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Abstract

Background: Preeclampsia (PE) is a heterogeneous, hypertensive disorder of pregnancy, with no robust biomarkers

or effective treatments. We hypothesized that this heterogeneity is due to the existence of multiple subtypes of PE

and, in support of this hypothesis, we recently identified five clusters of placentas within a large gene expression

microarray dataset (N = 330), of which four (clusters 1, 2, 3, and 5) contained a substantial number of PE samples.

However, while transcriptional analysis of placentas can subtype patients, we propose that the addition of epigenetic

information could discern gene regulatory mechanisms behind the distinct PE pathologies, as well as identify clinically

useful potential biomarkers.

Results: We subjected 48 of our samples from transcriptional clusters 1, 2, 3, and 5 to Infinium HumanMethylation450

arrays. Samples belonging to transcriptional clusters 1–3 still showed visible relationships to each other by methylation,

but cluster 5, with known chromosomal abnormalities, no longer formed a cohesive group. Within transcriptional clusters

2 and 3, controlling for fetal sex and gestational age in the identification of differentially methylated sites, compared to

the healthier cluster 1, dramatically reduced the number of significant sites, but increased the percentage that

demonstrated a strong linear correlation with gene expression (from 5% and 2% to 9% and 8%, respectively). Locations

exhibiting a positive relationship between methylation and gene expression were most frequently found in CpG open

sea enhancer regions within the gene body, while those with a significant negative correlation were often annotated

to the promoter in a CpG shore region. Integrated transcriptome and epigenome analysis revealed modifications in

TGF-beta signaling, cell adhesion, oxidative phosphorylation, and metabolism pathways in cluster 2 placentas, and

aberrations in antigen presentation, allograft rejection, and cytokine-cytokine receptor interaction in cluster 3 samples.

Conclusions: Overall, we have established DNA methylation alterations underlying a portion of the transcriptional

development of “canonical” PE in cluster 2 and “immunological” PE in cluster 3. However, a significant number of the

observed methylation changes were not associated with corresponding changes in gene expression, and vice versa,

indicating that alternate methods of gene regulation will need to be explored to fully comprehend these PE subtypes.
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Background

Preeclampsia (PE) is a complex, heterogeneous disorder

of pregnancy, diagnosed by the onset of maternal hyper-

tension after the 20th week of gestation, with signs of

maternal multi-organ dysfunction [1]. As with many

pathologies of pregnancy, PE has no cure, robust

predictive biomarkers, or effective treatments, other than

the delivery of the infant to discontinue the pregnancy and

remove what is thought to be the causative organ, the

placenta. Repeated attempts to characterize the placental

molecular pathology and identify biomarkers of PE by

applying a binary approach (PE versus control) have not

been clinically fruitful, and we hypothesized that this is due

to the existence of multiple molecular subtypes of PE [2].

In support of this hypothesis, we recently published a

large unsupervised clustering analysis of microarray data
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from a PE-focused placental cohort (N = 330), including

157 highly annotated samples purchased from a single

biobank [3]. This revealed five clusters of placental gene

expression containing at least three clinically significant

etiological subtypes of PE: “maternal”, with term and

near-term deliveries of average-sized infants and placentas

that appear molecularly similar to normal healthy control

samples; “canonical” with high placental expression of

known PE markers, preterm deliveries, low fetal weights,

and evidence of maternal malperfusion; and “immuno-

logical” with severe fetal growth restriction, enrichment of

immune response genes, and histological signs of maternal

anti-fetal/placental rejection [3], belonging to transcrip-

tional clusters 1, 2, and 3, respectively. An additional

subtype of PE placentas with chromosomal abnormalities

was also discovered within cluster 5 (and supported by

array-based comparative genomic hybridization (aCGH)

analysis), but showed no strong clinical association [3].

However, despite our considerable progress towards

understanding the molecular diversity observed amongst

PE patients, RNA is relatively unstable, easily affected by

technical variability [4], and rarely successful as a

therapeutic target [5], limiting its clinical utility. We,

therefore, propose that the integration of an additional

level of molecular information in these placentas, such

as DNA methylation, will compensate for these restric-

tions [4], as well as improve our understanding of the

molecular pathology.

DNA methylation is a mitotically heritable epigenetic

mark employed by the cell to control gene expression

without altering the genetic sequence [6], although the

relationship between the two data types is exceptionally

complex [7–10]. Given the flexibility for modification in

the epigenome, these methylation events may also serve

to provide insight into the environmental exposures

sustained by the cell [11], and as potential biomarkers of

early cellular transformations [12]. In fact, many examples

exist, particularly in the cancer field, for the exploitation

of DNA methylation in the diagnosis, prognosis, and

prediction of drug response in disease [12, 13], and as

possible therapeutic targets [14, 15].

Here, we subject a subset of our highly annotated cohort

samples to DNA methylation arrays and investigate

differences in the placental methylome between our

previously identified transcriptional clusters, as well as

relationships between the two data types. Furthermore, by

assessing epigenetic changes associated with the observed

pathological gene expression, we also attempt to discover

novel therapeutic targets for the various PE subtypes.

Methods

Sample selection

A total of 48 (out of 157) placentas from our highly an-

notated cohort purchased from the Research Centre for

Women’s and Infants’ Health (RCWIH) BioBank [3]

were selected for DNA methylation analysis (19 from

transcriptional cluster 1, 19 from transcriptional cluster

2, 5 from transcriptional cluster 3, and 5 from transcrip-

tional cluster 5), using the sample function in R 3.1.3

(Additional file 1: Figure S1). The selected number of

samples per cluster is approximately representative of

the sample distribution in the full placental dataset, with

the condition of a minimum of five samples per cluster.

