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The response to hypoxia is primarily mediated by the hypoxia-inducible transcription 

factor (HIF). Levels of HIF are regulated by the oxygen-sensing HIF hydroxylases, 

members of the 2-oxoglutarate (2OG) dependent oxygenase family. JmjC-domain 

containing histone lysine demethylases (JmjC-KDMs), also members of the 2OG 

oxygenase family, are key epigenetic regulators that modulate the methylation 

levels of histone tails. Kinetic studies of the JmjC-KDMs indicate they could also act 

in an oxygen-sensitive manner. This may have important implications for epigenetic 

regulation in hypoxia. In this review we examine evidence that the levels and activity 

of JmjC-KDMs are sensitive to oxygen availability, and consider how this may influence 

their roles in early development and hypoxic disease states including cancer and 

cardiovascular disease.
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Oxygen is essential for eukaryotic cellu-
lar respiration, and cells cannot survive for 
prolonged periods without it. Although the 
air we breathe is at an ambient oxygen con-
centration of 21%, this drops as oxygen is 
transported to the tissues of the body, where 
‘normoxic’ levels are variable: oxygen concen-
trations in the brain, lungs and kidneys are 
4.4, 5.6 and 9.5%, respectively (Figure 1) [1]. 
Oxygen diffuses down a concentration 
gradient and thus tissues with high perfu-
sion, for example, the kidneys have higher 
oxygen concentrations. Low oxygen levels, 
termed ‘hypoxia’, can disrupt normal cellular 
processes. 

Hypoxia is usually defined as an oxygen 
concentration of ≤2% [4], and may have a 
number of causes. These include environ-
mental exposure, such as high altitude and 
vigorous exercise, or a number of disease 
states. Hypoxia is a key pathological feature of 
cancer and cardiovascular diseases, predomi-
nantly due to localized reduction in tissue 
perfusion. Conversely, low oxygen conditions 

during early embryogenesis are essential to 
normal embryonic development [5].

Hypoxia, HIF & the HIF hydroxylases
Hypoxic conditions induce an adaptive 
response, which occurs on both a cellular and 
physiological level. Cellular responses include 
changes in metabolism (oxidative phosphor-
ylation to glycolysis), autophagy, and partial 
shut-down in high-energy consumption pro-
cesses, while physiological outcomes include 
erythropoiesis and angiogenesis. In animals, 
these responses are primarily mediated by the 
Hypoxia Inducible transcription Factor, HIF. 
The HIF-mediated hypoxic response has 
been well characterized and recent reviews 
include those by Kaelin and Ratcliffe [6], 
Myllyharju [7] and Semenza [8].

Briefly, HIF is an α/β dimer consisting of a 
DNA-binding basic helix-loop-helix (bHLH) 
region, a PAS (Per-ARNT-Sim) domain that 
mediates dimerization, an oxygen-dependent 
degradation domain (in HIFα) and a C-ter-
minal transactivation domain. A stable dimer 
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Figure 1. Oxygen concentrations as measured in 

selected mammalian tissues. Most tissues exist at 

oxygen concentrations well below ambient levels, 

typically 3–5% [1–3]. The definition of hypoxia is an 

oxygen concentration of ≤2%, while concentrations 

of ≤0.02% oxygen are defined as severe hypoxia or 

anoxia [4].
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binds to hypoxia response elements (HREs) upstream 
of an array of genes that enable the hypoxic response 
(Figure 2A). There are several hundred known genes 
with HIF-binding HREs in their promoter regions, 
with functions as diverse as cell proliferation, angio-
genic signaling and altered metabolism [9]. Responses 
are cell-type specific and can be mediated by HIF iso-
mers HIF-1 or HIF-2, further tailoring targeted gene 
upregulation [10]. HIF is therefore referred to as the 
master regulator of the hypoxic response [11].

HIF levels are not directly regulated by oxygen but 
instead HIFα levels are regulated by oxygen-dependent 
enzymes which post-translationally hydroxylate specific 
residues in HIF (Figure 2A & Figure 3B). Hydroxylation 
of one or both of two prolyl residues in HIFα (Pro-402 
or Pro-564 in HIF-1α) within the N- and C-terminal 
oxygen dependent degradation domains (NODD and 
CODD, respectively) targets HIFα for ubiquitination 
and degradation by the proteasome. Hydroxylation of 
an asparaginyl residue in the C-terminal transactiva-
tion domain (CAD) of HIFα (Asn-803 in HIF-1α) 
prevents its interaction with cotranscriptional activa-
tors. These post-translational modifications are cata-
lyzed by the prolyl hydroxylases (PHD1–3) and Factor 

Inhibiting HIF (FIH) respectively, collectively termed 
the HIF hydroxylases. In hypoxic conditions, the activ-
ity of these oxygen-dependent enzymes is reduced so 
HIFα levels and activity are maintained. This enables 
it to dimerize with HIFβ and promote the hypoxic 
response. The dependence of the HIF hydroxylases on 
oxygen has led to their classification as cellular oxygen 
sensors.

The HIF hydroxylases are members of the Fe(II)/2-
oxoglutarate (2OG) dependent oxygenase family of 
enzymes. This enzyme family is widespread in nature, 
catalyzing a range of oxidative reactions including 
hydroxylation, demethylation, desaturation, ring clo-
sure, ring cleavage, epimerization, rearrangement and 
halogenation [17]. There are more than 60 known 2OG 
oxygenases in humans, with roles in carnitine biosyn-
thesis, epigenetic regulation, signaling and many oth-
ers [18]. Structural, kinetic and spectroscopic evidence 
over the past two decades has revealed a conserved 
structure and mechanism within the 2OG oxygen-
ases [17]. The core structural feature of these enzymes 
is a double-stranded β helix (DSBH) jelly roll motif 
supporting an active site catalytic triad of His-X-
Asp/Glu-X

n
-His that coordinates Fe(II) (Figure 3C). 

2OG coordinates to the active site Fe(II) via its carbox-
ylate and ketone oxygen atoms [19]. The 2OG oxygen-
ases act via a conserved mechanism (Figure 3A): Prime 
substrate binds to an Enz.Fe(II).2OG complex causing 
a conformational change that weakens H

2
O binding to 

the sixth coordination position on the active site Fe(II), 
thus enabling oxygen to bind. Oxidative decarboxyl-
ation of 2OG to succinate and carbon dioxide results 
in formation of a highly reactive Fe(IV)=O species 
which carries out the oxidation step on an unactivated 
C-H bond [17,19].

