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Abstract

Background: Neighborhood characteristics are robust predictors of overall health and mortality risk for residents.
Though there has been some investigation of the role that molecular indicators may play in mediating
neighborhood exposures, there has been little effort to incorporate newly developed epigenetic biomarkers into
our understanding of neighborhood characteristics and health outcomes.

Methods: Using 157 participants of the Detroit Neighborhood Health Study with detailed assessments of
neighborhood characteristics and genome-wide DNA methylation profiling via the lllumina 450K methylation array,
we assessed the relationship between objective neighborhood characteristics and a validated DNA methylation-
based epigenetic mortality risk score (eMRS). Associations were adjusted for age, race, sex, ever smoking, ever
alcohol usage, education, years spent in neighborhood, and employment. A secondary model additionally adjusted
for personal neighborhood perception. We summarized 19 neighborhood quality indicators assessed for
participants into 9 principal components which explained over 90% of the variance in the data and served as
metrics of objective neighborhood quality exposures.

Results: Of the nine principal components utilized for this study, one was strongly associated with the eMRS (3 =
0.15; 95% confidence interval = 0.06-0.24; P = 0.002). This principal component (PC7) was most strongly driven by
the presence of abandoned cars, poor streets, and non-art graffiti. Models including both PC7 and individual
indicators of neighborhood perception indicated that only PC7 and not neighborhood perception impacted the
eMRS. When stratified on neighborhood indicators of greenspace, we observed a potentially protective effect of
large mature trees as this feature substantially attenuated the observed association.
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Urban populations

Conclusion: Objective measures of neighborhood disadvantage are significantly associated with an epigenetic
predictor of mortality risk, presenting a potential novel avenue by which neighborhood-level exposures may impact
health. Associations were independent of an individual's perception of their neighborhood and attenuated by
neighborhood greenspace features. More work should be done to determine molecular risk factors associated with
neighborhoods, and potentially protective neighborhood features against adverse molecular effects.
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Background

The role of neighborhood characteristics in health can-
not be overstated. Virtually, every characteristic of a
neighborhood, here used broadly to define a relatively
small area containing a residence, has been linked with
the health and well-being of its residents including the
chemical environment [1], the built environment [2, 3],
the social and economic environment [4—6], and even
individual perceptions of the neighborhood [7-9].
Though much of the existing research on the relation-
ship between neighborhood characteristics and health
has focused on overt health outcomes, like chronic dis-
ease and mortality, there is an increasing appreciation of
the molecular alterations that may accompany residence
in socioeconomically and built environment disadvan-
taged neighborhoods and that may explain the biological
process through which exogenous factors like neighbor-
hood characteristics “get under the skin.”

The stress pathway has been the most widely studied
pathophysiologic pathway to explain how neighborhood
characteristics impact health, as negative neighborhood
characteristics are thought to chronically elevate stress
levels. Allostatic load is a biomarker that incorporates
multiple aspects of health, in particular stress-related
health outcomes (e.g., blood pressure and cortisol), with
higher allostatic load indicative of poorer health [10, 11].
Multiple studies have reported that allostatic load is in-
creased for those living in stressful and socioeconomi-
cally disadvantaged neighborhoods [12, 13]. In addition
to allostatic load, molecular markers of inflammation
[14, 15] and accelerated aging [16, 17] are associated
with exposure to adverse chemical and socioeconomic
environments. In the reverse of these studies, neighbor-
hood factors associated with positive health outcomes,
e.g., greenspace, have been associated with improved
levels of molecular biomarkers for allostatic load and in-
flammation [18], demonstrating that both positive and
negative neighborhood characteristics might impact mo-
lecular indicators of health.

One of the most promising molecular markers to study
health impacts is DNA methylation. DNA is primarily
methylated at cytosine of cytosine-phosphate-guanine
(CpQ) dinucleotides. DNA methylation is a central process

by which the expression of genes is regulated in both a cell
type-specific and temporal manner [19]. DNA methylation
altered by exposure to both the chemical and non-chemical
(i.e., socioeconomic) environment, and alterations in DNA
methylation are associated (in some cases with causal evi-
dence) with a variety of health outcomes including meta-
bolic outcomes [20, 21], cardiovascular disease [22-24],
cancer [25, 26], and mortality [27, 28].