Our cohort selection and tissue sampling methods have

been previously described [3]. Placentas demonstrating

signs of chorioamnionitis or belonging to the

chorioamnionitis-associated transcriptional cluster 4 [3]

were not included as these are a known entity, inde-

pendent of preeclampsia (Additional file 1: Figure S1).

Clinical differences between these 48 patients only were

assessed using Kruskal-Wallis rank sum, Wilcoxon rank

sum, and Fisher’s exact tests, as appropriate.

Methylation arrays and data processing

DNA was isolated from the 48 placentas by ethanol pre-

cipitation with the Wizard® Genomic DNA Purification

Kit from Promega and quantified by a NanoDrop 1000

spectrophotometer. A total of 750 ng of DNA per

sample was bisulfite converted using the EZ Gold DNA

methylation kit (Zymo) and assessed for methylation

status with Infinium HumanMethylation450 arrays from

Illumina. This array covers CpG islands (tight clusters of

CpG sites) as well as shores (up to 2 kb from CpG

islands), shelves (2–4 kb from CpG islands) and open

sea (> 4 kb from CpG islands) [16]. Arrays were scanned

by an Illumina HiScan 2000. This methylation data was

also used as a validation cohort in [17].

The resulting IDAT files were loaded into R using the

champ.load function (ChAMP library) [18], excluding

low quality probes with a detection p value above 0.01 in

more than one sample or a beadcount < 3 in at least 5%

of samples (N = 1940). Probes known to bind sex

chromosomes, cross-hybridize to multiple locations, or

target a single-nucleotide polymorphism (SNP) were

removed, based on previous annotation [19, 20]. This

left 410,664 probes for DNA methylation analysis. The

samples underwent functional normalization with the

preprocessFunnorm function [21], which is an extension

of quantile normalization utilizing the control probes on

the array, applied separately to the methylated and

unmethylated intensities, type I and type II signals, and

the male and female samples. The data was then batch

corrected for slide and array position using the ComBat

function (sva library) [22] without accounting for any

outcome of interest or other covariates to obtain the

most unbiased results. All analysis was performed using

M values to improve the statistical calculation of
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differential methylation [23, 24], although beta values are

also included in the tables for biological interpretation.

Gene expression data processing

Our entire 157 placenta dataset was previously hybridized

against Human Gene 1.0 ST Array chips from Affymetrix

[3]. The resulting microarray CEL files for the 48 placentas

assessed for methylation in the current study were loaded

into R, and normalized and converted to log2 values using

the affy library [25]. Expression values annotated to the

same gene symbol were merged to a mean value, and genes

with expression in the lowest quartile were filtered out to

reduce confounding by background noise, using the

varFilter function.

Identification of differentially methylated positions

The global relationships between the 48 samples based on

the DNA methylation information alone were visualized

using t-distributed stochastic neighbor embedding (t-SNE;

tsne library) [26] with a perplexity of 10. Samples belonging

to our previously described transcriptional clusters 2, 3,

and 5 were compared to cluster 1 placentas (with a

“healthy” transcriptional profile) to identify differentially

methylated positions, using the limma library [27]. The

entire cluster 1 was employed as the comparison group

after confirming that no significant differentially methylated

positions exist between the PE and normotensive controls

within cluster 1 by limma, and no segregation of these

phenotype groups within cluster 1 were observed by t-SNE

(Fig. 1). Linear modeling, compared to cluster 1, was

performed both with and without controlling for fetal sex

(male or female) and/or gestational age (GA) at delivery

(26–40 weeks) to investigate the impact of these variables

on each cluster. Fetal sex was still considered despite the

removal of the sex chromosomes from the analysis due to

likely persistent differences on the autosomes [28, 29]. Sites

were considered differentially methylated at a false discovery

rate (FDR) corrected q value < 0.05, and groups of signifi-

cant positions were noted when at least three significant

sites were identified within 1000 base pairs of each other.

Probe annotation and epigenetic regulation of gene

expression

All DNA methylation probes were assigned to enhancer

regions, CpG regions (island, shore, shelf, or open sea),

and gene-centric locations (TSS1500: 200-1500 nucleotides

upstream of the transcriptional start site (TSS); TSS200:

TSS to 200 nucleotides upstream of the TSS; 5′ untrans-

lated region (UTR); 1st exon; gene body; 3′UTR; and

intergenic region (IGR)) based on the IlluminaHuman-

Methylation450kanno.ilmn12.hg19 library. A number of

sites (N = 45,354) were linked to multiple genes or gene

aliases, and all possible associations were maintained.

Probes found in the IGR were assigned to the gene with

the closest TSS. Trends in significant probe positions were

assessed by Fisher’s exact tests.

Sites identified as significantly differentially methylated

in transcriptional cluster 2 or 3 placentas, compared to

cluster 1 samples, were investigated for linear correlations

between the M values and the corresponding log2 gene

expression values within the relevant two clusters. Corre-

lations were considered significant at a FDR < 0.05 and

correlation groups were compared by Fisher’s exact tests.