To date, the HIF hydroyxlases are the only members 
of the 2OG oxygenase family whose known prime phys-
iological function is to act as cellular oxygen sensors. In 
order to effectively fulfill this role, the HIF hydroxylases 
need to sensitively respond to changes in oxygen con-
centration. This has been observed for the PHDs both 
biochemically and in cells. NODD and CODD hydrox-
ylation in RCC4 cells [21,22] was shown to reduce over 
a gradient from normoxia to severe hypoxia (<0.02%). 
In vitro K

M
 values for oxygen for recombinant PHD2 

have been reported to range between 230 μM and 
1.7 mM, the highest of all reported 2OG oxygenases 
(Table 1) [23–28], while pre-steady state kinetic investiga-
tions revealed a slow reaction of PHD2 with respect to 
oxygen [27,29]. These results are indicative that PHD2 
activity is highly dependent on oxygen. Of note, PHD2 
is considered the most important of the HIF hydroxy-
lases in normal conditions [30], and PHD2-/- mice are 
embryonic lethal [31].
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Figure 2. Transcriptional regulation by Fe(II)/2OG oxygenases. (A) The HIF-mediated hypoxic response. Under normal oxygen conditions, 

PHD enzymes (PHD2 is shown) and FIH hydroxylate the HIFα subunit, enabling binding of pVHL and ubiquitination by ubiquitin ligase, 

targeting HIFα for proteasomal degradation. In hypoxia, HIFα is not hydroxylated and translocates into the nucleus where it binds to the 

HIFβ subunit and the p300 coactivator. The HIF-p300 complex then binds to HREs at gene promoter regions, activating transcription [9]. 

(B) Epigenetic regulation by histone demethylases. KDMs remove methylation marks on histone tails. Changes in the methylation states 

of histones (and in combination with other histone modifications) can lead to either heterochromatin or euchromatin formation [12]. 

(C) Upregulation of the KDMs in hypoxia is proposed to increase demethylation of methylated lysine residues, altering gene 

expression [13]. (D) The potential for a co-operative effect between HIF and KDMs has been suggested. It is proposed that HIF recruits 

the KDMs to the gene locus, enabling removal of repressive marks and activation of gene expression [14,15]. (E) Direct oxygen-dependent 

changes in KDM activity and gene regulation [16]. HIF-independent induction of KDMs is also possible. In all cases (C–E), changing oxygen 

concentrations may have the potential to affect KDM activity, thus having a direct impact on transcriptional regulation. 

HRE: Hypoxia response elements.
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Despite being a HIF hydroxylase, FIH does not 
appear to be as sensitive to oxygen as PHD2; its K

M
 

value for oxygen is reported to be lower at 90–150 μM  
(Table 1) [24,25], and CAD hydroxylation is maintained 
in RCC4 cells exposed to an environment of 0.25% 
oxygen [22]. Further, FIH also functions as an ankyrin 
repeat domain (ARD) hydroxylase [33,34], and has been 
reported as having higher affinities for these alternative 
substrates [35], with a higher affinity for oxygen in reac-
tions with ARDs than HIF substrates [32]. The signifi-
cance of FIH in the HIF-mediated hypoxic response 
is therefore yet to be fully ascertained, particularly as 

minimal HIF-related effects were observed in FIH null 
mice [36].

While some studies have reported on the oxygen 
kinetics of other 2OG oxygenases (Table 1), including 
K

M
(oxygen) values for the collagen prolyl hydroxylase 

C-P4H and the mature phytanoyl-CoA hydroxylase 
mPAHX of 40 μM [23] and 93 μM [24] respectively, 
and fast pre-steady state kinetic activation by oxy-
gen of TauD [37] and a viral collagen prolyl hydroxy-
lase [38], detailed kinetic studies of other human 2OG 
oxygenases with respect to oxygen have so far been 
limited. Nevertheless, the dependence of this enzyme 
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Figure 3. Conserved structural and mechanistic features of the JmjC-KDMs and HIF hydroxylases. (A) General mechanism of the 

Fe(II)/2OG oxygenase family of enzymes. (B) PHDs (PHD1–3) hydroxylate prolyl residues 402 and 564 in the N- and C-terminal Oxygen 

Dependent Degradation Domains of HIFα, to produce trans-4-hydroxyproline, while FIH catalyzes trans-β hydroxylation of asparagine 803 

in the C-terminal activation domain of HIFα [9]. JmjC-KDMs hydroxylate εN-methylated lysine residues in the N-terminal tails of histone 

proteins, to produce an unstable hemiaminal intermediate, which generates formaldehyde and demethylated lysine [51].(C) Ribbon 

representation of KDM4A, FIH and PHD2 (PDB ID: 2OX0, 2XUM, 3HQR respectively) showing double-stranded β-helix (teal) and α-helices 

(white). Stick representation of active site His-X-Asp/Glu-Xn-His Fe(II) binding motif residues (magenta, pink, purple) common to this class 

of enzymes. N-oxalylglycine, an inhibitory 2OG analog is shown bound in the 2OG binding site of these enzymes (yellow). 

2OG: 2-oxoglutarate.
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family on oxygen and their importance in human physi-
ology suggests that other human 2OG oxygenases may 
be affected by oxygen availability, with implications 
for hypoxic disease states. In this review we discuss the 
evidence that JmjC-domain containing histone lysine 
demethylases (JmjC-KDMs), a 2OG oxygenase fam-
ily of enzymes involved in epigenetic regulation, act in 
an oxygen-sensitive manner, and discuss these findings 
with respect to dynamic changes in histone methylation 

patterns during development leading to a regulated tran-
scriptional program, and dysregulation of KDMs and 
global methylation patterns in hypoxic disease states.

Histone demethylation by the JmjC-KDMs
In eukaryotic cells, DNA is wound around a histone 
octamer, which consists of two copies of each of four 
subunits–H2A, H2B, H3, and H4. These DNA-his-
tone complexes, known as nucleosomes, pack together 
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Figure 3. Conserved structural and mechanistic features of the JmjC-KDMs and HIF hydroxylases (cont.). (A) General mechanism of the 

Fe(II)/2OG oxygenase family of enzymes. (B) PHDs (PHD1–3) hydroxylate prolyl residues 402 and 564 in the N- and C-terminal Oxygen 

Dependent Degradation Domains of HIFα, to produce trans-4-hydroxyproline, while FIH catalyzes trans-β hydroxylation of asparagine 803 

in the C-terminal activation domain of HIFα [9]. JmjC-KDMs hydroxylate εN-methylated lysine residues in the N-terminal tails of histone 

proteins, to produce an unstable hemiaminal intermediate, which generates formaldehyde and demethylated lysine [51].(C) Ribbon 

representation of KDM4A, FIH and PHD2 (PDB ID: 2OX0, 2XUM, 3HQR respectively) showing double-stranded β-helix (teal) and α-helices 

(white). Stick representation of active site His-X-Asp/Glu-Xn-His Fe(II) binding motif residues (magenta, pink, purple) common to this class 

of enzymes. N-oxalylglycine, an inhibitory 2OG analog is shown bound in the 2OG binding site of these enzymes (yellow). 

2OG: 2-oxoglutarate.
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to form chromatin. Chromatin can take an open form, 
euchromatin, which allows transcriptional machin-
ery to access DNA, or a closed form, heterochroma-
tin, in which the DNA is inaccessible (Figure 2B) [12]. 
Dynamic covalent modifications to DNA and the 
unstructured N-terminal tails of histones alter chro-
matin structure thus modulating gene expression and 
forming the basis of epigenetic regulation [12]. Mul-
tiple post-translational modifications are found on 
histone tails, including acetylation, phosphorylation, 
ubiquitination and methylation [39].