Recent advances in DNA array technology and data
availability have allowed researchers to develop DNA
methylation-based biomarkers for outcomes such as ac-
celerated aging [29], chronic disease risk [30], and mor-
tality risk [27, 31]. For aging, there has been substantial
work showing that DNA methylation age is accelerated
by adverse environmental exposures [17]. For other epi-
genetic biomarkers, there has been little research to
evaluate their response to the external environment, in
particular neighborhood characteristics. Here, we evalu-
ate the degree to which objective measures of neighbor-
hood quality/disadvantage, such as the condition of the
street and buildings and lack of greenspace, are associ-
ated with a validated epigenetic mortality risk score
(eMRS) [27, 31]. We further do this in a predominantly
African-American cohort, an understudied racial group
in the field of epigenetics.

Results

For the 157 participants in this analysis, the mean age
was 53.3 years (standard deviation = 13.8 years), 61.8%
(97) were female, and 87.9% were African-American. At
initial enrollment, 20.4% (32) of the participants in this
analysis reported never smoking, and 47% (74) had at
least some college education (Table 1). At the baseline
assessment, 126 participants (80.3%) reported that they
liked their neighborhood either “somewhat” or “a great
deal” as a place to live.

Of the nine PCs, only one (PC7) was associated with the
eMRS (Fig. 1) in a model adjusted for age, sex, race, smoking
status, alcohol usage, years residing in the neighborhood,
education, and employment after correcting for the nine as-
sociations performed in the primary analysis. The association
remained in a model that further adjusted for individual per-
ception of the neighborhood, and an individual’s perception
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Table 1 Description of Detroit Neighborhood Health Study
participants used in this analysis

Cohort description Mean SD
Age (years) 533 138
Years lived in neighborhood (years) 186 16.9
B cell (%) 8.12 393
Monocytes (%) 8.64 297
Granulocytes (%) 535 1.7
CD4-T cells (%) 16.9 742
CD8-T cells (%) 10.7 6.13
Natural killer cells (%) 7.85 5.85
N %
Sex (female) 97 618
Never smokers 43 274
Never drinkers 32 204
Education (kindergarten—eighth grade) 2 127
Education (some high school) 26 16.6
Education (high school equivalent) 14 892
Education (high school graduate) 41 26.1
Education (some college) 46 293
Education (college graduate) 20 12.7
Education (post-graduate degree) 8 5.1
Employed 46 293
Close knit neighborhood 87 554
(strongly or somewhat agree)
Like the Neighborhood 126 80.3
(somewhat-a great deal)
White 17 108
Black or African-American 138 879
Other 2 1.27

Percentages of cell types were estimated from the DNA methylation data as
described in the “Methods” section

of their neighborhood was not independently associated with
the eMRS in the model containing PC7 (Table 2). The asso-
ciation appeared to be primarily driven by female partici-
pants (Fig. 1). Blood samples for the participants in this
study came from two survey waves. Of the 157 participants,
111 (71%) came from wave 2. When stratifying on wave 2
participants, we observed minimal change in the association
with PC7 (effect estimate = 0.16; 95% CI = 0.05-0.26; P =
0.004). The top positive loadings for PC7 were factors associ-
ated with the presence of abandoned cars, people present on
the street, and non-art graffiti. In addition, the presence of
alcohol advertising had a negative loading, as well as the
street being in poor condition (Supplemental Table 1).

In a sensitivity analysis, none of the individual neigh-
borhood characteristics were associated with the eMRS
in isolation after correcting for the 19 associations per-
formed. Only one, HQ11 indicating if the streets in the
neighborhood are in poor condition, had even a nominal
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(P < 0.05) association (Supplemental Table 3). This sug-
gests that associations between neighborhood features
and the eMRS are strongest when multiple features are
combined.

PC7 was associated with 4 of the 10 CpGs composing
the eMRS at P < 0.005 (which adjusts for the 10 associa-
tions performed in this sensitivity analysis). For all but
one of the PC7-CpG associations with P < 0.005, the dir-
ection of association was consistent with the eMRS-PC7
association after accounting for the direction of associ-
ation for the CpG with the eMRS observed by Zhang
et al. [27] (Table 3). This indicates that PC7 may be as-
sociated with multiple epigenetic loci that are predictive
of mortality, an association which is even stronger (by
effect size) when aggregated into an eMRS.