Fig. 1 t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of the methylation data in the 48 placenta samples. a Transcriptional clusters

1 (black, N = 19), 2 (red, N = 19), and 3 (green, N = 5) continued to display molecular similarity to each other based on the DNA methylation data alone,

indicating that methylation plays a significant role in the development of these three clusters. Cluster 5 samples (cyan, N = 5), however, were found

dispersed across the methylation plot, no longer forming a united group. b In general, preeclamptic (PE) placentas (pink) were found on the bottom

half of the t-SNE plot, while the non-PE samples (blue) were predominately observed on the top half. However, the cluster 1 PE patients fully integrated

with their co-clustering controls by methylation
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Significance-based modules integrating the transcriptome

and epigenome (SMITE)

Differential gene expression between the current subset

of transcriptional cluster 2 and 3 samples, compared to

cluster 1 placentas, was obtained using the limma library

[27], controlling for fetal sex and gestational age. Using

the hg19 genome build within the SMITE library [30] in

R 3.3.2, a framework was constructed where each gene

was associated with a promoter region (+/− 1500 bp

from the TSS) and a gene body region (TSS + 1500 bp to

TES). The fetal sex and GA-corrected gene expression

and methylation results for clusters 2 and 3 (compared

to cluster 1) were then separately integrated into the

framework, and the adjusted and combined methylation

p values in the promoter and body gene regions were

obtained using Stouffer’s method, weighted by effect

strength. The relationship between expression and

methylation was set to “bidirectional” in both gene

regions to avoid biasing the results, and genes were

scored based on a weighted significance value (0.4 for

expression, 0.4 for promoter methylation, and 0.2 for

body methylation). Gene scores were considered signifi-

cant at a nominal p value < 0.05. Functional modules of

genes in transcriptional clusters 2 and 3 were then iden-

tified based on these gene scores, a Reactome protein-

protein interaction graph [31], and the spin-glass network

algorithm. Significant modules (nominal p < 0.05 and

10–500 genes) were subjected to KEGG pathway

enrichment analysis within the SMITE library [30]

and terms with a FDR < 0.05 were held as significant.

Results

Clinical characteristics and global methylation patterns

Within this subset of 48 cases, transcriptional cluster 1

patients (N = 19) remained the healthiest clinically, with

the latest gestational ages at delivery and the highest

rates of average-for-gestational-age (AGA) infants (95%)

(Additional file 2: Table S1 and Additional file 3: Table

S2). Of these cluster 1 patients, 32% (6/19) were associated

with a diagnosis of PE, though none had co-occurring fetal

growth restriction. Cluster 2 (N = 19) and cluster 3 (N = 5)

samples demonstrated substantially worse clinical out-

comes, with abnormal Doppler ultrasound results, early

deliveries (mean = 31 weeks), and low placental and

newborn weights (mean z-scores < − 1.4) (Additional file 2:

Table S1 and Additional file 3: Table S2). In cluster 2, 89%

(17/19) were diagnosed with PE and exhibited the highest

maternal blood pressures (average maximum systolic

pressure = 175 mmHg) and proteinuria levels (average

maximum= + 3.5). Cluster 3 (60% PE (3/5)) was more

strongly associated with poor fetal growth, with the largest

portion of small-for-gestational-age (SGA) infants (80%)

and NICU transfers after delivery (80%). Cluster 5 patients

(N = 5, 80% PE) continued to display no unique clinical

association (Additional file 2: Table S1 and Additional file 3:

Table S2). These results are consistent with our previous

observations in the full transcriptional clusters [3].

When the global relationships between these 48

patients were visualized using t-SNE of the DNA

methylation data only, transcriptional cluster 1, 2, and 3

samples continued to demonstrate molecular similarity

to each other (Fig. 1a), indicating that methylation plays

an important role in the development of these three

clusters. Cluster 5 samples, however, were found

dispersed across the methylation plot, no longer forming

a united group (Fig. 1a).

Differentially methylated positions between transcriptional

clusters

To identify potential epigenetic markers related to our

transcriptional clusters, placentas belonging to clusters

2, 3, and 5 were independently assessed for differentially

methylated positions (CpG sites) compared to the

healthier cluster 1. When fetal sex and gestational age

were not considered, this revealed a total of 66,837 positions

(53,635 hypo- and 13,202 hyper-) with significantly divergent

methylation in transcriptional cluster 2 samples compared

to cluster 1 (FDR < 0.05; Additional file 4: Table S3). When

fetal sex (p= 0.51 between clusters 1 and 2) was integrated

into the model, this number was reduced to 64,025, whereas

when gestational age (p < 0.01 between clusters 1 and 2)

alone was incorporated, only 8711 significant positions were

observed. However, when these two covariates were simul-

taneously included in the model, the number of significant

sites was 8763 (3310 hypo- and 5453 hyper-) (Table 1 and

Additional file 4: Table S3). Similar to the reference distribu-

tion across the full set of possible probes, the majority of

these (fetal sex and gestational age controlled) significant

sites were located in a gene body or an intergenic region (all

p > 0.05; Additional file 5: Figure S2a). Conversely, substan-

tially fewer significant positions were annotated to a CpG

island (12% versus 34%; p < 0.01) and considerably more to

the CpG open sea (49% versus 33%; p= 0.03) than the distri-

bution of the array as a whole (Additional file 5: Figure S2b).

Furthermore, 8% (735/8763) of these significant cluster 2

sites were found in a group of at least three significant

positions within a span of 1000 base pairs, which were,

unsurprisingly, often associated with a CpG island or shore

region (p < 0.01) (Table 1 and Additional file 4: Table S3).

