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Recent evidence has proven the relevance of epigenetic changes in the development of hepatocellular carcinoma (HCC), the major
adult liver malignancy. Moreover, HCC onset and progression correlate with the deregulation of several long noncoding RNAs
(lncRNAs), exhibiting great biological signi
cance. As discussed in this review, many of these transcripts are able to speci
cally
act as tumor suppressors or oncogenes by means of their role as molecular platforms. Indeed, these lncRNAs are able to bind and
recruit epigenetic modi
ers on speci
c genomic loci, ultimately resulting in regulation of the gene expression relevant in cancer
development. 	e evidence presented in this review highlights that lncRNAs-mediated epigenetic regulation should be taken into
account for potential targeted therapeutic approaches.

1. Introduction

Mammalian genomes produce thousands of long nonprotein
coding transcripts currently referred to as long noncoding
RNAs (lncRNAs) [1, 2].	ese RNAs, inmany cases expressed
from RNA polymerase II promoters, spliced, and polyadeny-
lated, form an extremely complex and heterogeneous class
of molecules with a length greater than 200 nt, which dis-
tinguishes them from the small noncoding RNAs [3]. 	ese
last RNAs include several RNAs, well characterized for their
structural and regulatory functions: small nuclear RNAs
(snRNAs), small nucleolar RNAs (snoRNAs), microRNAs
(miRNAs), piwi-interacting RNAs (piRNAs), small interfer-
ing RNAs (siRNAs), and others.

Wide range analysis of cellular transcription by deep
sequencing unveiled a large and continuously expanding
number of lncRNAs. 	e GENCODE consortium in the
framework of ENCODE (encyclopedia of DNA elements)
project estimated, already in 2012, the human catalog of
lncRNAs comprising 9277 manually annotated genes and
producing 14880 transcripts [4].

LncRNAs can exhibit subcellular localization in precise
compartments and, although they are expressed in lower
amount with respect to mRNA [4], these transcripts are

even more cell-type speci
c and strictly associated with
developmental stages [5–7].

In the last years, increasing evidence showed that lncR-
NAs do not represent a “transcriptional noise,” having instead
great biological signi
cance.

	ese transcripts, in fact, play a key role in various
cellular contexts and are involved in almost every stage
of gene expression, in both physiological and pathological
cellular conditions. Di
erent lncRNAs control epigenetic
processes, such as expression of speci
c genes, as well
as imprinting, and chromosome dosage-compensation, and
also transcription, splicing, transport, and translation [8].
	us, lncRNAs studies have attracted increasing attention,
currently representing a top 
eld in the cell biology. Several
databases (e.g., lncRNASNP [9], NONCODE [10], LNCi-
pedia [11], lncRNAtor [12], lncRNAdb [13], lncRNAMap [14],
and LncRNADisease [15]) collect and make possible the
integration of data regarding gene sequences, SNP pro
les,
expression, and biological activities of many lncRNAs from
di
erent sources.

LncRNAs may fold acquiring modular domains with
complex tridimensional structures able to bind and guide
protein e
ectors and regulators to speci
c targets. In par-
ticular, a large proportion of known lncRNAs triggers
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the recruitment of DNA and/or histonemodifying complexes
on site-speci
c chromatin contexts, by acting in cis (at the site
of transcription) or in trans (at distantly located genes) ([16],
for review [17]).

LncRNAs o�en display either tumor suppressor or onco-
genic activities that frequently have to be ascribed to their
capacity to control gene expression by acting at epigenetic
level.

In this review, we focus on lncRNAs involved in the
epigenetic modi
cations in�uencing onset and progression
of hepatocellular carcinoma (HCC). Firstly, we summarize
the state of the art of research onDNA and histone epigenetic
modi
cations in HCC; secondly, we discuss the biological
roles and the molecular functions of known chromatin-
associated lncRNAs whose expression is deregulated in HCC
stages, highlighting that lncRNAs activities in epigenetic reg-
ulation should be taken into account for potential therapeutic
approaches.

