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Epigenetic signatures in antidepressant treatment response:
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Although the currently available antidepressants are well established in the treatment of the major depressive disorder (MDD),
there is strong variability in the response of individual patients. Reliable predictors to guide treatment decisions before or in an
early stage of treatment are needed. DNA-methylation has been proven a useful biomarker in different clinical conditions, but its
importance for mechanisms of antidepressant response has not yet been determined. 80 MDD patients were selected out of >500
participants from the Early Medication Change (EMC) cohort with available genetic material based on their antidepressant response
after four weeks and stratified into clear responders and age- and sex-matched non-responders (N= 40, each). Early improvement
after two weeks was analyzed as a secondary outcome. DNA-methylation was determined using the Illumina EPIC BeadChip.
Epigenome-wide association studies were performed and differentially methylated regions (DMRs) identified using the comb-p
algorithm. Enrichment was tested for hallmark gene-sets and in genome-wide association studies of depression and antidepressant
response. No epigenome-wide significant differentially methylated positions were found for treatment response or early
improvement. Twenty DMRs were associated with response; the strongest in an enhancer region in SORBS2, which has been related
to cardiovascular diseases and type II diabetes. Another DMR was located in CYP2C18, a gene previously linked to antidepressant
response. Results pointed towards differential methylation in genes associated with cardiac function, neuroticism, and depression.
Linking differential methylation to antidepressant treatment response is an emerging topic and represents a step towards
personalized medicine, potentially facilitating the prediction of patients’ response before treatment.
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INTRODUCTION
Major depressive disorder (MDD) is one of the most common,
burdensome, and costly mental disorders worldwide [1, 2].
Although currently available pharmacological treatments of
MDD are well established and safe, there is a strong variability
in antidepressant treatment response and considerable number
of depressed patients do not respond to the first antidepressant
administered, requiring optimization of antidepressant phar-
macotherapy [3–5]. Due to the unpredictable treatment out-
come, there is a vital need to identify reliable predictors of
antidepressant response to guide treatment decisions. In
clinical studies, early improvement, defined as a decrease in
depressive symptomatology after two weeks, is considered the
most consistent clinical predictor of antidepressant response
[6]. However, research has not identified any clinical and
biological predictor of sufficient clinical utility to inform the

selection of a specific antidepressant agent for an individual
depressed patient to date [7, 8].
MDD is moderately heritable, with heritability estimates from

twin studies ranging between 30 and 40% [9]. In a recent genome-
wide association study (GWAS), which investigate the association
of common genetic variants with depression, 102 independent
genome-wide significant variants contributing to disorder risk
were identified, and the phenotypic variance explained by all
investigated SNPs (i.e., SNP-heritability) was estimated to be 8.9%
[10]. During the last few decades, scientific knowledge about the
genetic background of depression has increased steadily and
pharmacogenetic approaches have broadly been investigated to
identify genetic variation contributing to individual treatment
response in order to improve response prediction. A recent GWAS
of antidepressant treatment response in 5151 depressed patients
did not yield any genome-wide significant finding, but showed
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that genetic variation explained around 13% of variance in the
total meta-analysis and 20–40% of variance within each cohort
[11]. It has to be noted that the included samples showed high
heterogeneity, and because of the relatively small sample size
compared to other GWAS in psychiatric genetics, analyses were
not stratified for diagnosis, drug, or drug dosage.
In addition to genetic variation, epigenetic alterations,

specifically DNA-methylation, i.e., the addition of a methyl-
group to a cytosine nucleobase at the 5′ position in CpG
dinucleotides, can influence gene expression and may induce a
wide range of potentially long-lasting changes at the cellular
and systems function level [12, 13]. The investigation of
epigenetic variation represents a promising approach to
investigate the biological mechanisms underlying depression
as well as the response to antidepressant treatments. Previous
epigenetic investigation of antidepressant treatment response
focused mainly on well-described candidate genes like BDNF,
NR3C1, and FKBP5 (reviews: [14–16]), but results are incon-
clusive. Epigenome-wide association studies (EWAS) represent a
promising approach to identify new biological mechanisms
underlying individual differences in the context of antidepres-
sant response. Specific methylation patterns might both be
indicative of general treatment resistance, as well as of the
propensity to respond to a specific medication. By that,
identified methylation signatures might guide clinical decisions
in the future. Recent EWAS have investigated the association of
DNA-methylation with depression [17–20], as well as with
antidepressant use [21]. Only one of the mentioned studies [20]
yielded epigenome-wide significant results, although the two
identified CpG-sites were not annotated to nearby genes, which
makes functional interpretation difficult. Results from EWAS
can, similar to those from GWAS, be summarized in methylation
risk scores (MRS) and a recent study has shown that a MRS for
depression was able to explain ~2% of variance in depression
and provided additional prediction to polygenic risk scores [22].
So far, only two studies have investigated genome-wide