In cluster 3 placentas, 13,348 positions were differentially

methylated (9084 hypo- and 4264 hyper-) compared to

cluster 1 (FDR < 0.05) without accounting for fetal sex and

GA (Additional file 6: Table S4). The inclusion of fetal sex

(p = 0.12 between clusters 1 and 3) dropped this number to

4343, while accounting for gestational age (p = 0.02

between clusters 1 and 3) only in the model reduced the

significant positions to 1749. When differences in both

these variables were considered, the number of significantly
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altered sites in transcriptional cluster 3 further

decreased to 340 (164 hypo- and 176 hyper-) (Table 2

and Additional file 6: Table S4). The dispersion of these

probes was very similar to the results observed in

cluster 2: within the gene-based regions, the (fetal sex

and GA corrected) significant sites were randomly

distributed (all p > 0.05; Additional file 7: Figure S3a);

however, the number of probes annotated to CpG islands

was lower than random (14% versus 34%; p < 0.01) and

those located in the CpG open sea was higher (51% versus

33%; p = 0.01) (Additional file 7: Figure S3b). Additionally,

5% (16/340) of these cluster 3 sites were involved in a

group of significant positions that were again more likely

to be associated with a CpG island region (p < 0.01)

(Table 2 and Additional file 6: Table S4).

Compared to transcriptional cluster 1, only four CpG

sites were initially identified as differentially methylated

in cluster 5 placentas (one hypo- and three hyper-)

(FDR < 0.05; Additional file 8: Table S5), and this

number became zero when fetal sex and gestational age

were included. This indicates that the gene expression

changes that define this cluster are not associated with

consistent DNA methylation differences. As such,

cluster 5 samples were not investigated further for

epigenetic regulation.

Specific functional epigenetic modifications

In order to identify individual epigenetic changes involved

in the transcriptional formation of clusters 2 and 3,

significantly differentially methylated sites in these sam-

ples compared to cluster 1 were assessed for correlating

changes in placental gene expression. Of the 66,837

identified significant positions in transcriptional cluster 2

(before correction for fetal sex and GA), correlative analysis

with the expression of all available associated genes revealed

only 5% with a strong linear relationship (FDR < 0.05;

Additional file 9: Table S6). When restricted to the 8763

sites that maintained a significant difference between

clusters 1 and 2 after correction for both fetal sex and GA,

9% of potential DNA methylation values exhibited a signifi-

cant linear relationship with gene expression (FDR < 0.05;

Table 3 and Additional file 9: Table S6). Positively correlat-

ing positions were more frequently found in a CpG island

within a gene body (p < 0.01) or in the CpG open sea in a

gene body (p < 0.01) or intergenic region (p = 0.01) (Fig. 2a).

Sites with a negative relationship to gene expression were

Table 1 Top 20 significantly differentially methylated sites in transcriptional cluster 2 placentas (N = 19) compared to transcriptional

cluster 1 placentas (N = 19), corrected for fetal sex and gestational age at delivery

Probe Delta M Average M Delta β Average β FDR q value Gene(s) Location(s)a Enhancer Groupb

cg10900537 0.41 2.75 0.03 0.87 9.93E-04 FOXN3 Body-open sea True No

cg18498598 0.35 1.80 0.03 0.78 2.15E-03 CUX1 Body-open sea False No

cg11235787 0.36 1.72 0.04 0.77 2.15E-03 MIR195 Body-shelf False Yes

cg17850498c − 0.93 1.58 − 0.14 0.74 2.15E-03 ECE1 Body-open sea True No

cg01938025 0.62 2.62 0.05 0.86 2.15E-03 SKI Body-shelf False No

cg22807822 0.61 3.49 0.03 0.92 2.15E-03 KANK2 Body-shore False Yes

cg14601621 0.54 1.79 0.08 0.77 2.15E-03 C9orf3 3′UTR-island False Yes

cg00483891 − 0.55 1.90 − 0.06 0.79 2.15E-03 CCDC115 Body-shore False No

cg10994126 − 0.63 − 0.23 − 0.13 0.46 2.92E-03 PAPPA2 1stExon-open sea False No

cg17107691 0.76 3.14 0.05 0.89 2.92E-03 KANK2 Body-shore False Yes

cg01412654 −0.56 −0.38 −0.11 0.44 2.92E-03 PPARG TSS1500-shore False No

cg05359207 −0.52 −2.62 − 0.05 0.14 2.92E-03 ZNF217 Body-shore False No

cg06917772 −0.35 −1.33 − 0.06 0.29 2.92E-03 MIR3167 IGR-shore True No

cg24787238 0.34 1.29 0.04 0.71 2.92E-03 MAD1L1 Body-open sea True No

cg21564965 0.53 4.73 0.01 0.96 2.92E-03 ARHGAP23 Body-open sea False No

cg13562353 −0.53 1.40 −0.09 0.72 2.92E-03 CCL27 TSS200-shelf False No

cg26897909 0.45 1.85 0.04 0.78 2.92E-03 SRGAP2 Body-open sea True No

cg09106999 −0.44 −2.01 −0.05 0.20 2.92E-03 CDK2
SILV
PMEL

TSS1500-shore
TSS1500-shore
TSS1500-shore

False No

cg02006426 −0.39 −0.23 −0.05 0.46 2.92E-03 DYSF IGR-shore False No

cg19431235 0.36 1.79 0.04 0.78 2.92E-03 DIAPH3 Body-open sea True No

aTSS transcription start site, IGR intergenic region, UTR untranslated region
bIncluded in a group of at least three significantly differentially methylated positions within the span of 1000 base pairs
cAlso significantly differentially methylated in cluster 3 compared to cluster 1

Leavey et al. Clinical Epigenetics  (2018) 10:28 Page 5 of 13



commonly annotated to a CpG shelf region in a 5′UTR

(p = 0.02) or a CpG shore region in a 5′UTR (p < 0.01),

TSS1500 (p = 0.05), or TSS200 (p = 0.01) (Fig. 2a). Most

significantly correlating positions within the CpG open

sea of a gene body or intergenic region were also

associated with an enhancer region (72%; p < 0.01

compared to the other CpG/gene regions).