When stratified by sex, the associations appeared to be
driven by women (Fig. 1). Although PC9 also appeared
to have a sex-specific association, we did not consider
this in the sex-specific analysis as there was no PC9-
eMRS association in the primary analysis, and even the
sex-specific association would not have been significant
after adjusting for the number of tests performed.

The presence of greenspace has been implicated as a
potentially protective environmental factor for health
outcomes [2, 32]. The presence of large, mature, trees
and the presence of community gardens were two
assessed neighborhood characteristics that could speak
to the presence of greenspace, and both were uncorre-
lated with PC7 (Pearson’s * = 0.004 and 0.001, respect-
ively). To evaluate the impact of greenspace, we
examined if associations between PC7 and the eMRS
were attenuated in individuals residing in neighborhoods
where the percentage of street segments with large ma-
ture trees was above the median (> 84.2%) or in neigh-
borhoods with at least one community garden observed.
Indeed, individuals residing in neighborhoods with above
median levels of large mature trees saw an 85% attenu-
ation of the PC7-eMRS association as compared to the
entire cohort (Fig. 2). Conversely, the PC7-eMRS associ-
ation was elevated for individuals with below median
levels of large mature trees as compared to the overall
cohort. For community gardens, we observed a smaller
attenuation towards the null (52%) when comparing
communities with no community gardens to those with
one or more. The 95% confidence intervals of the strati-
fied associations for community gardens largely over-
lapped indicating a weaker attenuation than seen with
large mature trees which should be regarded cautiously
given the small sample sizes (Fig. 2). The attenuation of
associations in neighborhoods with greenspace extended
even to the individual CpGs which compose the eMRS,
as associations were substantially attenuated for individ-
uals living in neighborhoods with above median levels of
large mature trees or community gardens as compared
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Fig. 1 Association between principal components for neighborhood quality and eMRS. Each of the principal components (PCs) for neighborhood
quality was associated with the epigenetic mortality risk score (eMRS [27]) in a model adjusted for age sex, race (White, African-American, and
Other), ever smoking, ever alcohol usage, years spent residing in neighborhood, education (binary indicator for some college or more), and
employment (binary indicator for employed vs unemployed). Squares and triangles represent models stratified on sex (males and females,
respectively), and in such models, the term for sex was removed. Principal components are numbered in order of their ranking of the percent
variance explained, and only the top nine were examined as they explained > 90% of the variance as detailed in the "Methods” section
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to individuals living in neighborhoods with below me-
dian levels of large mature trees or no community gar-
dens (Supplemental Table 4). Inflammation may be one
mechanism by which the external environment is associ-
ated with epigenetic mortality risk. Blood immune cell
counts can be used to examine the impact of inflamma-
tion on associations, which would not be considered
confounders here (as they might in an epigenome-wide
association study) as inflammation is a mechanism by
which the exposure may act on the outcome. In Supple-
mental Table 5, we show the Pearson correlation (%) be-
tween each principal component and six cell counts

Table 2 Assessment of both objective and subjective
neighborhood measures in association with epigenetic mortality
risk score

P value
0.002

95% Cl

0.06, 0.25
- 007,023 0.30
—0.18,0.20 093

In a model which assessed both objective measures of neighborhood quality
(neighborhood principal component 7 [PC7]) as well as subjective measures of
neighborhood quality (whether the neighborhood was close knit and whether
the neighborhood was a good place to live according to study participants),
only the objective measure was associated with the epigenetic mortality risk
score [27]. Effect estimates are given in per unit increases in the epigenetic
mortality risk score per a one unit increase in the neighborhood quality
principal component

Variable Effect estimate
pC7 0.15

Close knit neighborhood 0.08

Good place to live 0.01

(estimated from DNA methylation data using the
Houseman method). For PC7, correlations were fairly
weak and ranged from 5.9 x 107 to 0.07. Adjusting for
cell counts reduced the overall association as well as for
neighborhoods with community gardens. Associations
were still present for neighborhoods without large ma-
ture trees (Supplemental Table 6), indicating that while
inflammatory status likely plays a role in associations, at
least for neighborhoods without large mature trees, there
persists a component likely independent of inflammation
as reflected in changes in blood immune cell counts.