2. HCC and Epigenetics

Levels of chromatin compaction depend on complex mech-
anisms, including epigenetic modi
cations that a
ect either
DNA, by methylation and hydroxymethylation of cytosine
residues, or histones, by posttranslational additions of several
chemical groups (i.e., acetylation, methylation, phosphoryla-
tion, ubiquitination, sumoylation, ribosylation, deamination,
and proline isomerization). All these posttranslational mod-
i
cations (PTMs) are tightly controlled by speci
c enzymes
and directly a
ect chromatin condensation or act as signals
for other chromatin-modifying or chromatin-remodeling
activities, resulting in transcription regulation [18].

Recent 
ndings point to the involvement of epigenetic
mechanisms in the pathogenesis of HCC.

	is tumor type represents the major form of adult
primary liver cancers and one of the most frequent cancers
worldwide. Poor understanding of HCC pathogenesis mech-
anisms limits diagnosis and treatment at early stages and cur-
rent therapies, despite recent advances, are essentially unsuc-
cessful. 	us, liver transplantation is still the most e�cient
treatment, with the lowest risk of tumor recurrence, even
if surgical resection and chemoembolization can be valid
alternatives in some circumstances [19]. Progression of HCC
into a metastatic phenotype implies increased proliferation,
cellular dedi
erentiation, alterations in the stem/precursor
compartment biology, and acquisition of invasiveness by a
process of epithelial to mesenchymal transition (EMT) [20,
21].

Apart from several genetic causes, all HCC stages closely
correlate to changes in epigenetic patterns of both DNA
and histones on several genes crucial for cancer onset and
progression.

In line with evidence regarding other tumor types, DNA
hypermethylation at speci
c loci has been correlated to inac-
tivation of tumor suppressor genes also inHCC. For example,
epigenetic silencing of Ras pathway inhibitors was found,
resulting in Ras and its downstream e
ectors ERK, AKT,
and RAL activation. Similarly, an inactivation of angiogenesis
inhibitors has been shown in HCC with poor prognosis [22].

Moreover, changes in gene expression pro
les of HCC cells
upon treatment with the demethylating agent 5-Aza-2�-
deoxycytidine lead Wong and colleagues [23] to identify the
Kunitz-type serine protease inhibitor tissue factor pathway
inhibitor-2 (TFPI-2) as a new tumor suppressor signi
cantly
downregulated in HCCs; TFPI-2 overexpression, indeed,
signi
cantly suppressed both proliferation and invasiveness
of tumor cells.

Moreover, a wide range analysis of genome methylation
in HCC compared with normal liver provided a methylation
“signature” useful in diagnosis and prognosis of tumor.

For example, some tumor suppressor genes (i.e., HIC1,
GSTP1, SOCS1, RASSF1, CDKN2A, APC, RUNX3, and
PRDM2) [24] showed signi
cantly higher methylation levels
already in the early HCC, thus suggesting that they could be
silenced in the 
rst steps of hepatocarcinogenesis and could
represent possible predictive biomarkers. Furthermore, an
approach based on analysis of DNA methylation in HCC,
gene reexpression in cells a�er epigenetic unmasking, and
subsequent validation identi
ed sphingomyelin phosphodi-
esterase 3 (SMPD3) and neuro
lament heavy polypeptide
(NEFH) as tumor suppressor genes di
erentially methylated
in HCC [25]. Hernandez-Vargas and colleagues [26], instead,
analyzed a panel of cancer-related gene promoters identifying
a set of hypermethylated genes that discriminated between
HCC cells and nontumor tissues or other tumor types.
Moreover, Song et al. found di
erential methylation not
only of genome CpG islands but also of less-characterized
surrounding regions that could have e
ects on important sig-
naling networks (i.e., cellular development, gene expression,
and cell death) [27].