In transcriptional cluster 3, the 13,348 significant sites

compared to cluster 1 (before correction for fetal sex and

GA) showed a strong linear relationship to gene expression

only 2% of the time (Additional file 10: Table S7). This

value increased to 8% when the analysis was restricted to

the 340 positions that were significantly differentially

methylated between clusters 1 and 3 when simultaneously

controlling for fetal sex and GA (Table 4). Only three sites

demonstrated a strong positive relationship with expression:

one was in the CpG open sea of AFF3’s 1st exon (p = 0.01),

which was not annotated as an enhancer region, and the

other two were in the CpG open sea of the MGST1 gene

body (p = 0.11) in an enhancer (Fig. 2b). Negatively

correlating positions were more frequently associated with

an open sea region in a TSS200 (p = 0.02), although several

were also in gene bodies or the IGR (Fig. 2b).

Integrated functional gene modules

Lastly, in order to reveal significant functional modules of

genes within clusters 2 and 3, their differential gene

expression and differential gene promoter and body

methylation information, compared to cluster 1 and

corrected for fetal sex and GA, were subjected to Signifi-

cance-based Modules Integrating the Transcriptome and

Epigenome (SMITE) analysis [30]. Transcriptional cluster 2

contained 9 significant integrated gene modules (p < 0.05),

consisting of 18–149 genes each (Fig. 3a and Add-

itional file 11: Figure S4). Modules in this cluster with

unique genes (1, 4, and 6) were associated with TGF-

beta signaling, cell adhesion, endocytosis, leukocyte

transendothelial migration, and carbohydrate metabolism

(Additional file 12: Table S8). Module 3 genes were

contained within module 2, and these were involved in

focal adhesion and regulation of the actin cytoskeleton.

Modules 5 and 9 were associated with lipid metabolism,

while modules 7 and 8 were linked to oxidative phosphoryl-

ation and the citrate cycle. The significantly deregulated

genes in cluster 2, based on the integrated epigenetic and

transcriptional scores, and their module inclusions, are

shown in Additional file 13: Table S9.

Table 2 Top 20 significantly differentially methylated sites in transcriptional cluster 3 placentas (N = 5) compared to transcriptional

cluster 1 placentas (N = 19), corrected for fetal sex and gestational age at delivery

Probe Delta M Average M Delta β Average β FDR q value Gene(s) Location(s)a Enhancer Groupb

cg22131172 0.79 −3.59 0.04 0.08 1.58E-02 C13orf29
LINC00346

TSS1500-open sea
TSS1500-open sea

False Yes

cg24079702 0.50 −5.87 0.01 0.02 1.94E-02 FHL2 TSS200-island False No

cg10959820 0.75 −3.98 0.03 0.06 1.94E-02 RGS12 IGR-shelf True No

cg10319331 0.63 −3.84 0.02 0.07 1.94E-02 TMEM132B Body-open sea False No

cg05929019 −0.80 −2.79 −0.05 0.13 1.94E-02 LAMC2 TSS200-open sea False No

cg22790835 0.60 −2.93 0.04 0.12 1.94E-02 C13orf29
LINC00346

TSS1500-open sea
TSS1500-open sea

False Yes

cg14557185 0.78 −5.55 0.01 0.02 1.94E-02 WWTR1 Body-island False Yes

cg00296578 0.74 −3.60 0.04 0.08 1.94E-02 CRIM1 Body-open sea True No

cg21834463 −0.47 3.31 −0.03 0.91 1.94E-02 SGK1 Body-open sea True No

cg12634306 1.44 −4.70 0.05 0.04 1.94E-02 HEYL Body-open sea True No

cg22342100 0.83 −4.06 0.03 0.06 1.94E-02 KLHL38 TSS1500-open sea False No

cg27570256 −0.67 1.50 −0.10 0.74 1.94E-02 LOC100270710 TSS200-shelf True No

cg24741430 0.66 −3.09 0.05 0.11 1.94E-02 SMAD6 IGR-open sea True No

cg04082512 −0.43 0.77 −0.07 0.63 1.94E-02 GSE1 IGR-open sea True No

cg19458020 0.89 −4.52 0.03 0.04 2.14E-02 RARA TSS1500-island True No

cg25892587 0.67 −3.41 0.04 0.09 2.14E-02 KLF6 IGR-open sea True No

cg07605236c −1.22 2.60 −0.11 0.85 2.14E-02 SFXN5 TSS1500-shore False No

cg19478410 −0.61 2.34 −0.07 0.83 2.16E-02 SYT13 IGR-open sea False No

cg13250752 0.57 −1.98 0.06 0.20 2.16E-02 PCDH18 IGR-open sea True No

cg20669292 −1.03 3.93 −0.05 0.94 2.16E-02 PLEKHH3 Body-island True No

aTSS transcription start site, IGR intergenic region
bIncluded in a group of at least three significantly differentially methylated positions within the span of 1000 base pairs
cAlso significantly differentially methylated in cluster 2 compared to cluster 1
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In contrast, cluster 3 consisted of 11 significant gene

modules (p < 0.05), made up of 24–293 genes each

(Fig. 3b and Additional file 14: Figure S5). Modules 1, 4,

5, 6, and 7 displayed varying degrees of gene overlap and

were all involved in TGF-beta signaling, focal adhesion,

and glycosaminoglycan biosynthesis (Additional file 12:

