classified into different subgroups based on

their structure: aliphatic acids (phenylbutyrate, sodium

butyrate, and valproic acid), benzamides (mocetinostat and

entinostat), cyclic peptides (romidepsin, largazole) and

hydroxamic acids (trichostatin A (TSA), vorinostat/sube-

roylanilide hydroxamic acid (SAHA), belinostat, panobi-

nostat) [136, 137]. Several, dietary phytochemicals (e.g.,

sulforaphane, phenethyl isothiocyanate) also inhibit HDAC

activity suggesting anti-tumoral properties [138]. However,

HDAC targeting is quite complex because they have mul-

tiple subclasses, some of which with yet unknown functions

and mechanisms of action [133, 139]. Furthermore, enzy-

matic activity of HDACs is not restricted to histones, but

extends to several other proteins [140].

HAT inhibitors

Histone acetyltransferases inhibitors (HATi) have gained

interest due to promising anti-cancer results in pre-clinical

models of solid tumors [141]. Nevertheless, the discovery

and design of selective HATi with high efficacy remains

a challenge [142]. Currently, this family of compounds

comprises four distinct classes: bisubstrate inhibitors,

natural compounds and their analogues and derivatives,

synthetic small molecules, and bromodomain inhibitors

[142]. Curcumin, a component of Curcuma longa rhizome,

is a specific inhibitor of p300/CREB-binding protein that

inhibits acetylation of p53 in vivo [143]. This compound is

currently under evaluation in clinical trials for colorectal

(NCT01859858, NCT00745134, NCT02724202, and NCT

02439385) and breast (NCT01740323 and NCT01975363)

cancers. CTK7A (hydrazinobenzoylcurcumin) is a water-

soluble inhibitor of p300 and several other proteins that

reduce xenograft tumor growth in mice [144]. Anacardic

acid, a non-specific HATi of p300, isolated from the liquid

of cashew nut shells, also demonstrated anti-cancer activity

through modulation of nuclear factor kappa B (NF-kB)

pathway [145]. Garcinol, a micromolar inhibitor of p300

and P300/CBP-associated factor (PCAF) obtained from

Garcinia indica, displays anti-tumor activity by inducing

apoptosis and inhibiting autophagy of human cancer cells

[146, 147]. Plumbagin, a potent KAT3B/p300 inhibitor

isolated from Plumbago rosea, decreased tumor cell

growth, angiogenesis, and invasion in several cancer

models [148–151]. With a similar scaffold, Embelin,

isolated from Embelia ribes, specifically inhibits H3K9

acetylation and also displays anti-tumor activity [152–

154]. NK13650A and NK13650B are two novel com-

pounds with anti-cancer activity that have been extracted

from a Penicillium strain, demonstrating a strict p300 se-

lectivity [155]. C646 is synthetic small selective molecule

inhibitor of p300/CBP that was shown to induce apoptosis

in cancer cells through inhibition of AR and NF-kB path-

way [156, 157]. Two other synthetic compounds, NU9056

and TH1834, are specific micromolar inhibitors of TIP60

(KAT5) acetyltransferase activity [158, 159].

HMT and HDM inhibitors

HMTs and HDMs are emerging as a novel field of

epigenetic actionable molecules with clinical interest.

Several new compounds are currently under evaluation

to assess their specificity for targeted epigenetic therapy

and its anti-cancer effectiveness [160–162]. These com-

pounds are thought to be more attractive than HDACi

because they can eliminate selective histone marks, which

in turn might enable a better tailored therapy, minimizing

undesirable side effects.

Among histone methyltransferase inhibitor (HMTi),

3-dezaneplanocin-A (DZNeP) stands as a S-adenosyl-

L-homocysteine (AdoHcy) hydrolase inhibitor which

converts adenosyl-L-homocysteine, produced by methyl-

transferases, in adenosine and homocysteine. S-Adenosyl-

methionine (AdoMet), a methyl donor for methylation

reactions, is metabolized to AdoHcy by methyltransfe-

rases. By increasing AdoHcy levels, DZNeP inhibits meth-

yltransferases. This compound was first reported as EZH2

inhibitor, decreasing H3K27 trimethylation, but is currently

considered a global HMTi [163, 164]. DZNeP downre-

gulates EZH2, reactivates several tumor suppressor genes

inhibited by polycomb repressive complex 2 (PRC2), and

inhibits cancer cell phenotype [163, 165, 166]. GSK126 is a

small molecule that inhibits methyltransferase activity of

both wild-type and mutant EZH2, is independent of sub-

strate, and, more importantly, is extremely selective against

other methyltransferases and/or other proteins [167, 168].

Like DZNeP, this compound reduces global H3K27me3

levels and induces expression of silenced PRC2 target

genes. GSK126 reduced the proliferation of cancer cells

lines and inhibited tumor growth in xenografts [168–170].

EPZ-6438 (tazemetostat) is also an effective and orally

bioavailable EZH2 inhibitor with anti-cancer activity [171].

Other novel EZH2 inhibitors are currently under clinical

trial, namely CPI-1205 (NCT02395601), E7438 (NCT018
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97571), tazemetostat (NCT02601937 and NCT02601950),

and GSK2816126 (NCT02082977).

LSD1 inhibitors represent the family of histone demethy-

lase inhibitors (HDMi) most studied thus far, and the majo-

rity of the assays were performed with non-selective amine

oxidase (MAO) inhibitors (pargyline, tranylcypromine, and

phenelzine). These compounds irreversibly react with flavin

adenine dinucleotide (FAD) through a radical mechanism,

forming a tetracyclic adduct, and were originally designed

for treatment of psychiatric illnesses. Presently, they are

under investigation for cancer therapy due to their ability

to block LSD1 [55, 172–174]. Namoline was reported as a

selective and reversible inhibitor of LSD1, with in vitro and

in vivo activity, that might interfere with global histone

methylation levels [175].