DNA methylation is orchestrated by the DNA methyl-
transferase (DNMT) enzymes; DNMT1 is mainly involved
in the maintenance of established methylation patterns [28],
while DNMT3 A and B are the enzymes able to e�ciently
operate de novo methylation of DNA sequences [29]; thus
they are required during development and frequently dereg-
ulated in cancer cells. DNMTs increase in hepatocarcino-
genesis and their upregulation correlates with a progressive
increase in the number of methylated genes in HCC with
respect to normal liver [30]. Notably, an inverse correlation
between the levels of DNMT3A and of microRNA-29 family
members, targeting this enzyme transcript, has been found
in HCC, with increased DNA methylation associated with
aggressiveness of tumor cells [31]. Moreover, DNMT3A
overexpression was observed also in HCC cell lines, where its
depletion determined demethylation of the tumor suppressor
PTEN promoter and correlated with cell proliferation inhibi-
tion [32]. Interestingly, HCC cells treatment with a DNMTs
inhibitor impaired metastasis [33].

Several studies also revealed the correlation between
HCC and aberrant histone modi
cations.

Chromatin accessible to transcriptional factors is gener-
ally characterized by the acetylation of histone tails controlled
by histone acetyltransferases (HATs). Concerning, instead,
histone methylation, its e
ects depend on (i) which amino
acid residue is methylated and (ii) which is the methylation
form, because one, two, or three methyl groups (indicated
as me1, me2, and me3, resp.) can be dynamically added to
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the histone tail. In particular, the trimethylation on lysine 27
of histone H3 (H3K27me3) is a key repressive mark.

Polycomb group proteins (PcG) are the main regulators
of repressive epigeneticmodi
cations of chromatin, initiating
and maintaining the transcriptional repression of target
genes. 	ese proteins are classi
ed in two groups, the poly-
comb repressive complexes (PRC) 1 and 2, taking into account
the multimeric complexes with which they associate. PRC2,
composed of Eed, Suz12, Ezh2, and RBBP7/4, initiates gene
silencing by methylation of histone H3 lysine 27 (H3K27);
PRC1, composed of Ring1a/1b, Nph1, and Bmi1, maintains
gene silencing by monoubiquitinating histone H2A lysine 119
(H2AK119) [34].

In a recent study, a number of HCCwas characterized for
both acetylation and trimethylation state of H3K27 [35] and
a correlation between high levels of H3K27ac andH3K27me3
and an aggressive behaviour has been identi
ed. Other
studies associated also high level of H3K4me3 with poor
HCC prognosis [36, 37]. In addition, the hyperacetylation of
histone H3 on lysine 9 (H3K9ac) and of histone H4 on lysine
8 (H4K8ac) in HCC compared to cirrhotic and normal livers
was reported [38].

In accordance with these 
ndings, the deregulation of
some histone modi
ers has been observed in HCC, sug-
gesting a key role of these molecules in the pathogenesis
of the tumor. In particular, members of PRC2 and PRC1
complexes are frequently deregulated in tumor cells and the
consequent aberrant gene expression drives progression of
hepatocarcinogenesis towardsmetastatic stages. Among PRC
subunits, considerable evidence concerns the methyltrans-
ferase Ezh2, directly responsible for H3K27 trimethylation.
Invasive properties of HCC tumors were strongly associated
with Ezh2 upregulation [39, 40]; consistently, Ezh2 levels
were proposed as diagnostic biomarkers for the detection of
HCC in liver biopsies [41]. Ezh2 and its associated partners
in PRC2, indeed, were shown to be responsible for the
silencing of several microRNAs known for their role as tumor
suppressors (i.e., miR-139-5p, miR-125b, miR-101, let-7c, and
miR-200b), thus enhancing liver cells motility andmetastasis
[42]. Notably, one of these microRNAs, miR-101, was recently
characterized as a negative regulator of the PRC2 complex
subunits Ezh2 and Eed; thus a double-negative feedback loop
exists and is deregulated in HCC [43].

Moreover, Ezh2 was found to activate the �-catenin
signaling by epigenetic repression of di
erent negative reg-
ulators ofWnt pathway (e.g., AXIN2, NKD1, and PRICKLE1)
implying a control on cellular proliferation; downregulation
of Ezh2, indeed, reduced HCC cell growth [44].