Whether a given histone modification is activating or 
repressive is dependent on which residue (and originat-
ing histone subunit) is modified, the type of modifica-
tion, the degree of modification (in the case of methyla-
tion) and the combination of these modifications – this 
is also referred to as the histone code [40]. Histone tail 
lysines may be mono-, di- or tri-methylated (Figure 3B). 
In general, methylation at H3K4, H3K36 and H3K79 
is associated with active genes, whereas methylation at 
H3K9, H3K27 and H4K20 correlates with repressed 

genes [41]. The distribution of histone methylation 
across the genome is an important factor in gene tran-
scription. For example, in active genes, H3K4me3 is 
generally enriched in promoter and transcriptional 
start sites (TSS), whereas H3K79 and H3K36 methyl-
ations are abundant within the gene body itself. On the 
other hand, in repressed genes, H3K27me3 is generally 
enriched in the promoter region, and H3K9me2/3 and 
H4K20 marks are uniformly distributed throughout 
the gene [42]. Both activating (H3K4 methylation) and 
repressive marks (H3K27 methylation) are also found 
to co-exist as bivalent chromatin in embryonic stem 
cells (ESCs) [43].

Histone lysine methylation is dynamically regulated 
by histone methyltransferases (KMTs) and histone 
demethylases (KDMs). Methylation of lysine residues 
is carried out by histone KMTs, a family of enzymes 
that utilize S-adenosylmethionine (SAM) as a methyl-
group donor, and include the SET domain family [44,45] 
and DOT1L [46]. Methylation is removed by histone 
demethylases (KDMs). Two mechanistically distinct 



796 Epigenomics (2015) 7(5) future science group

Review    Hancock, Dunne, Walport, Flashman & Kawamura

families of histone demethylases have been identified: 
the LSD1 family of flavin-dependent monoamine oxi-
dases (KDM1) and the JmjC-KDMs (Figure 2B). The 
JmjC-KDMs, the larger of the two KDM families, 
are members of the 2OG oxygenase family. Structural 
studies and sequence alignments reveal that all JmjC-
KDMs contain a catalytic JmjC-domain with a con-
served core DSBH structural motif, as exemplified by 
the structure of KDM4A in Figure 3C [47–49]. Evidence 
to date, including structural and spectroscopic obser-
vations of Enz.Fe(II).2OG.substrate complexes and 
kinetic investigations, indicates that the JmjC-KDMs 
conform to the proposed 2OG consensus mechanism 
(Figure 3 A & B) [20,50]. The prime substrate of the JmjC-
KDMs is the unactivated C-H bond of εN-methyl 
lysine residues on histones. The JmjC-KDMs catalyse 
hydroxylation of this bond, resulting in an unstable 
hemiaminal intermediate that fragments to produce 
the demethylated lysine residue and formaldehyde 
(Figure 3B).

The JmjC-KDMs have been categorized into 
7 KDM subfamilies (KDM2–8) based on the JmjC-
domain sequence homology and their demethylase 
activities (Table 2) [51,52]. Different JmjC-KDMs exhibit 
different methylation state and histone substrate speci-
ficities [52,53]. While KDM2/3/7 subfamilies are di- 
and monomethyl demethylases, KDM4–6/8 can also 
remove tri-methyl marks (Table 2). Some KDM sub-
families are highly specific for particular histone sub-
strates whereas some have overlapping substrate selec-
tivities. For example, the KDM5 and KDM6 members 
are specific for methylated H3K4 and H3K27, respec-

tively. Further, all KDM4 members can demethylate 
H3K9, but KDM4A-C can also demethylate H3K36 
and H1.4K26 (Table 2) [51]. Most, but not all, JmjC-
KDMs have domains in addition to the catalytic 
domain. Many contain binding domains (e.g., CXXC 
DNA-binding domain, Plant homeodomain [PHD] 
fingers, Tudor domains), which assist KDM recruit-
ment to certain chromatin regions and/or enable 
substrate specificity. For instance, the PHD-finger 
domain of PHF8/KDM7B binds to H3K4me3 and 
promotes removal of the H3K9me2 mark via the cata-
lytic domain [54]. Furthermore, JmjC-KDMs have 
been found in large complexes with multiple proteins 
including complementary KMTs and other epigen-
etic proteins [55]. Combinations of various marks on 
histone tails provide functional crosstalk, and the 
JmjC-KDMs and their associated complexes are key 
players in fine-tuning transcriptional regulation.

Histone methylation & hypoxia
Multiple studies demonstrate that exposure to 
hypoxia can alter the epigenetic landscape at the 
chromatin level in cells [14,16,64–70] (Table 3). Similar 
changes to epigenetic marks, including histone lysine 
methylation, have been observed in development and 
in disease states where hypoxia is known to be an 
important feature. The mechanisms for these altera-
tions appear to be both direct (via altered JmjC-KDM 
activity or expression levels) and indirect (in a HIF-
mediated manner): some JmjC-KDMs are known 
to be direct targets of HIF and thus their levels are 
upregulated in hypoxia. These include KDM3A, 

Table 1. Differential sensitivity of 2OG oxygenases to oxygen in vitro.

Enzyme K
M

(O
2
)/μM Substrate Ref.

PHD2
181-426

230-1746 HIF-1α
556-574

 CODD [24]†, [23]‡, [27]§, [28]#

C-P4H 40 Pro-Pro-Gly [23]‡

mPAHX 93 ± 43 Isovaleryl CoA [24]†

TauD 76 ± 17 Taurine [24]†

FIH 90-150 HIF-1α
788-822

 CAD [24]†, [25]‡, H Tarhonskaya§ [Unpublished Data]

FIH 110 ± 73 HIF-2α
832-866

 CAD [24]†

FIH 100 ± 10 HIF-2α
832-866

 CAD H Tarhonskaya§ [Unpublished Data]

FIH 10–120 Non-HIF substrates H Tarhonskaya§ [Unpublished Data] [32]

KDM4A
1-359

57 ± 10 H3
7-14

K9me3 [26]†

KDM4C
1-366

158 ± 13 H3
7-14

K9me3 [26]†

KDM4E
1-337

197 ± 16 H3
7-14

K9me3 [26]†

KDM4E
1-337

>93 H3
7-14

K9me3 [20]§

K
M
(O

2
)valueshavebeendeterminedforanumberof2OGoxygenasesusingvariousmethods:

†Oxygenconsumptionassay.
‡Radioactive2OGturnoverassay.
§Matrix-assistedlaserdesorption/ionisationtimeofflightmassspectrometry(MALDI-TOFMS)assay.
#Time-resolvedfluorescenceenergytransfer(TR-FRET)-basedassay.
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KDM4B, KDM4C, KDM5B and KDM5C [14,57–61], 
and more recently KDM6B (Table 2) [56]. However, 
other JmjC-KDMs have been found to be upregu-
lated in hypoxia (at the mRNA level) but thus far 
have not been identified as HIF target genes [14,62,71]. 
Intriguingly, Beyer et al. demonstrated differential 
sensitivity to hypoxia of overexpressed KDM3A and 
KDM4B in HeLa cells incubated at 0.2% oxygen. 
Demethylation of H3K9me3 by KDM4B was atten-
uated, while the activity of KDM3A was maintained 
under the same conditions [57]. It has been proposed 
that the upregulation of KDMs acts as a compen-
satory mechanism whereby increased levels of these 
enzymes compensate for their reduced activity in 
depleted oxygen conditions [14,57]. However, the dis-
parity in apparent oxygen sensitivity of two HIF-tar-
get JmjC-KDMs revealed in this study suggests that 
the relationship between HIF and the JmjC-KDMs 
may be more complex. Of note, both KDM4C 
and KDM6B have been shown to bind to HIF in a 

potential coactivating role (Table 2; [15,72]), and the 
HIF-mediated upregulation of several JmjC-KDMs 
in cancer has been well documented (see below).