BET inhibitors

Bromodomain (BET) proteins bind to acetylated histones,

increase proliferation, and may lead to overexpression of

several oncogenes such as MYC [176]. JQ1 and I-BET

(I-BET762 or GSK525762) are novel compounds that

inhibit bromodomain proteins competing with its binding

to histone acetylated lysine residues, which results in the

displacement of BET proteins from acetylated chromatin

[177]. Both compounds were shown to induce cellular dif-

ferentiation, senescence, and apoptosis [178]. JQ1 showed

selectivity for the BET family, with higher affinity for

Bromodomain-Containing Protein 4 (BRD4) and demon-

strated anti-tumor activity in several cancer cell types

[179–181]. I-BET, also a diazepine-based compound with

proved in vitro and in vivo anti-cancer activity, is currently in

phase I clinical trials for hematological malignancies

(NCT01943851) and solid tumors (NCT01587703) [182,

183]. OTX015, a novel oral inhibitor of BRD2/3/4, derivative

of JQ1 that was originally developed for the treatment of in-

flammatory bowel disease, also demonstrated in vitro and in

vivo anti-neoplastic efficacy and is currently in phase I clin-

ical trials for hematological malignancies (NCT01713582)

and several solid tumors (NCT02259114), as well as in a

phase IIa trial for glioblastoma multiform (NCT02296476)

[177, 184, 185]. I-CBP112, that targets CBP/p300 bromodo-

mains, induces differentiation, cell cycle arrest, and sup-

presses tumor proliferation [186, 187].

Pre-clinical activity of HDACi in prostate cancer

Several HDACi demonstrated encouraging results in pre-

clinical phase studies, showing promise as candidates for

future clinical trials.

Concerning the aliphatic acids family, exposure to so-

dium butyrate induced growth inhibition and increased

differentiation and apoptosis of PC-3 and DU145 cells

[188, 189]. Remarkably, treatment with sodium butyrate

also induced H2B acetylation, and methylation on multi-

ples lysine residues, as well as phosphorylation of Thr19,

in DU145 cells [190]. Recently, this compound was shown

to stimulate the morphological and molecular differentiation

of LNCaP cells via inhibition of T-type Ca2+ channels [191].

Valproic acid (VPA) also reduced cell viability and induced

apoptosis in vitro and was able to reduce tumor growth in

xenograft models [192]. Moreover, this compound inhibited

epithelial-mesenchymal transition (EMT) and invasion abil-

ities of PC-3 cells by decreasing SMAD4 protein expression

and upregulating the metastasis suppressor gene N-myc

downstream regulated gene-1 (NDRG1), respectively [193,

194]. In a TRAMP model of PCa treated with VPA,

decreased tumor growth and invasiveness correlated with

the re-expression of CCND2, a frequently silenced gene in

PCa [195]. Remarkably, this compound also induced AR and

E-cadherin expression in PCa cell lines [196].

Among hydroxamic acids, vorinostat/SAHA demon-

strated the ability to decrease PCa cell lines proliferation

and to reduce tumor growth in vivo [197, 198]. Pano-

binostat also induced cell cycle arrest and DNA damage

and reduced PCa tumor growth in vivo [199]. Moreover,

the exposure of PCa cells to this compound lead to a

decrease in AR levels and reversed resistance to hormone

therapy in castration-resistant PCa cell lines [200]. Belino-

stat showed pronounced anti-tumor effects in androgen-

responsive PCa cell lines increasing p21, p27, and p53

protein expression and leading to G2/M cell cycle arrest

[201]. It also reduced the migration of PCa cells, increas-

ing the expression of tissue inhibitor of metalloproteinase-1

(TIMP-1). Moreover, it decreased the expression of onco-

genic proteins, such as mutant P53 and ERG. Notably,

the cytotoxic activity of this compound was preferentially

directed against tumor cells [202].

Concerning the cyclic peptides family, mice inoculated

with the 22Rv1 cell line exposed to romidepsin not only

experienced reduced metastasis formation but also in-

duces a 61 % survival increase [203]. Largazole and

2-epi-largazole are potent class I-selective HDACi, puri-

fied from marine cyanobacteria, that decrease LNCaP and

PC-3 cell viability [204].

The benzamide derivative MS-275 increased H3 acety-

lation, p21 protein expression, and induced growth arrest

in LNCaP and PC-3 cells and apoptosis in DU145 cells.

Moreover, MS-275 reduced tumor growth in xenograft

mice [205], particularly when acting synergistically

with radiation therapy [206]. This drug also lead to H3K4

methylation upregulation, inducing re-expression of tumor

suppressor and cell differentiation genes [207].

Sulforaphane, an isothiocyanate isolated form broccoli,

suppressed PCa tumor cell growth in male nude mice and

significantly correlated with decreased HDAC activity in

prostate tissue and mononuclear blood cells. Moreover,

in human subjects, the consumption of BroccoSprouts

(68 g) also inhibited HDAC activity in peripheral blood

mononuclear cells [208]. Importantly, another study
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demonstrated that sulforaphane effects are selective, since

it more potently induced cell cycle arrest apoptosis and

acetylation of H3 at P21 promoter and inhibited HDAC

activity in benign hyperplasia (BPH1) and cancer (LNCaP

and PC-3) PCa cells than in the normal cell line PrEC

[209]. It was also reported that this compound destabilizes

AR by hyperacetylating HSP90, via restraining HDAC6,

leading to AR proteasomal degradation [210]. Recently,

it was shown that sulforaphane was able to decrease

MYC expression, the activity of aldehyde dehydrogen-

ase 1 (ALDH1), CD49f + fraction enrichment and the

efficiency of sphere forming, all characteristics of PCa

stem cells [211]. Phenethyl isothiocyanate (PEITC), another

isothiocyanate, suppressed PCa progression in transgenic

adenocarcinoma of mouse prostate mice by induction of

autophagic cell death and overexpression of E-cadherin

[212]. Another study demonstrated that PEITC suppressed

androgen-responsive tumor growth in vivo, possibly by

downregulation of integrin family proteins (β1, α2, and α6)

and tumor platelet/endothelial cell adhesion molecule

(PECAM-1/CD31) [213]. This compound also promoted

apoptosis and cell cycle arrest and inhibited invasion

and on in vitro and in vivo models of PCa [214–216].

Like sulforaphane, PEITC repressed AR transcription and

expression [217].