Discussion

Using data from residents of Detroit, we find that a re-
cently developed epigenetic biomarker of mortality [27] is
associated with summary measures of neighborhood char-
acteristics constructed from objective measures of neigh-
borhood characteristics which are indicative of
neighborhood advantage/disadvantage based primarily on
the quality of the built environment (Supplemental Table
2). The continuous epigenetic mortality score developed
by Zhang et al. [27] is a strong predictor of mortality, and
in an independent validation study, a one unit increase
was associated with a 2.64-fold increase (95% confidence
interval, 1.98-3.52) in all-cause mortality risk [31]. We
found that PC7, a principal component driven by neigh-
borhood characteristics such as the number of abandoned
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Table 3 Association between PC7 and components of the

eMRS

Beta P value 95% Cl Chr  Gene
cg08362785 001 40x 107 0006, 0.02 22 MKLT
cg01612140 - 0.03 45 %107 — 004, — 001 6
€g23665802 - 0.02 0.001 - 003, -0008 13 MIRT9A
€g24704287 - 0.02 0.002 —-003,-0007 19
€g25983901 - 0.01 0.02 -002,-0003 7
cg10321156 - 0.01 0.02 -003,-0002 11
€g19572487 001 0.23 — 0.005, 0.02 17 RARA
cg06126421 - 0.01 0.26 - 0.03, 0.007 6
cg14975410 - 0002 070 —0.02,001 3
cg05575921  0.001 0.88 - 002,002 5 AHRR

Multiple DNA methylation loci (CpG) which composed the epigenetic
mortality risk score (eMRS) even after a multiple test correction for the
10 tests performed (P < 0.005). Chromosome and associated gene
were taken from the Illumina 450K manifest file. Gene annotation is by
proximity. C/ confidence interval; Chr chromosome
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cars observed, people being present outside on the street,
and non-art graffiti (Supplemental Table 1, Supplemental
Table 2), was associated with higher epigenetic risk of
mortality (Fig. 1).

Greenspaces have been promoted as a protective envir-
onmental measure against adverse health outcomes [2, 32,
33], and may even be able to attenuate the effect of other
adverse chemical or social environmental exposures. In a
study of more than 40,000,000 adults, the association be-
tween all-cause mortality and income deprivation was
lowest in the most green areas [34]. The presence of large,
mature trees substantially attenuated the association be-
tween PC7 and the eMRS, indicating a potentially coun-
teractive effect of greenspace indicators against the
adverse community factors represented by PC7. We saw
less attenuation with stratification on the presence of
community gardens, and the differences in the observed
associations may have been driven by chance. However,
these stratified analyses should be considered preliminary
and interpreted with a note of caution given the small
sample sizes and overlapping confidence intervals for the
analysis of community gardens in particular. We also can-
not discount that the presence of community gardens may
not only be reflective of increased greenness in a neigh-
borhood, but might also reflect altered dietary conditions
through access to fresh foods.

PC7 Associations and Greenspace
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Fig. 2 Association between PC7 and eMRS stratified on indicators of neighborhood greenspace. To examine if associations were potentially
modified by exposure to greenspace, we stratified associations between neighborhood principal component 7 (PC7) and the epigenetic mortality
risk score (eMRS [27]). Associations appeared to be substantially stronger in neighborhoods with greater than the median presence of large
mature trees (Trees (High)) and with community gardens (Gardens) as compared to neighborhoods with below median presence of large mature
trees (Trees (Low)) and no observed community gardens (No Gardens). The median presence of large mature trees was 84.2%. Gray bar indicates
region as defined by the 95% confidence interval for the overall association
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While there have been multiple studies linking area-
level neighborhood features (or correlates of these fea-
tures) with altered DNA methylation [35-40], there has
been limited research on measures of the built environ-
ment and their potential link to epigenetic variation. In a
candidate gene study of older adults, a summary meas-
ure taking into account both the neighborhood physical
environment (esthetic quality) as well as features like
crime and social cohesion was associated with epigenetic
variation in multiple stress-related genes [41]. The asso-
ciations observed in this study were independent of both
individual measures of socioeconomic status (e.g., em-
ployment and education) and perceptions of the neigh-
borhood (including social cohesion), indicating that
objective neighborhood characteristics may impact
health biomarkers independent of perception and indi-
vidual socioeconomic status. This observation contrasts
with some research suggesting that objective neighbor-
hood quality measures may be largely associated with
health outcomes through subjective perception of the
neighborhood [8, 9, 42]. However, these previous studies
focused mostly only overt (and often self-reported)
health outcomes and not molecular measures which
may reflect underlying molecular alterations which pre-
cede overt health outcomes.