Table S8). Modules 2 and 3 were linked to antigen

processing/presentation and allograft rejection, while

modules 8 and 9, with ~ 74% gene overlap, were associated

with cytokine-cytokine receptor interaction and Jak-STAT

signaling. Modules in this cluster with unique genes (10

and 11) were involved in purine, amino acid, and biotin

metabolism. The significantly deregulated genes in

transcriptional cluster 3, based on both gene expression

and methylation, and their module inclusions, are also

shown in Additional file 13: Table S9.

Discussion

Our previous work unbiasedly investigating the placental

heterogeneity observed in preeclampsia [3] revealed five

transcriptional clusters, including four subtypes of PE

placentas. However, while gene expression microarrays

are an invaluable tool for understanding disease, it is

also possible that, in some cases, an alternate level of

molecular information is highly involved in the

development of the pathology. Combined epigenetic and

expression analysis of the same preeclamptic placentas

has only ever been performed for a small number of

samples [32, 33] or genes [34]. We, therefore, predicted

that the integration of matched genome-wide DNA

methylation data would further improve our understanding

of these placentas, and allow us to investigate both the

mechanisms underlying the formation of the transcrip-

tional clusters and the associations between the multi-

molecular data.

Overall, we found that the relationships between the

transcriptional cluster 1–3 samples were still visible within

the DNA methylation information, indicating a significant

global relationship between the two data types in these

samples. Cluster 5 placentas, on the other hand, no longer

formed a distinct group by methylation. This is unsurprising

given that this data type is known to be fairly robust to copy

number abnormalities [35], the driving force behind the

molecular formation of this cluster.

Within transcriptional clusters 2 and 3, controlling for

fetal sex and gestational age in the identification of differen-

tially methylated sites, compared to the healthier cluster 1,

dramatically reduced the number of significant sites (66,837

to 8763 in cluster 2; 13,348 to 340 in cluster 3). However, it

predominately corrected the observed imbalance in the

Table 3 Top 20 significant gene expression correlations associated with the 8763 significantly differentially methylated sites in

transcriptional cluster 2 placentas (N = 19) compared to transcriptional cluster 1 placentas (N = 19), corrected for fetal sex and

gestational age at delivery

Probe Gene Locationa Enhancer Pearson r FDR q value

cg23677911 GALNT2 Body-open sea True − 0.81 3.53E-06

cg26333638 HEXB Body-shore False − 0.81 3.53E-06

cg04858987 SH3BP5 Body-open sea True − 0.78 1.34E-05

cg13553455 COL17A1 TSS1500-open sea False − 0.78 1.34E-05

cg16557964 TMEM45A 5′UTR-open sea True − 0.77 1.68E-05

cg19140548 SH3PXD2A Body-open sea True − 0.77 2.50E-05

cg15700009 LDHA TSS1500-shore False − 0.76 2.70E-05

cg23730027 FLNB Body-island False − 0.76 2.93E-05

cg18444702 SH3BP5 Body-open sea True − 0.75 4.27E-05

cg17338821 FLNB Body-shore True − 0.75 5.14E-05

cg25549791 GALE TSS200-shore False − 0.74 5.49E-05

cg14019050 ABCA1 TSS1500-island False − 0.74 5.49E-05

cg19512693 FLT1 Body-open sea True 0.74 6.15E-05

cg04704064 SCARB1 IGR-island False 0.74 6.29E-05

cg00411097 TMEM184A 1stExon-open sea True − 0.73 7.24E-05

cg11079619 INHBA 5′UTR-shelf False − 0.73 7.32E-05

cg00513984 SCARB1 IGR-island False 0.73 7.32E-05

cg26509870 PHYHIP IGR-shelf False − 0.73 8.19E-05

cg06531595 PDE5A Body-open sea True − 0.72 9.89E-05

cg18874575 ZNF559 3′UTR-open sea False 0.72 9.89E-05

aTSS transcription start site, IGR intergenic region, UTR untranslated region
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direction of change (80% hypomethylated to 38% hypo-

methylated in cluster 2; 68% hypomethylated to 48% hypo-

methylated in cluster 3). Since both clusters 2 and 3 are

significantly younger than cluster 1 (p < 0.01 and p = 0.02,

respectively), this fits with the knowledge that placentas

become progressively more methylated with time [36],

while in cluster 3, a moderate bias in fetal sex (p = 0.12)

may have also been involved. Additionally, controlling for

fetal sex and GA substantially increased the proportion of

significant sites that showed a strong linear relationship

with gene expression (5% to 9% in cluster 2; 2% to

8% in cluster 3), thereby confirming that a large num-

ber of sites in the genome undergo DNA methylation

changes in response to differences in these two

factors that are independent of epigenetic regulation

and gene expression [9, 36, 37].