New specific HDAC1 inhibitors designed and synthe-

tized using click chemistry revealed anti-proliferative

activity in DU145 cells at micromolar concentrations

[218]. A specific inhibitor of HDAC6, N-hydroxy-4-

(2-[(2-hydroxyethyl)(phenyl)amino]-2-oxoethyl)benzamide

(HPOB) decreased viability of LNCaP cells without affec-

ting cell death or causing DNA damage. Furthermore, this

compound inhibited HDAC6 deacetylase activity but not

its ubiquitin-binding activity and incremented the cell death

effect of SAHA, etoposide, and doxorubicin [219]. A novel

compound, 3-hydroxypyridin-2-thione (a non-hydroxamate

chemotype), was able to reduce expression of HDAC6 and

8 and suppress viability of LNCaP cells. This might be due,

in part, to induced hyperacetylation of Hsp90 that sub-

sequently attenuates interactions of key proteins essential

for LNCaP cells survival, such as AR [220]. New class II-

selective hydroxamate inhibitors, that target HDAC4 and

HDAC6, were effective in decreasing cell proliferation and

inducing cell cycle arrest at G1 phase and nuclear histone

acetylation of PC-3 and LNCaP cells [221]. Benzothiazole-

containing analogues of vorinostat/SAHA compounds

displayed not only anti-proliferative effects in PC-3 cells

but it also reduced tumor growth in a PC-3 mouse xeno-

graft with efficacy equivalent to vorinostat/SAHA [222].

Development of hybrid compounds that could modu-

late multiple targets with superior efficacy and fewer side

effects than current single-target drugs is underway

[133]. A new set of HDACi were generated to selectively

accumulate in PCa cells. A non-steroidal anti-androgen

scaffold based on cyanonilutamide was incorporated into

a prototypical HDACi (vorinostat/SAHA) pharmaco-

phore, creating an AR-HDACi which will first engage

AR, selectively accumulate, and then released to engage

HDACs. These compounds demonstrated improved

inhibition of all HDACs’ activity compared to vorinostat/

SAHA alone and were able to simultaneously antagonize

AR. Moreover, they displayed anti-proliferative activity in

AR-expressing cell lines [223]. Another hybrid compound

that resulted from the combination of methotrexate and

hydroxamate (methotrexate-caproic hydroxamic acid)

reduced HDAC activity and decreased viability of PC-3

cells [224]. Additionally, a new drug, VPA–GFLG-iRGD,

which conjugates VPA with a cell penetrating peptide

(iRGD) and a lysosomally degradable tetrapeptide (–Gly-

PheLeuGly–, –GFLG–), induced a significant decrease in

the proportion of DU145 cells in G2 phase with increased

cytotoxicity. This might be related with RGB induced

blockage of ανβ3 and ανβ5 integrin on DU145 cell surface

[225]. Likewise, the synthesis of dual-acting histone deace-

tylase (vorinostat/SAHA) and topoisomerase II inhibitors

(anthracycline daunorubicin) resulted in decreased proli-

feration of DU145 cells [226]. Recently, WJ35435, a hybrid

vorinostat/SAHA and DACA (topoisomerase inhibitor)

molecule with anti-HDAC activity, showed a more potent

anti-cancer effect, inducing more potent cell cycle arrest,

DNA damage and apoptosis, than either agent alone, in

PC-3 and DU-145 cells. Furthermore, this compound

revealed anti-tumor activity in vivo and, importantly, it did

not affect benign prostate cells [227]. Recently, CUDC-101,

which resulted from the incorporation of HDAC inhibitory

functionality into the pharmacophore of epidermal growth

factor receptor (EGFR) and human epidermal growth factor

receptor 2 (HER2)/NEU inhibitors [228], was able to reduce

AR and AR-v7 expression, PCa cell proliferation in vitro

and in vivo [229]. This compound is currently in phase I

trial in solid tumors (NCT01702285).

Clinical trials testing HDACI in prostate cancer

Several HDACi are under clinical trial for PCa treatment

(Table 3). A phase II clinical trial (NCT00330161) with

vorinostat/SAHA was conducted in mCRPC patients with

disease progression and previously treated with chemo-

therapy [230]. Patients were daily treated with orally

administrated 400 mg vorinostat/SAHA. The best objec-

tive response was stable disease in 2 out of the 27 (7 %)

patients enrolled in this trial. Median time to progression

was 2.8 months, with a median overall survival of

11.7 months. Grade 3 or 4 toxicities (fatigue, nausea, vomi-

ting, anorexia, diarrhea, and weight loss) were experienced

by 48 % of patients and 11 (41 %) actually discontinued

therapy due to toxicity. Thus, vorinostat/SAHA at this

schedule had marginal therapeutic efficacy, and this might

be associated with the substantial toxicities described.
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Table 3 Histone modifying drugs in clinical trials for PCa
Drug Clinical trial ID Phase Status Protocol Outcome Ref.

Vorinostat/SAHA NCT00330161 II Completed Metastatic PCa with disease
progression on prior chemotherapy
received 400 mg vorinostat/SAHA
orally each day. Disease progression
measured at 6 months. n = 27

Toxicity: significant toxicities including
fatigue, nausea. IL-6 (Interleukin 6) was
higher in patients with toxicity. 7 %
patients achieved a stable disease state.
No PSA decline >50 % observed. Median
time to progression and overall survival
were 2.8 and 11.7 months, respectively.
Significant toxicities reported.

[230]

Vorinostat/SAHA NCT00005634 I Completed Patients with advanced or metastatic
solid tumors that have not responded
to previous therapy received
vorinostat/SAHA I.v. on days 1–3 every
21 days. n = 45

Determine the tolerability, pharmacokinetic
profile, and biologic effects of the drug.
Not available

Vorinostat/SAHA
and docetaxel

NCT00565227 I Terminated
due to toxicity

Patients with advanced and relapsed
tumors received oral vorinostat/SAHA
for the first 14 days of a 21-day cycle,
with docetaxel I.v. on day 4 of each
cycle. n = 12

Toxicity: neutropenia, peripheral neuropathy,
and gastrointestinal bleeding. The combination
of vorinostat/SAHA and docetaxel was poorly
tolerated. No responses were identified.

[274]

Vorinostat/SAHA
and doxorubicin

NCT00331955 I Completed Patients receive oral vorinostat/SAHA
twice daily for 5 doses on days 1–3,
8–10 and 15–17 and doxorubicin I.v. on
days 3, 10, and 17 very 28 days for up
to 6 courses. n = 32

Partial response was achieved in one of the
two PCa patients enrolled.