Given their absolute requirement for oxygen and 
relationship to the HIF hydroxylases, the question 
has been raised as to whether the JmjC-KDMs could 
be similarly sensitive to oxygen availability, in other 
words, whether their activity diminishes in hypoxic 
conditions. Biochemical data to validate the sensi-
tivity of JmjC-KDM activity with respect to oxy-
gen are to date limited, partly due to the relatively 
recent development of robust assays for their activ-
ity (including with respect to oxygen). K

M
 values for 

oxygen have been reported for KDM4A, KDM4C 
and KDM4E at 57, 157 and 197 μM, respectively 
(Table 1), measured using an oxygen-consumption 
assay with an 8-mer peptide substrate [26]. KDM4E 
activity measured over a range of oxygen con-
centrations, 0–20%, detected by mass spectrom-
etry analysis of demethylation of an 8-mer peptide 

Table 2. Histone substrate selectivity of JmjC-KDMs in cells. 

  JmjC-KDM H3K4 H3K9 H3K27 H3K36 H3K79 H4K20 H1.4K26 O
2
 HIF 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 Ind Ind Bind

KDM2A/FBXL11/JHDM1A          ✓ ✓           +   

KDM2B/FBXL10/JHDM1B   ✓       ✓ ✓           +   

KDM3A/JMJD1A    ✓ ✓                 + + +

KDM3B/JMJD1B    ✓ ✓                 +   

KDM3C/JMJD1C    ✓ ✓                    

HR    ✓ ✓                    

KDM4A/JMJD2A     ✓ ✓     ✓ ✓        ✓ ✓    

KDM4B/JMJD2B     ✓ ✓     ✓ ✓        ✓ ✓ + +  

KDM4C/JMJD2C     ✓ ✓     ✓ ✓        ✓ ✓ + + +

KDM4D/JMJD2D     ✓ ✓                +   

KDM5A/JARID1A/RBP2  ✓ ✓                   +   

KDM5B/JARID1B/PLU1  ✓ ✓                   + +  

KDM5C/JARID1C/SMCX  ✓ ✓                   + +  

KDM5D/JARID1D/SMCY  ✓ ✓                   +   

KDM6A/UTX        ✓ ✓             +   

KDM6B/JMJD3        ✓ ✓             + + +

KDM7A/KIAA1718    ✓ ✓  ✓ ✓              +   

KDM7B/PHF8       ✓ ✓        ✓      +   

PHF2     ✓ ✓                   

KDM8/JMJD5           ✓ ✓          +   

MINA53      ✓                   

NO66  ✓ ✓        ✓ ✓             

TheJmjC-KDMscatalysethedemethylationofmono-(1)di-(2)and/ortri-(3)methylatedlysineresiduesontheN-terminaltailsofhistones3(H3),4(H4)and1.4
(H1.4)andhavedefinedsubstratespecificitiesincells[51],althoughbroadersubstrateprofilesforin vitrocatalyticdomainshavebeenshown[53].NoKDMsforH3K79
methylationmarkshavebeenidentified.Thesubstrateselectivitycombinesbothin vitroandcellulardata.SomeJmjC-KDMsareinducedunderlowO

2
concentrations(O

2
 

Ind,+)[14,56]andseveralhavebeenidentifiedasbeingregulatedbyHIF(HIFInd,+)[14,56–61]and/orinteractingwithHIF(HIFBind,+,[15,62–63]).
Bind:Binding;Ind:Induced.
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substrate confirmed a graded response to oxygen 
over this range [20]. Pre-steady state kinetic analy-
ses of KDM4E activity with oxygen revealed a slow 
rate of oxygen activation similar to that observed 
for PHD2 [20]. These published data (Table 1) indi-
cate differential sensitivity of some JmjC-KDMs 
toward oxygen suggesting the potential for some, 
though likely not all, of the JmjC-KDMs to act in an 
oxygen-sensitive manner [20,26].

Hypoxia & development
The gestation environment is hypoxic, and oxy-
gen concentration varies during development 
(Figure 4) [73,74]. One single cell, the zygote, gives 
rise to all cells of an ordered multicellular organ-
ism. This is achieved through differentiation, where 
spatiotemporal regulation of gene expression under 
epigenetic control causes pluripotent cells to differ-
entiate through increasingly differentiation-restricted 
cell types to yield a wide range of specialized cell 
lineages. Differentiation can be regulated by intra-
cellular genetic mechanisms and by the extracellular 
microenvironment. It is possible that external stimuli, 
such as oxygen tension, and genetic modulators, such 

as histone modifications, may interact in a regulatory 
manner to drive development.

Hypoxia has an essential regulatory role in normal 
development. Insults to the normal gestational oxy-
gen conditions, both hypoxic and hyperoxic, lead to 
morphological defects [5,82–83], and oxygen tension has 
been shown to regulate differentiation potential in 
various embryonic and induced stem cell models [84]. 
Incubation of embryos at low oxygen during in vitro 
fertilization has been shown to improve both embryo 
quality and clinical outcome, possibly because this 
mimics the conditions in vivo [85].

TrX, polycomb & bivalency, & their roles in 
development
In undifferentiated cells pluripotency genes are acti-
vated, while lineage-associated genes are repressed. 
Upon differentiation pluripotency genes become 
repressed, while lineage-associated genes are activated, 
yielding a specialized cell phenotype [86]. Bivalency, 
the co-localization of one activating and one repress-
ing histone modification, is one potential mechanism 
by which histone methylation states regulate early 
development. Bivalent histone states (H3K4me3 and 

Table 3. Changes to histone methylation status observed in hypoxia.

Cell line % O
2
 Changes to global 

methylation

Gene locus and change 

in expression levels

Altered methylation 

status at promoter

Ref.