Concerning the subunit of PRC2 complex Suz12, while
it appeared upregulated in HCC as well as other PRC2
components [42], its protein levels were instead negatively
controlled via phosphorylation in hepatitis B virus (HBV)
X protein-mediated transformation of the hepatocyte [45].
Moreover, hepatocyte loss of Suz12 determined the derepres-
sion of genes strongly expressed in hepatic cancer stem cells
(i.e. EpCAM, BAMBI, DKK2, and DLK1) [46].

With regard to the PRC1 member Bmi1, its deregulation
inHCChas been correlated to both early-stageHCC [47] and
progression of carcinoma [40, 48].

HCC is also characterized by deregulation of other
chromatin modifying enzymes. For example, Patt1, a GNA
family acetyltransferase exhibiting proapoptotic activity in
hepatoma cells, was downregulated [49]. Tumor cells also
exhibited rare dimethylation of lysine 4 of histone H3
(H3K4diMe), probably caused by deregulation of the Ash2
complex, which methylates H3K4, and LSD1 that, conversely,
demethylates the same residue [50].

Moreover, in hepatocarcinogenesis of chronic viral hep-
atitis protein phosphatase 2A (PP2A) and the protein arginine
methyltransferase 1 (PRMT1) are both dysregulated [51].

3. LncRNAs Involved in Epigenetics of HCC

Deregulation of lncRNAs is related to several human diseases
and a broad range of cancers [52]. In di
erent tumors and, in
particular, in HCC, several lncRNAs have been characterized
as tumor suppressors; otherwise, these regulators may exert
oncogenic functions and are overexpressed in correlation
with tumor progression, metastasis, and poor patient out-
come.

3.1. HOTAIR. 	eHOXTranscriptAntisense Intergenic RNA
(HOTAIR) is a polyadenylated and spliced transcript, anti-
sense to the mammalian homeobox transcription factor
C (HOXC) locus, identi
ed by Rinn and colleagues [53].
Based on its genomic locus, the lncRNA HOTAIR is further
classi
ed as large intergenic noncoding RNA (lincRNA):
it lies, indeed, as a distinct transcription unit within the
intergenic region encompassed between two di
erent genes
[53].

Sequence analyses proved that HOTAIR exists in mam-
mals and evolved faster than nearby HoxC genes [54].
HOTAIR exhibits conserved conformational structures,
despite di
erences in sequences among the species. Murine
HOTAIR, indeed, has a 
rst exon signi
cantly conservedwith
respect to human sequence but the second exon shows high
conservation only in a subdomain. Moreover, transcriptome
analysis by deep sequencing demonstrated that the murine
HOTAIR is likely encoded by two exons, instead of six as in
humans [55].

Chiyomaru and colleagues [56] recently reported the
HOTAIR interaction withmiR-34. In this situation, HOTAIR
could act as a sponge, interfering with the miR-34 activities,
thus acting as an oncogene. Mir-34, in fact, is considered
a tumor suppressor microRNA, regulated by p53 and in�u-
encing apoptosis and cell cycle arrest as well as senescence
[57]. HOTAIR also sponges miR-331-3p, acting as competing
endogenous RNA to regulate the expression of HER2 [58].

However, the fundamental and better-characterized func-
tions of HOTAIR are its roles as “guide” and “sca
old.”

Pertaining to the role of guide, HOTAIR was found to
interact through its 5�-end with PRC2 and speci
cally lead
to in trans recruitment of this complex on several distantly
located genes [59]. 	e interaction between HOTAIR and
the PRC2 subunit Ezh2 is enhanced by the posttransla-
tional phosphorylation of this methyltransferase by cyclin-
dependent kinase 1 (CDK1) [60].
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	e HOTAIR-mediated trans-recruitment is consistent
with recent 
nding that lincRNAs can couple DNA and
chromatin modifying activities by binding the enzymes and
triggering their speci
c targeting [16, 53, 61]. HOTAIR,
indeed, not only suppresses in trans the expression of the
HOXD locus on a di
erent chromosome, but also acts in
a genome-wide manner, controlling H3K27 trimethylation,
then epigenetic silencing, of several target sequences [53].