differences in baseline DNA methylation between responders
and non-responders to pharmacological antidepressant treat-
ment. Ju and colleagues revealed several CpG-sites differentially
methylated between responders (N= 82) and non-responders
(N= 95) to eight weeks of escitalopram treatment, which were
also associated with gene expression differences between both
groups [23]. The study highlighted a differential methylated
position (DMP) located in the CHN2 gene, which was most
significantly associated with mRNA expression and was replicable
in an external cohort with a similar treatment [23]. The second
study by Martinez-Pinteno et al. [24] identified 21 differentially
methylated DMPs between responders and non-responders
(N= 11, each) to eight weeks of fluoxetine treatment in a cohort
of depressed children and adolescents. The Ras Homolog Family
Member J (RHOJ) gene, encoding signaling molecules in the
regulation of cytoskeletal organization, showed four significantly
hypermethylated CpG-sites in non-responders [24]. These findings
highlight studying baseline methylation differences as a predictor
of antidepressant response as a promising approach to investigate
interindividual differences in antidepressant response. Further
investigations of DNA methylation signatures between later
responders and non-responders are needed to extend and solidify
the gained knowledge. Perspectively, studies identifying epige-
netic markers associated with therapy response, might help to
understand the underlying mechanisms and indicate new targets
to modulate therapy response, or serve as a marker to predict
response in a precision medicine way.
The primary aim of this study was to identify epigenetic

signatures associated with antidepressant treatment response, by
testing baseline differential methylation between responders and
non-responders after four weeks of antidepressant treatment.
Patients were enrolled from a large well-characterized

antidepressant trial, allowing us to carefully select clear respon-
ders and sex- and age-matched non-responders. As a secondary
aim, we explored the DNA-methylation signatures of early
improvement in the same sample.

PATIENTS AND METHODS
Sample
This investigation is a secondary analysis of 80 MDD patients, who have
participated in the “Randomized clinical trial comparing an early medication
change (EMC) strategy with treatment as usual (TAU) in patients with MDD
—the EMC trial” (ClinicalTrials.gov NCT00974155). A total of 889 depressed
patients were enrolled between 2009 and 2014 in this trial. Genetic material
at baseline was available for 560 patients, of which the 40 most clear
responders and sex- and aged-matched non-responders were selected. The
selection was based on their treatment response, measured with the
Hamilton Rating Scale for Depression – 17 items (HAMD17) to antidepres-
sant study medication after four weeks. In addition, the course of
depression severity was considered in weekly intervals from baseline to
week 4. The non-responders showed no improvement in depressive
symptomatology despite four weeks of antidepressant treatment; in the
group of responders, depressive symptomatology decreased steadily and
patients showed a complete remission after four weeks (see also Study
Procedures). Details of the EMC study protocol have been described
previously [25–27] and the treatment algorithm can be openly accessed by
https://trialsjournal.biomedcentral.com/articles/10.1186/1745-6215-11-21.
In summary, the EMC trial was a multi-center, randomized, controlled
clinical trial investigating whether patients with non-improvement after
14 days of escitalopram treatment take advantage to an early medication
change (EMC: change to venlafaxine from day 14 onwards followed by an
augmentation with lithium after again non-response at day 28) compared
to patients treated according to current guideline recommendations (TAU:
continuing escitalopram for two more weeks and switching to venlafaxine
at day 28). All participants gave their written informed consent to
participate in the study after a complete and extensive description. Study
procedures were approved by the local ethics committee of the
Landesärztekammer Rheinland-Pfalz and are compliant with the Code of
Ethics of the World Medical Association (Declaration of Helsinki) in its
current version.