[275]

Vorinostat/SAHA
and androgen
deprivation therapy
(ADT)

NCT00589472 II Completed Localized PCa patients received
neo-adjuvant vorinostat/SAHA with oral
bicalutamide with either I.M. leuprolide
or subcutaneous goserelin acetate
administered for up to 8 weeks or until
the day of surgery. n = 19

Determine the rate of pathologic complete
response in patients with localized PCa
treated with ADT and vorinostat/SAHA before
radical prostatectomy measuring androgens in
blood. Not available

Vorinostat/SAHA
and mTOR inhibitor
temsirolimus

NCT01174199 I Ongoing, not
recruiting

Metastatic PCa patients received oral
vorinostat once daily on days 1–14
and temsirolimus intravenously on
days 1, 8, and 15 of a 21-day cycle.
n = 13

Determine the safety, tolerability,
partial and complete objective
response rates, progression-free
survival and overall survival, and
PSA response. Not available

Panobinostat NCT00667862 II Completed I.v. panobinostat (20 mg/m2) was
administered to CRPC patients on
days 1 and 8 of a 21-day cycle.
Disease progression measured at
24 weeks. n = 35

Toxicity: fatigue, thrombocytopenia, nausea
14 % patients demonstrated a decrease in PSA
but none >50 %. No clinical activity.

[231]

Panobinostat
(LBH589), docetaxel,
and prednisone

NCT00663832 I Completed CRPC patients received oral
panobinostat (20 mg/m2) on days 15
for 2 consecutive weeks. On the other arm,
patients received oral panobinostat
(15 mg/m2) with docetaxel I.v. (75 mg/m2)
every 21 days and oral prednisone (5 mg)
twice every day of a 21-day cycle. n = 16

Toxicity: dyspnea and neutropenia
Panobinostat in combination with docetaxel
and prednisone in patients with CRPC resulted
in 63 % of patients with >50 % decline in PSA
levels. No relevant anti-tumor activity.

[276]

Panobinostatbicalutamide NCT00878436 I/II Completed Men with CRPC received treatment
with bicalutamide (50 mg PO) daily
with oral panobinostat at 2 dose
levels (20 or 40 mg). Minimum
treatment was 3 weeks. n = 9

Toxicity: thrombocytopenia
In 2 patients, it was registered
a >50 % PSA decline by
9 months of therapy; and
3 patients presented stable
PSA levels.

[277]

Panobinostat docetaxel
and prednisone

NCT00493766 I Terminated
because of a
strategic decision

In one arm, oral panobinostat alone
is given to patients with progressing
hormone refractory prostate cancer.
In the other arm, oral panobinostat
along with I.v. docetaxel and oral
prednisone is administered. n = 16

Toxicity: dyspnea, neutropenia, fatigue. Exposure
to oral panobinostat was similar with and
without docetaxel.

Panobinostat,
docetaxel,
and prednisone

NCT00419536 I Terminated
because of a
strategic decision

Not available Determine maximum tolerated dose of
panobinostat and to characterize the safety,
biological activity, and pharmacokinetic profile.

Panobinostat,
radiotherapy

NCT00670553 I Completed Not available.
n = 7

Establish toxicity, tolerability, and safety of oral
panobinostat when given in combination with
radiotherapy. Not available

Romidepsin NCT00106418 II Completed mCRPC patients received romidepsin
(13 mg/m2) intravenously on days
1, 8, and 15 every 21-day cycle.
Disease progression measures at
6 months. n = 35

Toxicity: nausea, fatigue
2 patients reached a confirmed radiological
partial response of over 6 months, in addition
to >50 % PSA decline. 11 patients had to
discontinue the therapy due to toxicity.
Romidepsin demonstrated minimal anti-tumor
activity in chemonaive patients with CRPC.

[232]

Romidepsin NCT00106301 II Completed Patients with CRPC were continued at
the same dose of romidepsin as in the
previous study, which could have been
13 mg/m2 or a reduced dose of
10 mg/m2, on days 1, 8, and 15 of each
28-day cycle. n = 2

Evaluate adverse effects and effect of
romidepsin and evaluate the time of disease
progression. Not available
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Table 3 Histone modifying drugs in clinical trials for PCa (Continued)

Romidepsin in solid
tumors with liver
dysfunction

NCT01638533 I Currently
recruiting
patients

Patients with recurrent prostate
carcinoma receive romidepsin I.v. on
days 1, 8, and 15. Courses repeat every
28 days in the absence of disease
progression or unacceptable toxicity.
n = 132

Establish the safety and tolerability,
pharmacokinetics, and maximum
tolerated dose. Not available

Pracinostat NCT01075308 II Completed Recurrent or mCRPC patients received
pracinostat orally (60 mg) 3 times a
week for 3 consecutive weeks followed
by 1 week off-dosing of a 28-day cycle.
n = 32

Toxicity: fatigue, neutropenia
2 patients achieved a decline >50 %
of PSA. In patients with measurable
disease, there were no objective
responses, while 7 patients had stable
disease lasting 1.7 to 8 months.

[233]

Valproic acid NCT00670046 II Not provided Non-metastatic with biochemical
progression PCa patients received oral
valproic acid twice daily for up to 1 year
in the absence of disease progression or
unacceptable toxicity. n = 50

Percentage of patients exhibiting
observed or predicted PSA doubling
time >10 months after initiation of the
study. Not available

Valproic acid and
bevacizumab

NCT00530907 I Completed Bevacizumab was administered at
escalating dosages of 2.5–11 mg/kg on
days 1 and 15, and oral valproic acid at
dosages of 5.3–10 mg/kg on days 1–28,
every 28. n = 57

Toxicities: grade 3 altered mental status
(n = 2), related to valproic acid.
Bevacizumab 11 mg/kg given on days 1
and 15 and valproic acid 5.3 mg/kg daily
were the recommended phase II dosages.
Stable disease ≥6 months were reported
in 4/57 of patients. Of the 39 patients
evaluated for histone acetylation, 2 of 3
(67 %) patients with stable disease ≥6
months showed histone acetylation, while
8 of 36 (22 %) without stable disease ≥6
months demonstrated histone acetylation
(p = 0.16). Patients with hypertension had
improved overall survival.