Regarding the HOTAIR role as sca
old, this depends on
its capacity to recruit several chromatin modi
ers organizing
a molecular platform. Apart from the PRC2 binding at its 5�-
end, indeed, HOTAIR binds through its 3�-end the lysine-
speci
c demethylase 1 (LSD1), the enzyme that, complexed
with the corepressors REST (RE1-silencing transcription fac-
tor) and CoREST (corepressor for element 1-silencing tran-
scription factor), erases the activating H3K4 trimethylation.
	us, HOTAIR assembles and addresses di
erent histone
modi
ers to chromatin: the positioning of PRC2 and LSD1
complexes on speci
c chromosomal loci couples the H3K27
trimethylation and the H3K4 demethylation, fundamental
chromatinmodi
cations for gene silencing [59] (Table 1).	e
mechanism of HOTAIR recruitment on speci
c chromatin
regulative regions is still unclear, considering that it is not
an antisense for all its targets. As hypothesized for other
known lncRNAs, speci
c transcriptional factors, able to act
as both RNA and DNA binding proteins, could be involved
in forming a molecular platform in chromatin contexts.

HOTAIR overexpression was proven to promote metas-
tasis and was correlated to poor prognosis of several tumor
types, for example, breast [61], colorectal [62], and nasopha-
ryngeal [63] cancers and, particularly, it is overexpressed in
HCC tissues and liver cancer cells [64, 65].

Notably, its knockdown signi
cantly a
ects migratory
and invasive properties [64] as well as susceptibility to
apoptosis [65] of hepatic cells.

Two recent reports proposed that the role of HOTAIR
in tumor progression and acquisition of invasiveness can
involve an EMT process. Xu and colleagues demonstrated
that HOTAIR knockdown concurrently suppressed invasion
and reversed EMT of gastric cancer cells [66]. Alves and
colleagues also proved that TGF� treatment, inducing EMT,
increased HOTAIR levels. Interestingly, HOTAIR silencing
by a siRNA approach prevented the transitional program and
the acquisition of stem properties by colon and breast cancer
cells [67].

Moreover, enforced expression of HOTAIR in epithelial
cancer cells determined the retargeting of PRC2 complex
causing an occupancy pattern on genome resembling that of

broblasts, in parallel with metastatic properties acquisition
[61]. In spite of this evidence, the mechanism by which
HOTAIR can direct an EMT program is still poorly eluci-
dated.

In conclusion, HOTAIR is one of the well-studied PRC2
interacting lncRNAs and its expression appears to be a
driving force for the acquisition of malignant properties by
HCC, aswell as other tumor types. It is able to recruit di
erent
players in controlling gene expression, organizing a molecu-
lar platform able to speci
cally retrieve target sequences.

Nevertheless, a comprehensive characterization of HO-
TAIR mechanism of function is still needed and further
studies of its related pathways and partners could be useful
to identify new possible therapeutic targets.

3.2. H19. 	e humanH19 gene encodes a ∼2.3-kilobase long,
spliced, and polyadenylated lncRNA [68]. 	e 
rst exon
of H19 gene encodes also for the microRNA675, shown to
control placental growth at the end of gestation by targeting
the transcript of Igf1r gene [69–71].