An additional result of interest was the CpG distribution

of significant positions found in transcriptional clusters 2

and 3. CpG islands are most commonly associated with

the regulation of gene expression, especially when located

in the gene’s promoter region [8, 38]. We discovered that

substantially fewer of the significant sites were mapped

into CpG islands than anticipated, based on the reference

distribution of all potential CpG sites, although those that

were annotated to islands were, unsurprisingly, often

found in close proximity to each other. Instead, the majority

of significant positions were associated with CpG open sea

enhancer regions. This is consistent with a previous report

of enrichment of altered DNA methylation at enhancers

and low CpG density regions in early-onset preeclamptic

placentas [33]. These open sea enhancer regions, when

significantly associated with gene expression, were generally

Fig. 2 Distribution of the significantly differentially methylated positions in transcriptional cluster 2 and 3 placentas, compared to cluster 1, in terms of their

linear relationships to gene expression. a Within the 8763 (fetal sex and gestational age corrected) significant sites identified in transcriptional cluster 2,

positively correlating positions were more frequently found in a CpG island within a gene body or in the CpG open sea in a gene body or intergenic

region (IGR). Significant methylation sites with a negative relationship to gene expression were commonly annotated to a CpG shelf region in a 5′

untranslated region (UTR) or a CpG shore region in a 5′UTR, transcription start site (TSS)1500, or TSS200. b Within the 340 cluster 3 (fetal sex and gestational

age corrected) significant sites, only three demonstrated a strong positive relationship with expression: one was in the CpG open sea of AFF3′s 1st exon

and the other two were in the CpG open sea of the MGST1 gene body. Negatively correlating positions were more frequently annotated to an open sea

region in a TSS200, although several were also in gene bodies or the IGR. Non-significant correlations are shown in light gray, positive correlations are in

medium gray, and negative correlations are in dark gray. Nominal p values were obtained from Fisher’s exact tests. P values > 0.05 are not shown
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Table 4 All significant gene expression correlations associated with the 340 significantly differentially methylated sites in transcriptional

cluster 3 placentas (N = 5) compared to transcriptional cluster 1 placentas (N = 19), corrected for fetal sex and gestational age at delivery

Probe Gene Locationa Enhancer Pearson r FDR q value

cg03983223 WIPF1 1stExon-open sea FALSE − 0.74 4.45E-03

cg05544807 DNMT3A Body-island FALSE − 0.73 4.45E-03

cg22462240 LGALS3BP IGR-open sea FALSE − 0.74 4.45E-03

cg18275589 DAB2 IGR-shelf FALSE − 0.72 5.02E-03

cg09258479 PDZK1IP1 TSS200-open sea FALSE − 0.69 7.40E-03

cg07593977 CTSB IGR-open sea TRUE − 0.69 7.40E-03

cg24506086 TEAD1 Body-open sea TRUE − 0.66 1.40E-02

cg17850498 ECE1 Body-open sea TRUE − 0.65 1.65E-02

cg07349094 AFF3 1stExon-open sea FALSE 0.64 1.65E-02

cg03821121 MICAL2 5′UTR-open sea TRUE − 0.65 1.65E-02

cg04885072 MGST1 Body-open sea TRUE 0.63 1.94E-02

cg00874480 MGST1 Body-open sea TRUE 0.62 2.45E-02

cg11535839 FOSL2 IGR-open sea FALSE − 0.61 2.59E-02

cg05305434 LSP1 TSS200-open sea FALSE − 0.61 2.72E-02

cg23170988 SNCG Body-open sea FALSE − 0.60 3.17E-02

cg05929019 LAMC2 TSS200-open sea FALSE − 0.59 3.75E-02

cg15300730 ZFP36L2 TSS1500-shore FALSE − 0.58 3.75E-02

cg22234930 PKM 5′UTR-shelf FALSE − 0.58 3.83E-02

aTSS transcription start site, IGR intergenic region, UTR untranslated region

Fig. 3 Example SMITE modules. a Cluster 2 module 6 (N= 28 genes; p= 0.02) built around SLC2A1 and HK1 genes and involved in carbohydrate metabolism.

b Cluster 3 module 11 (N= 25 genes; p= 0.04) built around MCCC1 and ACACA genes and involved in amino acid and biotin metabolism. Expression is

displayed on the top left edge of each gene circle (upregulated: dark pink; downregulated: light pink; gray: not significant; white: no data), and combined

promoter and body methylation are displayed on the bottom left and top right of each circle, respectively (hypermethylated: dark blue; hypomethylated:

light blue; gray: not significant; white: no data), compared to cluster 1. The symbol text sizes and center node colors are based on the total gene score (low

(gray) to high (red)) and the edge colors are representative of the strength of the associations between the genes (low (gray) to high (red)). The remaining

modules are shown in Additional file 11: Figure S4 and Additional file 14: Figure S5
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located in the gene body and exhibited a positive relation-

ship. Sites with a strong negative correlation, on the other

hand, were frequently located in the promoter region

(TSS200, TSS1500, 5′UTR), as expected, but were

annotated to CpG shore regions, not islands. Relationships

between CpG shores and gene expression are thought

to be in response to the binding of transcription factors

and changes in the chromatin structure around the

promoter [39, 40].