[278]

Sulforaphane NCT01228084 II Completed Patients with biochemical (PSA)
recurrent PCa received 200 μmoles/day
sulforaphane-rich extracts during 20
weeks. n = 20

1 patient experienced a ≥50 % PSA decline
and 7 patients had PSA declines >50 %.
No grade 3 events reported.

[234]

Sulforaphane – II Completed PCa patients with increasing PSA levels
after prostatectomy orally received 60 mg
of sulforaphane or placebo for 6 months.
n = 78

Sulforaphane-treated patients presented
86 % longer PSA-DT than the placebo
group. Increases >20 % of PSA levels higher
in the placebo group (71.8 %) compared
to the sulforaphane-treated group (44.4 %)

[235]

MGCD-0103 and
docetaxel

NCT00511576 I Terminated Patients received escalating doses of
oral MGCD-0103 in combination with two
fixed doses of I.v. docetaxel (60 mg/m2
and 75 mg/m2). n = 54

Determine the maximum tolerated dose,
dose limiting toxicitie,s and safety profile
of escalating doses of oral MGCD-0103 in
combination with two fixed doses of
docetaxel. Not available

Curcumin NCT02064673 II Recruiting PCa patients with localized disease who
were submitted to a radical prostatectomy
received oral curcumin or placebo 500 mg
twice a day for 6 months. n = 600

Determine recurrence-free survival as total
PSA <0.2 ng/ml. Not available

Curcumin, prednisone,
and docetaxel

– II Patients with progressing CRPC and a rising
PSA received docetaxel/prednisone for 6
cycles in combination with curcumin,
6000 mg/day (day −4 to day +2 of
docetaxel). n = 30

Decreased PSA levels were observed in
59 % of patients and 40 % of evaluable
patients presented a partial response.
The regimen was well tolerated.

[279]

Curcumin and
radiotherapy

NCT01917890 Not
provided
(pilot)

Completed PCa patients undergo 74 Gy radiotherapy
5 times a week for 7–8 weeks and take
3 g of curcumin vs placebo. n = 40

The change in urinary symptoms across
the 20-week period differed significantly
between groups (p = 0.011) and patients
in the curcumin group experienced much
milder urinary symptoms compared with
the placebo group. Curcumin could not
reduce the severity of bowel symptoms or
other treatment-related symptoms. PSA levels
were reduced to below 0.2 ng/ml in both
groups.

[280]

Curcumin and
taxotere

NCT02095717 II Recruiting mCRCP patients receive taxotere plus
curcumin capsule vs taxotere plus
placebo. n = 100

Assess time to progression of metastatic
disease by tumor response rate, increase in
PSA levels (≥25 % and ≥2 ng/ml increase)
or the appearance of new lesions metastatic.
Not available

Phenelzine NCT02217709 II Recruiting Recurrent non-metastatic PCa received
phenelzine daily and orally during
12 months. n = 46

Determine biochemical recurrent prostate
cancer by PSA decline to ≥50 % following
at least 12 weeks of treatment. Not available
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Recently, a phase II clinical trial evaluated the efficacy

of panobinostat in CRPC patients (NCT00667862) with

disease progression after chemotherapy [231]. The rate of

progression-free survival (PFS) at 24 weeks was set as

primary endpoint. Thirty-five patients received 20 mg/m2

of panobinostat intravenously on days 1 and 8 of a 21-day

cycle. No objective responses were documented. Four

patients (11.4 %) did not show progression of disease at

24 weeks. All patients experienced grade 3 and 4 toxicities.

Therefore, it was concluded that PCa treatment with

panobinostat alone was insufficient to achieve clinical

efficacy [231]. A phase II study with romidepsin was con-

ducted in 35 metastatic CRPC patients (NCT00106418).

Romidepsin was administrated intravenously at 13 mg/m2

on days 1, 8, and 15 of a 28-day cycle [232]. Partial

response confirmed by radiology and PSA decline was

achieved in two patients. Eleven patients, however, expe-

rienced significant drug toxicity and discontinued therapy.

With this drug schedule, romidepsin demonstrated

minimal anti-tumor activity in mCRPC patients.

A recent phase II trial with pracinostat (NCT01075308),

an orally active hydroxamic acid, enrolled 32 CRPC

patients, which received 60 mg three times per week, on

alternate days, for three weeks, followed by one-week rest-

ing period. The drug was well tolerated, and confirmed

PSA response was noted in 6 % of the patients whereas

stable disease (from 1–8 months) was achieved in six pa-

tients. During treatment, 64 % of patients demonstrated a

conversion from unfavorable to favorable circulating

tumor cells (CTC) profile [233]. A phase II trial

(NCT01228084) evaluated the anti-tumor efficacy, safety,

pharmacokinetics, and pharmacodynamics of

sulforaphane-rich extracts (200 μmoles/day during

20 weeks) in 20 patients with biochemically (PSA) recur-

rent PCa. PSA decline was used as primary endpoint. One

patient experienced ≥50 % PSA decline, and seven patients

had PSA declines less than 50 %. No grade 3 events were

reported [234]. A double-blinded, randomized, placebo-

controlled multicenter trial of sulforaphane-enrolled 78

PCa patients with increasing PSA levels after radical pros-

tatectomy. Sulforaphane was orally administered daily

(60 mg) for six months followed by two months without

treatment. Patients treated with sulforaphane presented

86 % longer PSA-DT than the placebo group. Further-

more, changes in PSA levels (increases >20 %) were sig-

nificantly higher in the placebo group (71.8 %) compared

to the sulforaphane-treated group (44.4 %) [235].

Considering these results, HDACi alone did not demon-

strate promising results for PCa therapy. Their fast ex-

cretion and off-target toxicity allied to their inability to

significantly accumulate in solid tumors might be respon-

sible for its lack of efficacy against PCa. Therefore, inves-

tigation of new HDACi should be focused on improving

tumor cell selectivity and tissue distribution.