A549 NS H3K9me2 ↑ - - [64]

  H3K9me3 ↑    

Fetal lung type II 2.0 H3K9me2 ↑ SP-A ↑ H3K9me2 ↑ [65]

A549, HOS, HEK293 0.5 H3K9me2 ↑ MLH1 ↓, DHFR ↓ H3K9me2 ↑ [66]

Hepa1-6 0.2 H3K4me2 ↑ AFP ↓, ALB ↓ H3K9me2 ↑ [67]

  H3K4me3 ↑ EGR1 ↑ H3K27me2 ↑  

  H3K79me2 ↑  H3K9me2 ↓  

  H3K27me3 ↓  H3K27me2 ↓  

  H3K9me2 ↓    

  H3K4me1 ↑    

HepG2 0.1-5 H3K4me2 ↑ - - [14]

  H3K4me3 ↑    

  H3K9me2 ↑    

  H3K36me3 ↑    

BEAS-2B, A549 1.0 H3K4me3 ↑ - - [68]

RAW264.7  H3K9me2 ↑ CCL2 ↓, CCR1 ↓, CCR5 ↓ H3K9me2 ↑ [16]

  H3K9me3 ↑  H3K9me3 ↑  

  H3K36me3 ↑    

McA-RH7777 1 or 5 H3K9me3 ↑ - - [69]

Cellularstudieshavedemonstratedbothglobalincreases(↑)orreduction(↓)inmethylationatseveralhistonelysinemarksinhypoxia.
Furtheranalysesofalteredgeneexpressionaccompaniedbylocus-specificlysinemethylationchangesaredetailed. 
Adaptedandupdatedfrom[70].
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Figure 4. Oxygen environments in development and disease. (A) Oxygen tension in the oviduct and uterus 

varies between 2–8%. Oxygen available to the early embryo is limited by diffusion from these tissues. After 

fertilization in the oviduct the embryo migrates, experiencing a decreasing oxygen gradient, to the uterus [3]. 

Even after placental development, oxygen conditions are still low as the placenta acts as a barrier to oxygen [75]. 

It is not until fetal circulation is established that oxygen available to the fetus increases [76]. (B) The different 

oxygen environments experienced by the fetal, adult and diseased heart. The fetal heart exists in a hypoxic 

environment [77], with a postnatal transition into a more oxygenated state [78] accompanied by remodeling and 

changes in gene expression. Many cardiovascular disease states are characterized by hypoxia, and the failing heart 

possesses a gene expression profile similar in many ways to that of the fetal heart [79–81].

ANP

BNP

Glycolysis

Oxidation of fatty acids

ANP

BNP

Glycolysis

Oxidation of fatty acids

Fetal heart Adult heart Failing heart

Oviduct Uterus Placental

development

Fetal 

circulation

Oxygen 

concentration

Oxygen 

concentration

A

B

future science group

Epigenetic regulation by histone demethylases in hypoxia    Review

H3K27me3) have been identified in a number of stud-
ies in human ESC, murine and zebrafish models of 
development [43,87–92].

Bivalent states are maintained at developmental 
target genes. The H3K27me3 mark represses expres-
sion of the lineage gene, protecting pluripotency, while 
the H3K4me3 mark ‘poises’ target genes for activation 
enabling rapid expression upon differentiation. Upon 
differentiation, the bivalent histone state is resolved 
yielding either a stable activate or stable repressive his-
tone state [86]. Bivalent histone states are established 
and resolved by antagonistic Polycomb group (PcG) 
and Trithorax group (trxG) complexes, which contain 
specific methyltransferases for depositing H3K27me3 
and H3K4me3, respectively. The PcG and trxG com-
plexes also possess other components involved in 
recruitment to genomic loci, chromatin condensation 
and other histone modifications. PcG and trxG medi-
ated deposition of both marks results in a bivalent state, 
but this equilibrium is disturbed by activating stimuli. 
KDMs are then recruited to remove either H3K27me3 
or H3K4me3 resulting in stable gene activation or 
repression [93].

Bivalency has been indicated in control of Hox 
genes, [94] cardiac differentiation potential and tooth 
development [92,95]. Indeed, KDM6s have been associ-
ated with decreased H3K27me3 levels and activation 
of Hox genes during development [96], while KDM5A 
regulates Hox gene expression and is recruited by PcG 
to developmental genes in murine ESCs [97].

JmjC-KDMs & development
The JmjC-KDMs are thought to regulate development 
by maintaining or removing histone lysine methylation 
states which repress or activate gene expression, such as 
H3K27me3 or H3K4me3, respectively. Histone lysine 
methylation is a relatively stable histone modification 
and thus is ideally suited to maintain gene expression 
patterns and cell identity during development [98].

A considerable number of studies have linked 
KDMs to embryogenesis and post-implantation devel-
opment including organogenesis [98–100]. Spatiotem-
poral expression profiles of JmjC-KDMs have been 
characterized in murine and bovine embryos [101,102]. 
Deletion of specific JmjC-KDMs in numerous devel-
opmental models results in embryonic lethality and 
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morphological defects [98–100]. Additionally, JmjC-
KDM mutations have been linked to several develop-
mental syndromes [103–105]. Various studies have linked 
each of the JmjC-KDM subfamilies to developmental 
roles (see Pedersen and Helin review [99]).

Despite a number of studies, the role of the KDM2 
subfamily in development is poorly understood [98]. 
Homozygous knockout of KDM2B in mice causes 
partial peri- and post-natal death, with pups display-
ing exencephaly and an increased number of mitotic 
neural progenitor cells [106]. KDM2A knockout in 
mice results in embryonic lethality, downregulation of 
PcG, decreased cell proliferation and increased apopto-
sis [107]. In cattle, a KDM2B missense mutation causes 
congenital multiorgan developmental dysplasia [108,109]. 
KDM3A regulates male sex determination during 
development in mice; KDM3A-mediated demethyl-
ation of H3K9 leads to transcription of Sry, a ‘master 
switch’ of sex determination [110]. KDM3A also has a 
role in maintaining pluripotency in ESCs by demeth-
ylation of H3K9 leading to expression of pluripotency 
factors. The same study found that KDM4C also regu-
lates maintenance of pluripotency via H3K9 demeth-
ylation [111]. KDM4A and KDM4B are essential to 
Drosophila development and mediate ecdysteriod hor-
mone signaling leading to transcriptional activation of 
ecdysone response genes [112].

Key roles in neural development have been identi-
fied for KDM5B and KDM5C. KDM5B is essential 
to neural differentiation of ESCs [113] and deletion 
caused defects in eye and cranial nerve [114]. Muta-
tions in KDM5C have been found in patients with 
X-linked mental retardation and epilepsy [115], and stud-
ies in zebrafish have identified potential roles in brain 
patterning and neuronal survival [116].

Homozygous deletion of KDM6A causes embryonic 
lethality in mice, C. elegans and Drosophila in a sex-
specific manner [117], while in humans, constitutional 
KDM6A mutations have been identified as a cause of 
Kabuki syndrome [103]. KDM6A and KDM6B have key 
roles in neural and cardiac development. KDM6B is 
upregulated during differentiation of ESC to neuronal 
lineages [118], and overexpression of KDM6B in neural 
progenitor cells (NPCs) lead to expression of neuronal 
genes [119].  In vivo experiments in chick neural tubes found 
that KDM6B acts with SMAD to co-activate the neural 
gene program [120]. KDM6A is essential for retinoic acid 
induced neural differentiation in an ESC model [121]. 
KDM6A and KDM6B null ESCs have reduced capacity 
for cardiac lineage commitment [122,123]. Severe cardiac 
defects and embryonic lethality is seen in KDM6A defi-
cient mice, accompanied by reduced expression of key 
cardiac genes, while KDM6B deficient embryos die at 
the blastocyst stage [122,123].