Study procedures
Diagnoses were based on the German Version of the Mini International
Neuropsychiatric Interview (M.I.N.I. [28]) and the Structured Clinical
Interview for DSM-IV Axis II Personality Disorders (SCID-II [29]). The
socio-demographic and clinical characteristics, such as previously
diagnosed cardiovascular or metabolic diseases and smoking, were
assessed relying on patients’ self-reports. Depression severity was
measured weekly from baseline to day 56 by the HAMD [30] by trained
and blind raters [31]. Morning blood samples were obtained weekly
before the first medication intake in fasting patients. Antidepressant
premedication was—if necessary—washed out after inclusion and before
baseline visit. Therefore, no antidepressant medication was used by the
participants, when blood was drawn for the present DNA methylation
analysis. The antidepressant treatment according to study protocol was
20 mg escitalopram from baseline to day 14, followed by a predefined
treatment algorithm. Other medications were administered to treat
depression-associated symptoms (e.g., insomnia) or adverse drug reac-
tions (e.g., agitation or anxiety) with short-acting hypnotics (zolpidem or
zopiclone), low potency antipsychotic drug pipamperone, histamine-
receptor antagonist promethazine in standard doses as well as
benzodiazepines in a dose-equivalent up to 15 mg diazepam per day
was allowed. The main outcome parameters were: a) response, defined as
decrease of 50% during four weeks of treatment, and b) early
improvement, defined as a decrease of depression severity of at least
20% from baseline to day 14 [6].

DNA-methylation
DNA was extracted from whole blood, collected at baseline and before the
first intake of the antidepressant study medication, using the QIAamp DNA
Blood Midi Kit from Qiagen (Qiagen, Hilden, Germany). The genomic DNA
samples were stored at −20 °C. Responders and non-responders were
matched based on age and gender and the DNA from the matched
samples were randomized and pipetted on processing plates. 500 ng
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genomic DNA were bisulfite converted using the EZ-96 DNA methylation
gold kit (Zymo research, Irvine, USA). Epigenome-wide methylation levels
were determined using the Illumina HumanMethylationEPIC Beadchip and
Illumina HiScan array scanning systems (Illumina, San Diego, CA).

Data preprocessing and quality control
The R statistical environment, version 3.6.1, was used for all data
preprocessing and analysis steps. We used an updated version of the
CPACOR-pipeline to extract methylation data from raw intensity data and
performed quality control [32]. Thresholds for sample removal were: (i)
DNA quality was not sufficient (missing rate > 0.10) or (ii) a discrepancy
between methylation-based and phenotypic sex emerged. Thresholds for
probe removal were: (i) the call-rate was insufficient (<0.95), (ii) SNPs with a
minor allele frequency >0.10 were located in the probe sequence, (iii) the
probes were located on the X or Y chromosome. After quality control all
80 samples remained. After filtering, 706,677 out of 843,232 sites were
available for analysis.

Statistical analysis
Differences in clinical and sociodemographic characteristics between
responders and non-responders were calculated by t-tests for independent
variables or Chi2-tests, depending on the level of measurement.
Methylation values were log-transformed (base2) and included as

dependent variables in the association analyses [33]. Principal component
analysis was performed to extract signals of the internal control probes of
the EPIC array and the resulting first ten principal components were
included in all analyses to control for batch effects and technical quality.
Additionally, the chip number and position on the chip were included. Cell-
type heterogeneity was accounted for by estimating the cell counts based
on the methylation data [34]. This approach results in six estimates, which
roughly sum up to one. To avoid multicollinearity in the EWAS, variance
inflation factors were calculated for each cell count estimate. The
estimated granulocyte count was subsequently removed from further
analyses. For two participants, data on smoking was not available, and
their smoking status was therefore estimated based on a validated set of
nine CpG-sites [35]. Probability of smoking was calculated using the predict
function in R with the nine CpG sites from Maas and colleagues [35], as
well as sex and age as covariates. Participants with a probability above 50%
were classified as smokers and those with a probability below 50% as non-
smokers.

Epigenome-wide association analysis. Tests of single site methylation
differences between responders and non-responders were performed with
linear models, adjusting for sex, age, smoking, standardized cell counts, and
the first ten principal components of the internal control probes. Additionally,
all analyses were run with early improvement after two weeks as a secondary
outcome. Correction for multiple testing was applied using the
Benjamini–Hochberg (FDR) correction and the resulting values are reported
as q-values. CpG-sites were annotated using the manufacturer’s manifest
(http://webdata.illumina.com.s3-website-us-east-1.amazonaws.com/

downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b4-
manifest-file-csv.zip; downloaded on 10th of August 2018).

Differentially methylated regions (DMRs). The comb-p algorithm was
applied to identify DMRs. Comb-p accounts for autocorrelation between
tests of adjacent methylation sites and combines these sites, in a given
window, to regions of enrichment [36]. In the present study the settings
were: Seed-p value < 0.01, minimum of 2 probes, sliding window 500 bp.
Correction for multiple testing was applied using the Šidák correction as
implemented in comb-p.