Pre-clinical activity of HATi in prostate cancer

Exposure of PCa cells to curcumin decreased cell prolife-

ration, increased apoptosis and downregulated several

important metastasis-promoting genes, including cyclo

oxygenase-2 (COX2), Secreted Protein Acidic And Cyst-

eine Rich (SPARC) and EGF-containing fibulin-like extra-

cellular matrix protein (EFEMP) [236]. This compound

also abrogated HGF-mediated increase of vimentin in

DU145 cells by downregulating the expression of phos-

phorylated c-Met, extracellular signal-regulated kinase

and Snail, therefore inhibiting EMT [236]. Additionally, it

reduced metastasis formation in vivo [237]. Curcumin was

also able to demethylate and restore neurogenin 1 (Neu-

rog1) expression and decrease methyl CpG binding pro-

tein 2 (MeCP2) binding to Neurog1 promoter in LNCaP

cells [238]. CTK7A targets AR amino-terminal domain

leading to its inhibition and to decreased proliferation of

androgen-sensitive and castration-resistant AR-positive

PCa cells. Moreover, it suppressed tumor growth in a xeno-

graft model of CRPC [239]. Anacardic acid decreased cell

proliferation and induced G1/S cell cycle arrest and apop-

tosis of LNCaP cells. The anti-growth effects of this com-

pound in PCa could be mediated by induction of p53 and

p21 protein expression and downregulation of AR [240].

Garcinol inhibited autophagy and colony formation ability,

induced apoptosis of human PCa cells, and reduced tumor

volume in a xenograft mouse model [241, 242]. Importantly,

apoptosis seemed to be mediated by garcinol-mediated

downregulation of NF-kB signaling [242]. Likewise, in PCa

cell lines, plumbagin decreased cell proliferation and in-

creased mitochondria-mediated apoptosis and autophagy

Table 3 Histone modifying drugs in clinical trials for PCa (Continued)

Phenelzine and
docetaxel

NCT01253642 II Recruiting PCa patients with progressive disease after
first-line therapy with docetaxel received
phenelzine orally once a day on days −7
to −4 and twice a day on days −3 to 21
and docetaxel I.v. on day 1. Treatment
repeats every 21 days for at least
12 weeks. nn = 30

Determine the proportion of patients who
experience a PSA decline of at least 30 %
and duration of progression-free survival.
Not available

OTX015 NCT02259114 IB Recruiting Advanced solid tumors including CRPC.
Patients divided in two regimens: (1)
continuous, once daily for 21 consecutive
days and (2) once daily on days 1 to 7,
repeated every 3 weeks (1 week on/2
weeks off). n = 98

Determine maximum tolerated dose and the
number of dose limiting toxicity. Not available
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through inhibition of PI3K/Akt/mTOR pathway and SIRT1,

respectively [243]. These effects were particularly manifest in

BRCA1/2-negative CRPC cells. This compound also seems

to target PCa stem cells [244]. Furthermore, Embelin was

shown to inhibit cell growth, migration, and invasion of PCa

cell lines through modulation of Akt signaling and GSK-3β

activation [245, 246]. This compound potentiated radiother-

apy for tumor growth suppression (in vitro and in vivo) and

increased the anti-proliferative and the apoptotic effects of

anti-androgen therapy leading to AR downregulation

[247, 248]. Accordingly, NK13650A inhibited AR me-

diated transcriptional activation in both hormone-naïve

and castration-resistant PCa cells [155]. On the other

hand, C646 induced caspase-dependent apoptosis and

decreased the migration and invasion capacity of PCa cells

[157]. Interestingly, TIP60 which may function as AR

co-activator is overexpressed in PCa tissues and signifi-

cantly correlates with disease progression [249]. NU9056

inhibits TIP60 activity, as well as AR and PSA expression,

reducing cell viability and inducing apoptosis via caspases

3 and 9 activation in PCa cell lines. Remarkably, CRPC

cell lines were more sensitive to NU9056 than hormone-

naïve cells [158]. Both NU9056 and TH1834 sensitized

PCa cells to radiation therapy [158, 159].

Two clinical trials with curcumin are now recruiting

PCa patients (NCT02064673 and NCT02095717).

Pre-clinical activity of HMTi and HDMi in prostate cancer

Exposure of PCa cells to DZNeP resulted in cell cycle

arrest in LNCaP and increased apoptosis in DU145 cells

and diminished its invasion capacity. Moreover, this

compound reduced tumor growth in mice and decreased

PCa stem cells self-renewal [250]. GSK126 inhibited

either polycomb-dependent or independent activity of

EZH2 in PCa cells [251]. EPZ005687 demonstrated

dose-dependent inhibition of H3K27me3 in PCa cells

[252]. A-366 is a potent G9A and GLP inhibitor which

efficiently reduces H3K9me2 in PC-3 cells, at micro-

molar concentrations [253]. CARM1 (PRMT4) inhibitors

[1-benzyl-3,5-bis-(3-bromo-4-hydroxybenzylidene)piper-

idin-4-one and its analogues] significantly reduced PSA

promoter activity in LNCaP cells in a dose-dependent

fashion [254]. Currently, there are no clinical studies

involving HMTi in PCa.

Pargyline decreased demethylation of H3K9 by LSD1,

which co-localizes with AR, therefore inhibiting andro-

gen target genes re-expression in PCa [55]. Furthermore,

this LSD1 inhibitor reduced migration and invasion abi-

lity and inhibited EMT transition in vitro and in vivo.

Suppression of EMT transition was apparent through

increased E-cadherin expression, and N-cadherin, and

vimentin downregulation. This drug was also able to

reduce PSA expression both in vitro and in vivo, delaying

CRPC onset [255]. Pargyline and tranylcypromine induced

cell cycle arrest at G1 and increased apoptosis of LNCaP

cells [256]. LNCaP cells and xenograft models treated with

namoline, displayed reduced cell viability, and tumor

volume. This compound was proposed as a potential

therapeutic agent against hormone-sensitive PCa, since it

induced silencing of AR-regulated genes [175]. Because

LSD1 and JMJD2 are coexpressed and colocalized with

AR in PCa cells, there have been efforts to synthetize pan-

demethylase inhibitors that might simultaneously inhibit

LSD1 and JmjC KDMs. Several of these compounds

induced apoptosis, arrested cell cycle at G1, and decreased

proliferation and migration of LNCaP cells [257].

Finally, two clinical trials will be conducted with the non-

specific MAO inhibitor phenelzine, alone (NCT02217709)

or in combination with docetaxel (NCT01253642).