Within the KDM7 cluster, PHF8 (KDM7B) 
has been found to be important in neural develop-
ment [124]. Mutations in PHF8, including some 
which are catalytically inactivating, have been iden-
tified in patients with X-linked mental retardation 
and cleft lip/palate [125]. PHF8 deletion in zebrafish 
leads to animals with fewer neurons and craniofacial 
alterations [124,126] and loss of the PHF8 PHD fin-
ger in C. elegans causes impaired locomotion [127]. 
In chickens, KDM7A/KIAA1718 promotes neural 
induction [128].

Understanding the role of the JmjC-KDMs in the 
hypoxic environment of development is likely to be 
useful in the context of hypoxic disease states. Uncov-
ering the mechanisms by which these enzymes may 
be regulating pluripotency and differentiation may 
be useful in the production of therapeutic cell popu-
lations. Both oxygen tension and the JmjC-KDMs 
have regulatory roles in development, and there is a 
need to characterize the relationship between these 
two influences. Further, as stated above, HIF regu-
lates expression of a number of JmjC-KDMs and 
thus it is likely that HIF-mediated expression of 
JmjC-KDMs is significant during development (for a 
more detailed discussion of HIF and development see 
Dunwoodie, 2009 [73]).

Cancer & hypoxia
Hypoxia is a common feature of solid tumors. As 
tumors grow, they surpass the diffusion limits of the 
local blood supply, resulting in regions where the 
concentration of oxygen is severely reduced relative 
to normal tissue. This leads to stabilization of HIF to 
activate the hypoxic transcriptional response (includ-
ing angiogenesis), and a shift in energy metabolism 
from oxidative phosphorylation to glycolysis (known 
as the ‘Warburg effect’ [129], a recognized hallmark 
of cancer). The HIF response can partially restore 
oxygen supply to tumors, but nevertheless, oxygen 
supply can fluctuate and cells adapt to an ever-chang-
ing microenvironment. While the HIF system is the 
major factor affecting gene expression changes asso-
ciated with oxygen concentrations, it is feasible that 
epigenetic changes, both dependent and independent 
of HIF pathways, also have significant implications in 
transcriptional regulation and cellular adaptation at 
different oxygen concentrations in disease (reviewed 
in Kaelin and Ratcliffe 2008 [6]).

Cancer & JmjC-KDMs.
Many epigenetic proteins are dysregulated or mutated 
in cancers [130]. Aberrant gene expression and epigene-
tic patterns are associated with cancer occurrence and 
progression, often associated with poor prognosis [131]. 
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Emerging evidence suggests that many KDMs are 
implicated in tumor growth, with a number of KDMs 
identified to be oncogenes (see Højfeldt et al. for a 
recent review on KDMs and cancer [52]).

Of the HIF-regulated JmjC-KDMs, KDM3A has 
been implicated in numerous cancers including blad-
der cancer [132], renal cell carcinoma [13], hepatocel-
lular carcinoma [133,134] and colorectal cancer [13,135]. 
The KDM4s play key roles in the cell cycle and pro-
liferation [136,137] and have been strongly linked to 
cancer. KDM4A and B are overexpressed in breast, 
prostate, colorectal, bladder and gastric cancers, and 
KDM4B, which associates with the androgen recep-
tor (AR) and the estrogen receptor (ER), is being 
actively pursued as a prostate and breast cancer tar-
get [138]. KDM4C is amplified in squamous cell car-
cinoma [136] and required for growth in many can-
cer cells including esophageal [136], prostate [139] and 
breast [140] cancers. KDM4A and C have been shown 
to form a complex with the AR in prostate cancer 
cells and co-operatively demethylate the repressive 
histone marks (H3K9me3/me2) to activate transcrip-
tion of androgen receptor target genes responsible for 
tumor proliferation [139,141–142]. KDM5B is required 
for growth of breast cancer cells [143] and of slow-
cycling melanoma cells [144], and is linked to pros-
tate cancer malignancy [145]. KDM5A/B are found to 
be overexpressed in multiple cancer cells, including 
cervical, gastric, lung, bladder and breast cancer [146]. 
KDM6B is highly expressed in T-cell acute lympho-
blastic leukemia (T-ALL) cells and is essential for the 
initiation and maintenance of T-ALL [147]. It is also 
upregulated in renal cell carcinoma [148].

It is possible that, for at least some JmjC-KDMs, 
their association with cancer may be related to 
hypoxia. Recently, KDM3A, KDM4B/C and 
KDM5B have been identified as HIF target genes 
and are thus upregulated in hypoxic conditions 
(Figure 2C) [14,57–59,61]. This hypoxic JmjC-KDM 
induction is found to further amplify HIF target 
gene expression, either by direct interaction with HIF 
or by separate promoter binding and demethylation 
(Figure 2E). In hypoxic conditions, KDM3A removes 
H3K9 methylation from the promoters of HIF tar-
get genes, such that KDM3A activity is required for 
their full hypoxic induction [13]. Consistent with 
this, significant differences in gene expression pro-
files are observed in KDM3A knockout mouse ESCs 
under hypoxia [149]. Hypoxic induction of KDM3A 
in several cancer cell lines enhanced cell prolifera-
tion and tumor growth via transcriptional activation 
of several tumorigenic and proliferative genes [134]. 
Hypoxia has been shown to increase expression of 
prostate-specific antigen (PSA) in LNCaP cells, via 

direct interaction of KDM3A, HIF-1α and the AR 
resulting in recruitment of KDM3A to the PSA 
enhancer region [63].

KDM4C has been shown to facilitate the hypoxic 
response by directly interacting with HIF and thereby 
enhancing its transcriptional activity. KDM4C binds 
directly to HIF-1α, which directs it to HIF target 
genes, promoting H3K9 demethylation of the HRE 
and gene induction. The histone demethylation activ-
ity of KDM4C is required for HIF transactivation 
and knockdown of KDM4C inhibits breast tumor 
growth and lung metastasis in mice [15]. There may 
also be other factors required to promote the HIF-
mediated upregulation of KDMs. siRNA knockout 
of the paired-like homeodomain pituitary gland 
transcription factor (PITX1) results in increased 
transcriptional activity of HIF and changes in JmjC-
KDM levels. Mudie et al. demonstrated that PITX1 
and HIF-1α modulate JmjC-KDM/KDM4B expres-
sion, and hence H3K9me3 levels, in a co-operative 
manner, via interaction of PITX1 with HIF-1β at 
the KDM4B promoter in MDA-MB-231 and MCF-7 
breast cancer cells [150].

Therapeutic targeting of KDMs in cancer
The significance of JmjC-KDM activity in can-
cer progression means that KDM families are now 
emerging as potential new targets for cancer [52] and 
there has been much progress in recent years toward 
development of small molecule inhibitors against 
JmjC-KDMs [151–153]. The majority of the small mol-
ecules reported to date contain a metal-chelating 
motif and inhibit demethylase activity via chelation 
of the active site Fe(II). (For a recent review see [154]).

N-oxalylglycine (NOG), an inactive 2OG analog, 
inhibits all subfamilies of JmjC-KDMs with dif-
ferential activity (IC

50
 range of 0.3–250 μM) [155]. 