As DNA methylation is an individual measure, it does ne-
cessitate that there be some individual-acting mechanism
linking neighborhood characteristics and altered DNA
methylation. There are multiple individual-acting mecha-
nisms which may account for associations with area-level
characteristics including induced stress, exposure to envir-
onmental conditions unique to socioeconomically disad-
vantaged neighborhoods, and limited access to resources
such as quality groceries and healthcare. Some of these
mechanisms have existing evidence as a means by which
neighborhood characteristics can impact individual-level
measures [43, 44]. Other factors which may impact these
associations are individual-level behavioral factors such as
smoking. Though we did control for individual-level behav-
joral factors like smoking in the models, there may still be
components of this mechanism which impact associations
through variables not included in the models, e.g., time
since quitting. Though the correlation between PC7 and
cell counts was low (Supplemental Table 5), adjustment for
cell counts did substantially attenuate associations. Interest-
ingly, this attenuation was not observed in neighborhoods
with below median levels of large mature trees (Supple-
mental Table 6). This could indicate that inflammation,
reflected in changes in inflammatory cell counts, could be a
potential mediating mechanism, but that other mechanisms
still persist in neighborhoods derived of greenspace. Given
the small sample size, it is beyond the means of this study
to fully explore these potential mechanisms, but they
should be investigated in future studies to provide a deeper
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understanding of the mechanisms by which neighborhood
characteristics impact health.

Some of the strengths of this study include the robust
assessment of objective neighborhood characteristics by
trained assessors as opposed to self-report by the resi-
dents. This allowed perceptions of the neighborhood by
those residing there to be separated from objective
neighborhood characteristics. A limitation of the study is
that some variables which may modify associations ob-
served were not collected, such as specific occupation. If
certain occupational exposures clustered in neighbor-
hoods, then this could confound or modify associations.
However, the clustering would have to fall along the
lines of the principal components, and the eMRS would
have to be associated with the specific occupations
which cluster in neighborhoods—which has yet to be
shown. Future studies should investigate both the associ-
ation between the eMRS and occupational exposures as
well as attempt to account for occupation should such
associations be found. A limitation of the study is the
small sample size. Given the limited sample size, we fo-
cused on a relevant DNA methylation-based biomarker,
as opposed to genome-wide variation, and utilized the
continuous form of the eMRS, to maximize power. The
limited sample size also impacted our ability to investi-
gate potentially relevant stratifications in this cohort,
and could not, for example, study the joint impact of
large mature trees and community gardens as < 25 par-
ticipants had positive indications for both these mea-
sures. However, this study is strengthened by using a
biomarker derived in an independent sample, which pre-
vents a potential increase in false positives arising from
using the same samples to both derive a biomarker and
then use that biomarker for analyses. Though the eMRS
has not been evaluated in a primarily African-American
sample, it has shown strong and consistent prediction in
three independent cohorts [27, 31] and similar epigen-
etic biomarkers have shown validity across ethnicities
[17, 28]. Additionally, though this study focused on resi-
dents of a single urban area, the epigenetic mortality risk
score has been validated in residents of urban areas in
Europe and the USA [27, 31].