Pre-clinical activity of BET inhibitors in prostate cancer

I-BET762 decreased PCa cell lines proliferation and

reduced tumor burden in an in vivo model of a patient-

derived tumor and these encouraging results might be due

to MYC downregulation [258]. JQ1 also exhibited anti-

cancer activity in PCa, especially in CRPC cell lines [183].

It was demonstrated that JQ1 acts downstream of AR, dis-

rupting its recruitment to target gene loci. This compound

also has the ability to downregulate either the expression

or the oncogenic activity of MYC and transmembrane

protease serine 2-v-ets avian erythroblastosis virus E26

oncogene homolog (TMPRSS2-ETS) gene fusion products.

I-CBP112 significantly decreased LNCaP cell proliferation

through increased H3K18 acetylation [187]. These data

suggest that BET bromodomain inhibitors might be thera-

peutically useful tools in PCa. However, the molecular

mechanisms that determine the activity of BET inhibitors

upon MYC and AR regulation in PCa must be further in-

vestigated. Two clinical trials with the BET inhibitor

OTX015 in solid tumors, including CRPC are ongoing

(NCT02698176 and NCT02259114) and might shed some

light on the potential clinical usefulness of these compounds.

Combination strategies: epigenetic modulators and

conventional therapy

Pre-clinical assays

Co-treatment of DU145 cells with 5-aza-2′-deoxycytidine

and sodium butyrate induced site-specific demethylation

in the AR promoter region with concomitant gene re-

expression [259]. In another pre-clinical assay, combi-

nation of 5-azacytidine and docetaxel also induced tumor

growth delay. In fact, 5-azacytidine sensitized PC-3 and

22Rv1 xenografts to docetaxel, and this combination was

not only well tolerated by mice but it was also superior

compared to either agent alone [260]. Combined exposure

to 5-aza-2′-deoxycytidine and GSK126 (EZH2 inhibitor)

showed an additive inhibitory effect on growth of cancer

cells in vitro and re-expression of tumor suppressor genes.
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Moreover, it induced a more powerful in vivo inhibition of

PC-3 xenograft tumor growth than 5-aza-2′-deoxycytidine

alone [261]. In another study, GSK126 combined with

conventional chemotherapy sensitized CRPC cells to apop-

tosis and growth inhibition both in vitro and in vivo [251].

These results suggest that EZH2 inhibitors might be helpful

to increase CRPC patient response to conventional therapy.

PCa cells exposed to vorinostat/SAHA combined with

olaparib (a PARP inhibitor) demonstrated a synergistic

decrease in cell viability and clonogenicity, as well as an

increase in apoptosis and DNA damage compared with

single agent, not affecting normal prostate cells [262]. This

compound also enhanced radiation-induced apoptosis in

DU145 cells [263] and demonstrated a synergistic effect

with zoledronic acid, increasing LNCaP and PC-3 cell

death [264]. Moreover, low doses of vorinostat/SAHA

combined with bicalutamide, synergistically increased

apoptosis and decreased cell proliferation [265]. Panobi-

nostat combined with radiotherapy (RT) significantly im-

proved the efficiency of cell death and induced persistent

DNA double strand breaks, suggesting that it might in-

crease radiosensitivity of PCa [266]. Moreover, chemosen-

sitivity to gemcitabine was augmented in DU145 cells

and xenografts after pre-treatment with low-dose

romidepsin [267]. Romidepsin combined with docetaxel

not only demonstrated superior cytotoxic effects in CRPC

cell lines but it also significantly reduced tumor growth in

mice [268]. A combination of sulforaphane, bicalutamide,

and enzalutamide enhanced the anti-proliferative effects,

decreased tumor cell migration, and reduced PSA and AR

expression in LNCaP and C4-2B cells [269].

Anacardic acid sensitized PCa cell lines to radiation the-

rapy by decreasing H2AX and p-H2AX expression [270].

Recently, exposure of enzalutamide-resistant mCRPC cells

to BETi (JQ1 and OTX015) resulted in attenuation of AR

target genes (FKBP5, KLK3, ERG, and MYC) and AR-v7

expression as well as decreased CRPC cell proliferation in

vitro and tumor growth in vivo. Moreover, BETi enhanced

the anti-tumor effects of the anti-androgens enzalutamide

and ARN509 in a in vivo model [271]. UVI5008, a multi-

target epi-drug that inhibits HDACs, Sirtuins, and DNMTs,

decreased DU145 cell proliferation, and induced apoptosis

by activating initiator and effector caspases and reducing

mitochondrial membrane potential [272].

Clinical trials

A phase I clinical trial (NCT00503984) with 5-azacytidine

combined with docetaxel (alternately escalated in a stan-

dard 3 + 3 design) and prednisone (5 mg twice daily

continuously), in a 21-day cycle, enrolled 15 mCRPC

patients, which had progressed during or within six

months of chemotherapy with docetaxel. No dose-limiting

toxicity was observed, and the most common adverse

event related was neutropenia. A phase II clinical trial-

enrolled six patients who received 150 mg/m2 of 5-

azacytidine for five days followed by 75 mg/m2 of doce-

taxel on day six during 46 cycles. Grade 3 hematologic

and non-hematological toxicities were observed, and one

patient died from neutropenic sepsis. Subsequently, 5-

azacytidine schedule was reduced to 75 mg/m2 daily for

five days followed by docetaxel. PSA response was ob-

served in 10 of 19 (52.6 %) patients, and the median dur-

ation of response was 20.5 weeks. A complete response

was achieved in one patient, partial response in two pa-

tients, five patients showed stable disease, and two pa-

tients experienced disease progression [273].