DMOG, a cell permeable form of NOG which is 
often used to inhibit HIF hydroxylases to upregulate 
HIF and mimic hypoxia, also targets JmjC-KDMs in 
cells resulting in increased global histone methylation 
levels [155]. 5-carboxy-8-hydroxyquinoline (IOX1), a 
more potent inhibitor, has been developed as an alter-
native generic inhibitor for 2OG oxygenases [155,156] 
and was established as a chemical tool [157]. There 
have been some recent developments of promising 
KDM selective inhibitors. Both methylstat and JIB-
04 (pyridine-hydrazone) inhibit JmjC-KDM activity 
in vitro, with approximately ten-fold selectivity for 
JmjC-KDMs over PHD2 [158,159]. Methylstat inhibits 
prostate cancer cell growth, while JIB-04 inhibited 
both lung and prostate cell growth in vivo and in 
tumors [158,159]. Interestingly, a hybrid compound con-
sisting of KDM1 and JmjC-KDM targeting motifs 



802 Epigenomics (2015) 7(5) future science group

Review    Hancock, Dunne, Walport, Flashman & Kawamura

(4-carboxy-4 -́carbomethoxy-2 -́2-bipyridine) inhib-
ited both KDM families (KDM1 and JmjC-KDMs) 
with high selectivity over HIF hydroxylases in vitro, 
and demonstrated growth arrest and apoptosis on 
prostate and lung cancer cells [160].

A major challenge in KDM inhibitor development 
is achieving selective inhibition within the JmjC-
KDM subfamily. One of the first promising leads 
developed against a JmjC-KDM subfamily is GSK-J1/
J4 [161], a cell-active compound targeting the KDM6 
subfamily. While it also weakly inhibits KDM5 [162], 
GSK-J4 (the prodrug form) has proved to be a useful 
tool in epigenetic research [147,161]. Most recently, Epi-
therapeutics reported EPT103182 as a KDM5-tar-
geting small molecule inhibitor with potent KDM5 
inhibition in vitro and in cells [163]. EPT103182 
shows an antiproliferative effect in many cancer cell 
lines, particularly in hematological and solid cancer 
cell lines, and demonstrates dose-dependent tumor 
growth inhibition in xenograft models [163].

Cardiovascular disease & hypoxia 
Heart failure is the common end-point of various 
cardiovascular conditions, including cardiac hyper-
trophy, myocardial infarction and myocardial isch-
emia [164,165]. As in cancer, a shift in metabolism 
from oxidation of fatty acids to glycolysis is seen in 
heart failure, which is accompanied by cardiovas-
cular remodeling and the reactivation of fetal genes 
such as atrial natriuretic peptide and brain natri-
uretic peptide (ANP and BNP, respectively) [79,80] 
(Figure 4). This reprogramming of fetal genes has 
been proposed as a cardioprotective response, aimed 
at increasing cardiac efficiency under conditions of 
stress [81]. The mechanisms underlying the conver-
gence of these diseases on a common gene expression 
profile are yet to be understood [166]. Cardiac hypoxia 

may be the result of an ischemic event, or due to sys-
temic hypoxia or anemia [77] and is often a feature 
of cardiac hypertrophy [167], as well as a key con-
tributor in the progression of hypertrophy to heart 
failure [168]. The contribution of epigenetic changes 
to cardiovascular disease is less well studied than in 
cancer. However, the possibility exists that focal or 
chronic hypoxic conditions in cardiovascular diseases 
may affect JmjC-KDM levels and activity and thus 
histone methylation status. Here we discuss evidence 
available to date that demonstrates associations of 
JmjC-KDMs with cardiovascular disease progression.

JmjC-KDMs & cardiovascular disease
Altered histone lysine methylation patterns result-
ing in changes to gene expression profiles have been 
observed in a number of cardiovascular disease 
states, particularly cardiac hypertrophy and cardio-
myopathy (Table 4) [169–174]. While studies to date 
have analyzed the downstream effect of changes to 
methylation status at specific gene promoter regions, 
genome-wide ChIP in hypertrophic cardiomyocytes 
revealed redistribution of methylated histone marks 
to both promoter and enhancer regions of specific 
genes associated with the disease state [175]. This 
suggests that changes to histone modifications are 
not only a result of disease, but can, in fact, drive 
maladaptive phenotypic changes.

Recent studies have implicated several JmjC-KDMs 
in a number of cardiovascular disease states. KDM4A 
protein levels were reported to be upregulated in hyper-
trophic cardiomyopathy patients [171]. Heart-specific 
overexpression of KDM4A in mice exacerbated car-
diac hypertrophy following TAC-induced cardiac pres-
sure overload, while heart-specific KDM4A knock-out 
blunted the hypertrophic response [171]. Increased levels 
of four and a half LIM domains 1 (FHL1, a biomechani-

Table 4. Epigenetic modulations associated with cardiovascular disease states.

Disease state Changes to lysine 

methylation status

Gene locus and change 

in expression level

KDM 

implicated?

Ref.

Heart failure H3K4me3 Global study - [169]

 H3K9me3    

PTIP knock out mouse (reduced 

global H3K4me3 model)

H3K4me3 ↓ (globally 

induced)

KCNIP2 ↓ - [170]

Cardiac hypertrophy H3K9me3 ↓ FHL1 ↑ KDM4A ↑ [171]

Cardiomyopathy H3K36me3 ↓ DUX4 ↓ - [172]

Cardiomyopathy H3K9me2/3 ↓ ANP ↑ KDM3A ↑ [173]

  BNP ↑ KDM4A ↑  

   KDM4B ↑  

Severalstudieshavedemonstratedchangesingeneexpressionlevelsandassociatedchangestohistonelysinemethylationincardiovascular
diseasestates.AlteredKDMexpressionlevelswerealsoreportedinsomecases.
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cal stress sensor implicated in the development of car-
diac hypertrophy [176]) were found to be due to binding 
of KDM4A to the FHL1 promoter, decreasing H3K9 
trimethylation and activating transcription [171]. Cardiac 
hypertrophy is stimulated by pressure overload, which 
increases myocardial oxygen demand and can lead to 
myocardial hypoxia [166], hence elucidating the effect of 
low oxygen concentrations on the JmjC-KDMs could 
prove to be therapeutically beneficial in this context. 
Importantly, increased KDM4A, KDM4B and KDM3A 
expression was found in heart failure patients [173]. Dou-
ble knockdown experiments in neonatal rat cardiomyo-
cytes correlated KDM3A and KDM4A expression levels 
with changes in expression of ANP and BNP, apparently 
mediated by changes to the methylation status of H3K9 
in the promoter region of these genes, and it was sug-
gested that this evidence supported a regulatory role for 
KDM3A and KDM4A in the reactivation of fetal genes 
in a disease-specific context [173].

Inflammation & JmjC-KDMs
Atherosclerosis is a non-resolving inflammatory 
disease, and presents an interesting link between 
inflammation, hypoxia and cardiovascular disease. 
Atherosclerotic plaques are inherently hypoxic [177], 
demonstrating HIF-1α stabilization [178], while athero-
sclerosis is itself an underlying cause of ischemic heart 
disease, angina, myocardial infarction and stroke.