	e H19 gene belongs to a conserved gene cluster that
plays an important role in embryo development and growth
control. H19 locus is imprinted in both humans and mice
and is expressed from the maternal allele [72]. 	e cluster
also contains the imprinted gene for insulin-like growth
factor 2 (Igf2), which is paternally expressed. During embryo
development H19 and Igf2 are expressed in endoderm- and
mesoderm-derived tissues and their expression is regulated
by an intergenic di
erentially methylated region (DMR), also
called imprinting control region (ICR), and by a common
enhancer region that promotes either maternal H19 expres-
sion or paternal Igf2 expression [73]. H19 lncRNA levels
are high during embryogenesis and are downregulated, a�er
birth, in most of adult tissues [74]. 	e function of H19 has
been explored inmice and cell lines by using knockdown and
transgenic approaches. It was shown that targeted deletion of
maternal H19 locus (H19Δ3) in mice induces an overgrowth
phenotype and the upregulation of Igf2 and of several genes
belonging to a network of imprinted genes (IGN) involved
in the control of embryonic growth. Subsequent transgenic
H19 expression downregulates in trans the expression of Igf2
and IGN genes and restores the normal phenotype [73, 75].
	e mechanisms underlying this regulation have been, at
least in part, elucidated by Monnier and colleagues [71].
	ey demonstrated that H19 lncRNA directly represses the
expression of three genes (Igf2, Slc38a4, and Peg1) of the
IGN by recruiting the MBD1 protein to the DMRs of these
imprinted genes. H19 deletion was associated with a loss of
H3K9me3 on Igf2, Slc38a4, and Peg1 DMRs, thus indicating
that H19 contributes to the maintenance of a transcriptional
repressive mark on its target genes. 	erefore, maternally
expressed H19 mediates an epigenetic control of paternally
expressed IGN genes to control growth of the embryo.

H19 role in tumorigenesis is controversial, since it has
been described as either protumorigenic or tumor suppressor
depending on the context.

Upregulation of H19 and Igf2 expression has been shown
in HBV-associated HCC [76] and an imbalance in H19 and
Igf2 expression associated with hepatocellular carcinoma
progression [77]. Finally, Sohda et al. [78] reported high
levels of H19 in 37% of HCCs compared with nontumorous
livers. However, most of these observations do not highlight
the functional signi
cance of H19 overexpression in HCCs.
Higher H19 levels can simply be the result of altered chro-
matin structure in liver cancer.

Invasiveness and metastatic potential of tumor cells are
associatedwith the process of EMT andH19 has been demon-
strated to in�uence di
erent players involved in this trans-
di
erentiation phenomenon. Indeed, a signi
cant negative
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Table 1: List of lncRNAs deregulated in HCC and their role in epigenetic mechanisms of gene regulation.

LncRNA Epigenetic mechanisms in HCC References

HOTAIR
Invasiveness

controlling genes

OFF

LSD1 REST

CoREST

PRC2

[60–62]

H19

HnRNPU/PCAF/RNA pol III miR-200

ON
[79]

HEIH

EZH2
p16

OFF [80]

MALAT1

E2FPc2 Cell cycle genes

OFF

PcG body

Rb

E2F

SUMO

Pc2 Cell cycle genes

ON

ICG

[81, 82]

MEG3

EZH2

OFF

Cell cycle genesJARID2

[83]

HOTTIP

MLL HOXA genes 

ON

WDR5
[84]

correlation was observed both in vivo and in vitro between
H19 and the levels of the key epithelial adhesion molecule
E-cadherin, in which repression is causal to the EMT [85].
H19 was proven to directly contribute to the transcriptional
repression of E-cadherin by assisting the binding of the epige-
netic regulator Ezh2 to its promoter [85].Meanwhile,H19was

demonstrated to induce derepression of the Wnt/�catenin
pathway that positively regulates EMT. In fact, this lncRNA
facilitates the recruitment of Ezh2 on the promoter of
Nkd1, thus impairing the expression of this inhibitor of the
Wnt/�catenin signaling. As a result, in bladder cell lines, H19
promotes invasiveness by indirectly activating Wnt/�catenin
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pathway and directly inhibiting E-cadherin transcription
[85]. Consistently, in recent studies it has been shown that
H19 levels are upregulated in bladder cancer tissues and are
higher in patients with invasive bladder cancer compared
to patients with noninvasive cancer. Matouk et al. [86] also
found high levels of H19 in metastatic sites of biopsies
from di
erent primary tumors and demonstrated that, in
di
erent cancer cell lines, among which is Hep3B, factors
that may induce the EMT process such as TGF�, hypoxia
and HGF/SF also increase the expression levels of H19 gene.
	ey also observed that ectopic expression of H19 enhanced
Hep3B invasiveness in vitro and H358 (lung cancer cell
line) metastasizing capability in vivo, concluding that H19 is
involved in enhancing invasion and metastasis [87].