Conclusions

In conclusion, we observed that a neighborhood profile
highlighted by abandoned cars, poor streets, and non-art
graffiti is positively associated with an epigenetic bio-
marker of mortality risk in an urban population. This
study provides molecular evidence of the biological impact
of residential neighborhood characteristics and supports
research showing that neighborhood characteristics may
alter intrinsic biological processes such as the methylation
of DNA. As alterations in DNA methylation may be a
means by which neighborhood characteristics translate
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into health disparities, researchers should continue to ex-
plore DNA methylation biomarkers and individual loci to
more fully understand the biological and socioeconomic
implications of these associations.

Methods

Cohort

The Detroit Neighborhood Health Study (DNHS) is a pro-
spective cohort study conducted in the metropolitan area
of Detroit, Michigan, and was designed to provide a ran-
dom sample of the city that reflects the demographics of
the city. Study coordinators collected a cohort of adult De-
troit residents, with surveys and sample collection begin-
ning in the year 2008 and continuing annually until 2012.
Study enrollment and annual assessments were conducted
via telephone, and the structured interviews were designed
to collect detailed information on participant’s neighbor-
hood perception, alcohol and tobacco usage, social sup-
port, and health. Additionally, DNHS participants were
offered the opportunity to provide a biospecimen sample
at their baseline assessment. Of 1547 DNHS participants,
612 consented to providing a blood sample, and these 612
did not differ significantly in sociodemographic profiles
from the entire cohort [45]. Informed consent was ob-
tained from all participants, and the study protocol was
approved by the University of Michigan Institutional Re-
view Board (HUMO00014138) [46, 47].

As part of the baseline survey, a structured assessment
of objective neighborhood characteristics was under-
taken by trained assessors. In the assessment, 135 census
block groups, defined according to the 2000 Census,
were visited by a pair of 26 trained assessors. Between
June and July of 2008, assessors evaluated 19 neighbor-
hood characteristics (Supplemental Table 2) using stan-
dardized protocols, which were adapted from the New
York Social Environmental Study neighborhood assess-
ment instrument [48] to be specific for Detroit. Frequen-
cies of observed neighborhood characteristics were
calculated as the percent of street segments within each
evaluated census block group with that neighborhood
characteristic.

DNA methylation assessment and calculation of
epigenetic mortality risk score

Genome-wide DNA methylation was measured in whole
blood (leukocytes)-derived DNA with the Illumina 450K
DNA methylation array following previously published
methods [45, 47, 49]. Briefly, peripheral blood DNA was
obtained via venipuncture. Samples were bisulfite con-
verted using the EZ-96 DNA methylation kit (Zymo Re-
search). Bisulfite converted samples were profiled via the
Mlumina Infinium 450K DNA methylation array per
manufacturer protocols. Sample quality control (QC) in-
cluded the removal of samples with probe detection call
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rates < 90% and those with an average intensity value <
50% of the experiment-wide sample median or < 2000
arbitrary units. The R package CpGassoc was used for
QC procedures [50]. Additionally, probes with detection
P values > 0.001 were removed, as were samples with
missing data for > 10% of probes. Probes with known
SNPs and cross-hybridizing probes [51] were also re-
moved. Probe normalization was undertaken using the
beta-mixture quantile normalization method [52] as im-
plemented in the R package wateRmelon [53]. ComBat
[54] was used to remove batch effects from assigned
chip and assigned chip position for each sample. For use
of ComBat, beta values were first converted to M values.
Batch effects were then removed prior to converting M
values back to beta values. These QC procedures match
the standard procedures for the Detroit Neighborhood
Health Study [55, 56]. Of the 612 participants providing
blood samples, 179 participants were tested on the Illu-
mina 450K DNA methylation array, and of these, 157
passed all QC metrics and had available data on neigh-
borhood characteristics.

We used a validated epigenetic mortality risk score
(eMRS) [27] as a molecular indicator of mortality risk as
determined by alterations to DNA methylation. The
eMRS assessed the percent methylation at 10 CpGs and
was developed on the Illumina Infinium 450K methyla-
tion array. Both a continuous score, based on the regres-
sion coefficients in the discovery sample, and a
categorical score, based on the number of “aberrant”
CpGs, were developed by Zhang et al. [27]. For this
study, we used the continuous score, as 157 samples
limit sample sizes across the categorical score for the
analyses. All 10 CpGs for the eMRS were available and
passed QC in all 157 DNHS participants available for
this analysis. The distribution of the eMRS in the study
population is given in Supplemental Figure 1.