KDM3A, KDM4B and KDM4D are upregulated in 
macrophages in response to hypoxia, concomitant with 
a global increase in levels of H3K9me2, H3K9me3 and 
H3K36me3, likely due to attenuation of JmjC-KDM 
activity [16]. Downstream reduction in expression of 
chemokine ligands and receptors was also observed. 
Interestingly, one such affected ligand, CCL2, is simi-
larly downregulated in a murine model of atheroscle-
rosis upon treatment with the iron chelator desferri-
oxamine [179], which is a generic inhibitor of the 2OG 
oxygenase family, including the HIF hydroxylases and 
the JmjC-KDMs [Unpublished data, author’s laboratory].

KDM6B has been linked to inflammation in several 
studies. Macrophages stimulated by both lipopoly-
saccharides [180,181] and Serum Amyloid A (SAA) [182], 
an acute phase protein associated with chronic dis-
orders including atherosclerosis [183], demonstrated 
upregulation of KDM6B [180–182] and KDM6B-
mediated modulation of expression of inflammatory 
genes [181,182]. Furthermore, shRNA knock-down 
of KDM6B reduced uptake of oxidized low density 
lipoproteins by macrophages, thereby reducing the 
SAA-induced formation of foam cells [182], which 
contribute to the pathogenesis of atherosclerosis [184]. 

Published work has demonstrated that changes to 
histone lysine methylation at specific gene loci have 

direct consequences for the development and progres-
sion of several cardiovascular and inflammatory dis-
eases. These changes are likely mediated, at least in 
part, by JmjC-KDMs, although further investigation 
of the specific role of JmjC-KDM activity in these 
disease states is required. Given the links between 
hypoxia and heart disease, and the hypoxic regula-
tion of a number of these enzymes, the relationship 
between reduced oxygen concentration and epigene-
tic regulation in the context of cardiovascular disease 
presents an interesting avenue for further research.

Conclusion & future perspective
Evidence is amassing that phenotypic changes in 
hypoxic diseases are not solely a result of the HIF-
driven hypoxic response. Altered histone lysine meth-
ylation in hypoxia, resulting in changes at the tran-
scriptional level, has been demonstrated in a variety 
of contexts, as described above. As with the related 
2OG oxygenases, PHD and FIH, JmjC-KDMs have 
been shown to have different oxygen sensitivities, 
at least in vitro (Table 1 [26]), and their activity has 
the potential to be affected by changing oxygen con-
centration [20]. JmjC-KDMs may therefore regulate 
gene expression at specific gene loci in an oxygen 
concentration-dependent manner, although further 
evidence to support this hypothesis is needed.

Challenges remain in elucidating the relationship 
between oxygen availability and epigenetic regulation 
by the JmjC-KDMs. Potential redundancy [107,117,185] 
and differential HIF regulation within JmjC-KDM 
subfamilies [14,57–58] are factors that may prove com-
plex. It is unclear how HIF-mediated gene upregula-
tion in hypoxia affects overall KDM activity levels 
since both HIF-dependent (KDM upregulation/
association) and HIF-independent (effects on cata-
lytic activity) mechanisms (Figure 2C–E) may be at 
play. Several JmjC-KDM sub-families are known to 
have demethylase-independent roles in gene regula-
tion [186–188]. In the context of epigenetic changes 
and oxygen availability, it is also important to con-
sider DNA methylation patterns which are altered in 
hypoxia [189,190]. While it is beyond the scope of this 
review, DNA demethylation mediated by Ten-eleven 
translocation methylcytosine dioxygenases (TETs, 
including TET1–3), another family of 2OG oxygen-
ases, may also be key players in epigenetic regulation 
under hypoxic conditions.

In order to address these questions, development of 
specific and potent chemical probes for these enzymes 
will be essential. Indeed, some promising chemi-
cal probes for this enzyme family have already been 
identified [153,154]. There is also a need to develop more 
precise and reliable methods for measurement of oxygen 
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concentration in cells and tissues, such as fiber-optic, 
small molecule or cell-permeable nanoparticle probes.

A large body of evidence indicates that the JmjC-
KDMs have key roles in gene regulation and that mis-
regulation of the JmjC-KDMs is a pathological fea-
ture in hypoxic disease states. Reduced activity of at 
least some of the JmjC-KDMs in hypoxia may be an 
influencing factor. Further biochemical, kinetic and 
physiological characterization is necessary to validate 
this proposal, and will confirm the importance of the 
JmjC-KDMs as therapeutic targets for the treatment 
of diseases of the maladaptive hypoxic response.
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Executive summary

Hypoxia, HIF & the HIF hydroxylases

• HIF mediates the hypoxic response and HIF levels are regulated by the HIF hydroxylases, oxygen-dependent 

enzymes which are members of the 2OG-dependent oxygenase family.

Histone demethylation by the JmjC-KDMs

• JmjC-KDMs are 2OG oxygenases, which play key roles in epigenetic regulation and act by modulating dynamic 

histone lysine methylation states.

• Levels of some JmjC-KDMs are upregulated in hypoxia, and kinetic studies suggest their activity could be sensitive 

to decreased oxygen availability, with potentially important consequences for gene regulation in hypoxia.

Hypoxia, development & the JmjC-KDMs

• Hypoxia is an essential regulator of normal development, while various JmjC-KDMs are critical to different types 

of development.

• Understanding how the JmjC-KDMs contribute to gene regulation in development may prove useful in 

understanding how aberrant function, especially in hypoxia, may contribute to disease states.

Hypoxia, cancer & the JmjC-KDMs

• Hypoxic conditions commonly occur within solid tumors and cause a HIF-mediated hypoxic transcriptional 

response.

• Hypoxia-induced epigenetic changes may contribute to altered gene expression in cancer.

• Many JmjC-KDMs have been implicated in cancer, and some have been identified as oncogenes.

• Inhibitors targeting JmjC-KDMs are being developed as cancer therapeutics.

Hypoxia, cardiovascular disease & the JmjC-KDMs

• Altered gene expression and histone methylation patterns have been identified in several cardiovascular disease 

states.

• Data are emerging that indicate JmjC-KDMs may contribute to these conditions in a pathological manner.

Conclusion

• Hypoxia may be a contributing factor to the aberrant function of various JmjC-KDMs that have been implicated 

in hypoxic disease states.

• There is a need to further characterize the effect of hypoxia on the activity and expression of JmjC-KDMs.

• To this end, further biochemical and physiological study, and the development of potent and selective inhibitors 

will be essential.

Unanswered questions

• What are the oxygen sensitivities of JmjC-KDMs? Do they vary between different JmjC-KDMs families and 

isoforms? Can the JmjC-KDMs act as oxygen sensors?

• Is gene expression regulated by JmjC-KDMs in an oxygen dependent manner?

• Are the JmjC-KDMs overexpressed to compensate for loss of enzyme activity at low oxygen concentrations?

• Does both HIF-dependent and HIF-independent transcriptional regulation by JmjC-KDMs occur under different 

oxygen stress?

• What is the actual, absolute concentration of oxygen experienced by cells exposed to a hypoxic environment, or 

by cells within a physiologically hypoxic microenvironment?
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