In a phase I clinical (NCT00565227) which enrolled four

CRPC patients, the combination of vorinostat/SAHA, given

orally with intravenous docetaxel induced high toxicity,

entailing trial closure [274]. A phase I trial (NCT00331955)

combined oral vorinostat/SAHA (administered on days 1,

2, and 3 with a planned dose escalation of 600 mg given

twice a day in two divided doses) and 20 mg/m2 of

the topoisomerase II inhibitor doxorubicin (infused on

third day, 4 h after the last vorinostat/SAHA dose). Partial

response was achieved in one of the two PCa patients

enrolled [275]. Sixteen CRPC patients were enrolled in a

parallel, two-arm, open-label, phase IA/IB study (NCT

00663832), with oral panobinostat alone (20 mg adminis-

tered on days 1, 3, and 5 for two consecutive weeks) or in

combination with docetaxel and prednisone (15 mg of

panobinostat administered in the same schedule and

75 mg/m2 of docetaxel every 21 days). Partial response

was achieved in five (63 %) patients taking the combined

therapy whereas none was obtained with panobinostat

alone arm. However, patients from both arms showed

grade 3 toxicities [276]. A randomized phase I/II trial (NC

T00878436) of panobinostat (three different schedules—C1

60 mg/weeek, C2 90 mg/week, C3 120 mg/week, orally)

and bicalutamide (50 mg PO daily) was conducted in nine

CRPC patients. Grade 3 toxicities were observed and PSA

decline ≥50 % was observed in two patients and stable

PSA in three patients. As this regimen was well tolerated

by the patients showing promising PSA responses, the

study proceeded for phase II [277]. A phase I clinical trial

(NCT00530907) in which VPA (5.3 mg/kg PO daily) was

combined with bevacizumab (11 mg/kg IV once every

14 days) demonstrated that this combination was safe and

well tolerated by the patients. One of the six PCa patients

(17 %) enrolled in this trial presented stable disease for

over 6 months [278].

A phase II clinical trial evaluated the combinatory

effect of curcumin, prednisone, and docetaxel in 30 CRPC

patients. Docetaxel and prednisone were administered in

standard conditions for six cycles and curcumin at 6000 mg/

day (day −4 to day +2 of docetaxel). This schedule was well

tolerated by the patients, with no significant toxicities ob-

served. Decreased PSA levels were observed in 59 % of
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patients, and 40 % of evaluable patients presented a partial

response [279]. Another clinical trial (NCT01917890)

investigated the efficacy of curcumin and radiotherapy.

PCa patients (n = 40) undergoing external beam radiothe-

rapy were randomly selected to receive 3 g/day curcumin

orally (n = 20) or a placebo (n = 20). Patients who received

curcumin present reduced urinary symptoms related to

radiotherapy, suggesting that this compound could offer

radioprotective effects [280].

Conclusion and future directions

Considering the success of epigenetic drugs in acute

leukemia and myelodysplastic syndrome, there is a grow-

ing interest for their use in solid tumors. The results

of epigenetic-based therapy in cutaneous lymphomas

further suggest the possibility that solid tumors may also

respond to such treatment.

Concerning DNMT inhibitors, the lack of success of

azanucleosides observed in solid tumors, including PCa,

might be due to the fact that they are mostly effective in

highly proliferative tumors and the rate of active cell

division is much lower in solid tumors, compared to

hematolymphoid neoplasms. Moreover, the potential of

demethylating agents to cause global hypomethylation

leading to unwanted activation of imprinted or silenced

genes is an additional concern. Therefore, their lack of

specificity might paradoxically contribute to tumorige-

nesis and increased disease aggressiveness due to upre-

gulation of genes involved in metastasis. Indeed, several

studies have shown incredible substantial decrease in

m5C content alongside with specific demethylation of

tumor suppressor gene promoters with concomitant

re-expression [281]. Treatment with azanucleosides is also

associated with hematopoietic, nervous, and metabolic

toxicity. However, they usually display a lower toxicity

profile than conventional chemotherapy. Although, non-

nucleoside inhibitor compounds are less cytotoxic than

nucleoside inhibitors, they proved to be less effective than

azanucleosides at inhibiting DNA methylation and reacti-

vating gene expression [69, 102, 116].

Considering histone modulators, the best studied thus far

are HDACi. However, these compounds are not specific

and they rather act on non-histone proteins in addition to

histones, which could contribute to more aggressive side

effects. Nevertheless, it was shown that these drugs prefe-

rentially target genes that have become abnormally silenced

in cancer and, indeed, the chromatin silencing structure

induced by cancer is more susceptible to reactivation than

the structure of physiologically compacted chromatin [282].

The ideal treatment would be the one that could selectively

reverse hypermethylation of tumor suppressor genes’ pro-

moters, reestablishing its function, without causing global

demethylation of the genome. Eventually, the combination

of DNMTi with HDACi and conventional chemotherapy

might be a promising strategy for the treatment of PCa

patients. Nevertheless, additional studies are required to

assess the role of DNMTi, especially non-nucleoside ana-

logues, as therapeutic options for PCa.

Of some concern, much of the clinical evaluation of epi-

genetic therapeutics in PCa to date has been undertaken

in late stage, heavily pre-treated mCRPC patients, com-

monly without a patient stratification strategy and with

agents of sometimes poorly defined specificity for epige-

netic effect (particularly for “repurposed” drugs). Since

epigenetics is a complex process of gene regulation, there

is a need for evaluation of agents where we understand

clearly the epigenetic target(s), in clinical trials where we

also test potential predictive biomarkers to select patients

that would benefit from these therapies. Ideally, pre-

clinical studies should focus on providing patient strati-

fication hypotheses that we can take through to the clinic.

Earlier stage disease, for example, patients who have

biochemical recurrence after radical prostatectomy or

patients receiving ADT prior to transition to a CRPC

phenotype might represent more relevant clinical settings

for assessment of epigenetic therapeutics [28]. It might

also be useful to evaluate other parameters. For example,

low doses of 5-aza-2′-deoxycytidine have shown to be

able to minimize toxicity while potentially improving the

targeted effects of DNA hypomethylation [283]. Thus, the

hypothesis of reducing dose to an epigenetic but not cyto-

toxic level might allow us to target better the therapeutic

index between efficacy and safety, particularly in combi-

nations of either epigenetic/epigenetic and epigenetic/

non-epigenetic drugs. In addition, we have relatively limited

experience of the clinical impact of prolonged maintenance

treatment with epigenetic agents, at high or low dose, in

terms of toxicity profiles or mechanisms of emergent

acquired resistance to therapy. Together with increased

insight into the molecular mechanisms underlying the

activity of epigenetic-based drugs, linking the rapidly advan-

cing biological understanding of the disease for more

precise selection of PCa subtypes for clinical trials will

hopefully foster successful clinical validation of these

drugs for the treatment of PCa.
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