Analytic models

Our primary analysis was to evaluate if objective neighbor-
hood characteristics were associated with the eMRS.
Given the limited sample size and correlation among the
19 assessed neighborhood characteristics, we performed a
principal component (PC) analysis to reduce the number
of tests performed as well as to summarize co-varying
neighborhood characteristics into components which
might be better reflect relationships with the eMRS. We
made the a priori decision to examine the first nine PCs
(when ranked by percent variance explained) necessary to
explain 90% of the variance in the data for analysis.

We used two models of adjustment based on a priori se-
lection of potential confounders. In the first (full) model,
we adjusted for age sex, race (White, African-American,
and other), DNHS survey wave for the DNA methylation
collection (wave 1 vs wave 2), ever smoking, ever alcohol
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usage, years spent residing in the neighborhood, education
(binary indicator for some college or more), and employ-
ment (binary indicator for employed vs unemployed). The
second model adjusted for all the terms in the first model
but also included indicators of personal neighborhood
perception. Binary indicators for whether the person liked
their neighborhood (“Somewhat” or “A great deal” versus
all other responses) and for whether someone agreed with
the statement that their neighborhood was a close-knit or
unified neighborhood (“Strongly Agree” or “Somewhat
Agree” versus all other responses) were used to capture
personal perceptions on the likeability and social cohe-
sion/support of an individual's neighborhood and were
asked of each participant at their baseline visit.

Given previous observations that associations with epi-
genetic biomarkers may vary based on sex [17, 57], we
decided to evaluate sex-stratified associations for those
PCs significant in the primary analysis. We also stratified
analyses based on indicators of greenspace in neighbor-
hoods, as greenspace may be a potentially protective fac-
tor for health outcomes [2, 32]. There were two
neighborhood characteristics evaluated by the assessors
which indicated the presence of greenspace in a neigh-
borhood, one on the presence of large mature trees and
the other on the presence of community gardens in the
neighborhood (HQ9 and HQ6, respectively, in Supple-
mental Table 2). For the presence of large mature trees,
we stratified individuals based on the median value for
HQ6 (84.2%), i.e., the median the percentage of block
groups in a neighborhood with large mature trees. As
most individuals (88/157) lived in a neighborhood with
no observed community gardens, we stratified this vari-
able on the presence of community gardens vs no ob-
served presence. Histograms of the distribution of large
mature trees and community gardens in the neighbor-
hoods are given in Supplemental Figures 2 and 3. We
also performed a sensitivity analysis adjusting primary
associations, as well as those stratified on greenspace, for
immune cell counts. Part of the association between the
built neighborhood environment and the eMRS may be
driven by blood immune cell counts as these would be
indicators of inflammatory status, which is one mechan-
ism that may link the built environment to mortality
risk. We estimated blood immune cell counts using the
established Houseman method [58] to estimate counts
of CDAT cells, CD8T cells, natural killer cells, B cells,
monocytes, and granulocytes [59].

Associations for the primary analysis were considered
significant at the P < 0.006 level to adjust for the nine PCs
examined. All analyses were done using R version 3.6 [60].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513148-020-00830-8.
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Additional file 1. Supplemental Table 1. Loadings for each of the top
nine principal components. Supplemental Table 2. Definitions of housing
quality indicators. Supplemental Table 3. Associations between housing
quality indicators and epigenetic mortality risk score. Supplemental Table
4. Associations between PC7 and CpGs which compose the eMRS
stratified on neighborhood greenspace. Supplemental Table 5. Pearson
correlation (r2) between DNA methylation-derived cell counts and the
neighborhood quality principal components used in the analyses. Supple-
mental Table 6. Associations between PC7 and the epigenetic mortality
risk score after additional adjustment for cell counts. Supplemental Figure
1. Distribution of the epigenetic mortality risk score (eMRS) in Detroit
Neighborhood Health Study participants. Supplemental Figure 2. Distribu-
tion of the percentage of large mature trees observed in the neighbor-
hoods for the study participants. Supplemental Figure 3. Histogram of
the distribution of community gardens observed within the neighbor-
hoods for the study participants.
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