Interestingly, H19 was demonstrated to also play a role in
MDR1-associated drug resistance in humanhepatocarcinoma
cell lines HepG2 andHep3B. H19 was found overexpressed in
doxorubicin-resistant cells and its overexpression correlated
with MDR1 promoter demethylation, higher P-glycoprotein
levels, and doxorubicin resistance. H19 knockdown leads
to MDR1 promoter hypermethylation, decreased expression
of P-glycoprotein, and doxorubicin sensitization. As a con-
sequence, H19 may contribute to multidrug resistance in
liver cancer cell lines by inducing demethylation of MDR1
promoter and overexpression of P-glycoprotein [88].

Conversely, H19 has been found to regulate the rate
of tumor metastasis in advanced stages of HCC via the
epigenetic activation of themiR-200 family [79].	e authors,
indeed, have shown that H19 expression is signi
cantly
lower in invasive HCC cancers compared to noninvasive
tumors and that H19 expression positively correlates with
miR-200b expression. Knockdown of H19 in HCC cell lines
promoted cell invasion capability in vitro end in vivo while
H19 ectopic expression inhibited invasion. Moreover, H19
knockdown decreased the expression of epithelial markers
including E-cadherin and increased the expression levels of
mesenchymal markers such as N-cadherin, Snail1, Vimentin,
and Twist1, thus indicating that H19 could suppress the
EMT process that is involved in tumor progression and
invasiveness. Indeed, ectopic H19 upregulated the expression
of miR-200 family members that play a crucial role in EMT
inhibition and whose expression is downregulated in HCC.
H19 activated miR-200 family expression by associating
with the HnRNPU/PCAF/RNA PolII complex and favoring
the binding of the complex and consequent histone H3
acetylation on the promoter of miR-200 family [79] (Table 1).

Remarkably, a tumor suppressor function ofH19 has been
demonstrated in vivo by using three di
erent mice models
of tumorigenesis. In SV40 induced hepatocarcinoma model,
H19 deletion was associated with shortening of latency and
faster appearance of the tumors. Accordingly, in the absence
ofH19, induced teratocarcinomaswere larger and the number
of polyps found in APC mutant mice was more than twice
higher than in the same tumor models expressing H19 [89].
Moreover, inhibition of lncRNAH19 and miR-675 promoted
migration and invasion of humanHCC cells by activating the
AKT/GSK-3�/Cdc25A signaling pathway [90].

We can conclude that, depending on the biological
context, during development and disease, H19 was found not

only to have multiple functions but also to act on di
erent
target genes through distinct molecular mechanisms.

3.3. HEIH. lncRNA HEIH has been identi
ed as one of 174
lncRNAs that were di
erentially expressed betweenHCC and
nontumoral samples. It is a polyadenilated RNA polymerase
II-encoded transcript; it is located in both nucleus and
cytoplasm of HCC cells and has no homolog in mouse.
LncRNA HEIH downregulation correlated, in vitro, with
reduced proliferation and increased expression of proteins
controlling cell cycle progression (i.e., p16, p27, and p21). In
vivo tumors from lncRNA HEIH-downregulated xenogra�s
showed, indeed, a reduced growth compared with that of
tumors formed from controls. lncRNAHEIHhas been shown
to associate with EZH2 and to increase the binding of
EZH2 to p16 and p21 promoters; however, H3K27 levels were
increased only across p16 promoter (Table 1). In conclusion,
this lncRNA contributes to transcriptional repression of cell
cycle controlling genes by di
erent mechanisms [80].