While the observed proportions of differentially

methylated sites that were associated with corresponding

changes in gene expression (2–9%) are in line with prior

studies [9, 32, 41, 42], this indicates that a large number

of significant sites in clusters 2 and 3, compared to

cluster 1, show no meaningful relationship to gene

expression. Some of these DNA methylation alterations

could be the consequence of changes in gene expression

or function [29, 43, 44], or an adaptive response to

maintain stable or rebalanced expression. They could

further be remnants of an earlier developmental process,

or the result of environmental exposures or treatments,

where the transcriptional evidence is no longer measur-

able [36]. Furthermore, methylation is involved in a range

of functions outside of direct transcriptional regulation,

such as genome stability [45], splicing [8, 46], and cellular

development [47], while gene expression can be regulated

by a number of other factors, such as microRNAs [48, 49],

transcription factors [43, 50], and/or histone modifications

[51, 52]. Therefore, it is expected that these two data types

would not fully agree at the individual gene level, although

altered methylation sites not associated with changes in

gene expression could still provide important information

about the overall status and gestational history of these

pathological placentas.

When the transcriptome and epigenome data was

utilized simultaneously in an integrated analysis, this

revealed modifications in TGF-beta signaling, cell

adhesion and migration, oxidative phosphorylation, and

carbohydrate and lipid metabolism pathways in cluster 2

placentas, confirming that a significant global relationship

exists between the two data types. Placental dysfunction

encompassing dysregulation of these pathways has been

extensively described in the classical paradigm of PE

pathophysiology and fits with our characterization of clus-

ter 2 patients as demonstrating a “canonical” early-onset

form of PE [3, 53–59]. Additionally, a number of the top

significant methylation and gene expression correlations

in this cluster (cg23730027 and FLNB, cg13553455 and

COL17A1, cg11079619 and INHBA, cg19140548 and

SH3PXD2A, and cg26509870 and PHYHIP) have been

previously described in a smaller sample set of early-onset

PE placentas [33], thus validating these relationships. We

also identified several methylation probes in the gene body

of FLT1, one of the most frequently investigated markers

of PE, with a strong positive correlation to expression, as

well as one associated site in the IGR with a strong

negative correlation. These methylation differences could

be involved in or attempting to compensate for the

pathologically elevated expression of this gene [2, 3], and

are significant findings missed by prior studies that have

focused only on FLT1 promoter methylation in early-

onset PE [34].

In cluster 3 samples, integrated alterations were identified

involving antigen presentation, allograft rejection, cytokine-

cytokine receptor interaction, Jak-STAT and TGF-beta

signaling, glycosaminoglycan biosynthesis, and metabolism.

These are also in line with our prior transcriptional results

in this “immunological” PE group [3], in which we charac-

terized this cluster of patients as demonstrating evidence of

maternal anti-fetal/placental rejection. While not as widely

discussed in the literature, the primary involvement of

heightened immune activation has been described in

several previous studies of PE pathophysiology, along with

these other metabolic pathways [60–66]. Interestingly, one

of the most significant methylation and expression relation-

ships observed in this cluster involved DNMT3A (one of

the DNA methyltransferase enzymes responsible for de

novo methylation): a CpG island site (cg05544807) was

hypermethylated in the DNMT3A gene body, compared to

cluster 1, and demonstrated a negative relationship to

expression. While this likely has global implications for the

DNA methylation pattern observed in these cluster 3

placentas, decreased expression of DNMT3A has been

specifically implicated in immunological-associated disor-

ders [67, 68] and abnormal placentation in preeclampsia

[69]. Therefore, this CpG site may serve as a potential

target for the epigenetic modulation of pathological gene

expression in this PE subtype.

Our study also has some inherent limitations. In our

previous gene expression analysis, we utilized a large

cohort of over 300 placentas to identify clusters and dys-

regulated pathways between them. Despite our current

study being the largest to integrate methylation and

transcriptional information in PE, this analysis involved

only 48 placentas. Therefore, it is likely to still be under-

powered, thus restricting our discovery of epigenetic

changes in these samples to those with large effect sizes.

As such, a future direction will be the validation of these

findings, and perhaps the identification of new significant

sites, in a larger cohort of samples. Additionally, as with

all investigations of delivered placentas, it is impossible to

determine whether the observed molecular modifications

are part of the cause or the consequence of the disease

process. Finally, our analysis is based on the assumption

that the cell composition is the same across all samples.

This is probably not the case, as differences in cell ratios

can occur for a range of reasons [4, 42, 70–72], including

placental maturation or sampling variability. Therefore,
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some of the epigenetic changes that we are interpreting as

being reflective of gene regulation in all cells may instead

be due to shifts in cell numbers [29]. However, unfortu-

nately, until individual methylation patterns for all

possible placental cell types have been established, this

limitation cannot be resolved. This investigation is

currently ongoing in our groups.

Conclusions

Overall, we have improved our understanding of the

portion of the divergent gene expression involved in the

development of transcriptional clusters 2 and 3 that is

associated with changes in DNA methylation, as well as

confirmed the lack of true biological cohesion in cluster 5

placentas. Differentially methylated sites in clusters 2 and

3, compared to the healthier cluster 1, may have potential

as biomarkers of these patient groups for early screening

in maternal serum, whereas specific genes and sets of

genes exhibiting a strong epigenetic and transcriptional

relationship (either linear or integrated) may serve as

therapeutic targets to modify or prevent pathological

changes in PE placental groups. However, a further

increase in sample size and an assessment of additional

modes of gene regulation will be required to fully compre-

hend the mechanisms underlying these subtypes.
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