3.4. MALAT1. 	e lncRNA MALAT1, localized in the
“nuclear speckles,” regulates (i) the alternative splicing, by
interacting with splicing factors so in�uencing their distribu-
tion and levels [81], and (ii) the activation of genes controlling
the cellular growth, by interacting with the nonmethylated
form of Polycomb 2 protein (Pc2), and hence the sumoylation
of E2F1 and the subsequent gene expression [82].

Moreover, the interaction between MALAT1 and methy-
lated or unmethylated Pc2 controls the relocation of cell
cycle related genes in PcG bodies or interchromatin gran-
ules (ICG), resulting in gene repression or activation [82]
(Table 1).

Recent 
ndings correlated MALAT1 to HCC. In par-
ticular, Lai and colleagues [91] evaluated the expression of
MALAT1 in cancer cell lines and in more than one hundred
HCC samples. Together with the upregulation of MALAT1
in both cell lines and clinical tissue samples, the authors
observed that patients with high expression level of MALAT1
had a signi
cantly increased risk of tumor recurrence a�er
liver transplantation. Moreover, they reported the e
ects of
inhibition of MALAT1 by RNA interferences in hepatoma
cell lines on the reduction of cell viability, motility, and
invasiveness and on the increase of the sensitivity to apoptosis
indicating MALAT1 as a novel biomarker for predicting
tumor recurrence a�er liver transplantation and as a promis-
ing therapeutic target.

3.5. MEG3. 	e maternally expressed gene 3 (MEG3)
lncRNAwas found strongly downregulated in several (HCC)
cell lines and in HCC samples. Its enforced expression
in HCC cells counteracts the transformed phenotype by
reducing the uncontrolled growth and inducing apoptosis
[92].

With respect to its speci
c role in epigenetic control of
gene expression, a recent study unveiled as MEG3, together
with other lncRNAs, stimulates the interaction between
JARID2, an accessory component of PRC2, and EZH2 in
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vitro as well as the JARID2-mediated recruitment of PRC2 to
chromatin in vivo [83] (Table 1).

3.6. HOTTIP. 	e HOXA transcript at the distal tip (HOT-
TIP) is a lncRNA signi
cantly upregulated inHCC. Its gene is
located in physical proximity to the gene locusHOXA, whose
deregulation was, in turn, described in hepatocarcinogenesis.
In particular, levels of HOTTIP and HOXA13 were recently
related to the clinical progression of HCC and predictive for
prognosis [93]. HOTTIP belongs to the family of the “cis-
acting” noncoding RNAs (that are embedded in the same
genomic loci of their target genes) [94]. In particular, a
chromosomal loop brings HOTTIP RNA from its gene into
close proximity to its targets. HOTTIP binds the adaptor
protein WDR5 that, in turn, recruits the methyltransferase
MLL, driving histone H3 lysine 4 trimethylation and gene
transcription [84] (Table 1). Moreover, it is conceivable that
chromosome looping can extend HOTTIP range of action
over large distances.

4. Conclusions

	eknowledge aboutmechanisms governing gene expression
in tumor onset and progression appears essential for e�cient
therapies setting.

In HCC, some deregulated lncRNAs are predictive mark-
ers for precise tumor stages and, most importantly, they have
been characterized as tumor suppressor and/or oncogenes.
	ese functional roles depend on their ability to speci
cally
control gene expression as part of a broad epigenetic regula-
tory network (Table 1).

More e
orts are needed to better elucidate the roles of
these molecules in all HCC stages, as well as in other tumor
types, but increasing evidence already proved the potential
role of these transcripts as targets for possible anticancer
treatments, similarly to currently well-utilized microRNAs.
ProposedHCC epigenetic drugs are represented by inhibitors
of DNMTs [95–97] and histone deacetylases [98, 99] that,
by interferingwith epigenetic regulators activities, simultane-
ously a
ect multiple target genes. Nevertheless, the possible
control of the levels of particular lncRNAs, for example,
by simple siRNA approaches, could o
er the opportunity
to modulate epigenetic modi
cations and, in turn, gene
expression, at speci
c chromosomal loci, thus guaranteeing
a more targeted therapeutical intervention.
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