Gene-set enrichment analysis. missMethyl [37] was used for functional
analysis to test differentially methylated CpG-sites overrepresented in
Hallmark gene-sets. Sites with a threshold of pnominal < 0.001 were included
and the Hallmark gene-set collection (MSigDB Version 7.1), which consists
of 50 gene-sets representing specific well-designed biological states or
processes, was used as reference [38]. missMethyl controls for several
potential confounders, such as probe number bias, which is the increased
likelihood of a gene being differentially methylated, if more probes cover
the gene, and multi-gene bias, since probes can be annotated to more
than one gene.

GWAS-enrichment-analysis. Gene-sets consisted of the genes to which
CpG-sites with an uncorrected p-value < 0.001 in the EWAS were
annotated to. Two gene-sets were created, one for early improvement
and one for treatment response. Gene-set enrichment was tested in results
of the two recent genome-wide association studies described in the
introduction: one of antidepressant treatment response (Nremission= 1852,
Nnon-remission= 3299) [11] and one of MDD including PGC and UKB samples
(Ncases= 246,363, Ncontrols= 561,190) [10]. This test was performed using
Multi-marker Analysis of GenoMic Annotation (MAGMA) [39].

GWAS Atlas/PheWAS. We performed a Phenome-wide association study
(PheWAS) for each gene that was implicated by the DMR analysis, using
the GWAS Atlas tool (https://atlas.ctglab.nl/PheWAS).

Overlap with MDD EWAS. Regression coefficients of the top 100
differentially methylated positions associated with response and early
improvement in the present study were extracted from the summary
statistics (MWAS2) of a large MDD EWAS in Generation Scotland [20]. Here,
we used the summary statistics from the MWAS2, in which a complex
model using the OmicS-data-based Complex trait Analysis tool was tested,
in which M values were adjusted for several confounding variables and cell
counts were fitted as fixed effects [20].

RESULTS
The course of depression severity in responders and non-
responders is shown in Fig. 1. Mean age (±SD) was 41.5 (±11.1)
years, 58% of patients were women and depression severity at

Fig. 1 Mean Hamilton Rating Scale for Depression – 17 items (HAMD17) Score by response to treatment, light gray represents responder,
dark gray non-responder. Error bars represent standard deviations.
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baseline was 22.3 (±4.1) points (HAMD17). As individuals were
matched, there were no differences in age or sex distribution (all
p ≥ 0.94). All patients were treated with 20 mg escitalopram from
baseline to day 14. In responders, escitalopram was continued
unchanged until day 28. In non-responders, 42.5% (17 of 40
patients) were switched to high-dose venlafaxine (225–375 mg)
from day 14 onwards. For details of the clinical and socio-
demographic characteristics see Table 1.

Epigenome-wide association study
No epigenome-wide significant differentially methylated positions
emerged for either treatment response or early improvement after
controlling for multiple testing. The strongest association with
response was observed with hypermethylation of cg02107110 in
WDR47 (β= 0.17, p= 9.59*10−7, q= 0.57). For early improvement,
the strongest association was observed for cg04568295, which
was annotated to SIRT7 and MAFG (β= 0.11, p= 1.58*10−6,
q= 0.86). Regression coefficients for the 100 DMPs showing the
strongest association can be found in Supplementary Table S1 for
response and S2 for early improvement.

Differentially methylated regions (DMRs)
The DMR analysis identified twenty DMRs associated with
treatment response and eleven with early improvement, Table 2
lists the DMRs and Fig. 2 depicts the Manhattan plot of this
analysis; DMRs are highlighted; results for early improvement are
listed in Supplementary Table S3. The DMR showing the strongest
association for both response to treatment and early improve-
ment was annotated to Sorbin And SH3 Domain Containing 2
(SORBS2), a protein coding gene. The DMR consists of eight CpG-
sites, hypermethylated in the responder group, seven of which are

part of an enhancer region of SORBS2, pointing towards a
potential functional relevance.

Gene-set enrichment analysis
Results from the EWAS were most strongly overrepresented in the
Hallmark gene-sets “apical surface” (p= 0.001, q= 0.078) and
“myogenesis“ (p= 0.006, q= 0.142), although none of the terms
remained significant after multiple testing correction. Results of
the gene-set enrichment analysis can be found in Supplementary
Table S4 for response and S5 for early improvement.

GWAS-enrichment analysis
No significant enrichment of genes implicated by GWAS of MDD
and antidepressant treatment response was observed (all
p ≥ 0.12). Detailed results are listed in Table 3.

GWAS atlas/PheWAS
We performed a Phenome-wide association study of the genes in
which the DMRs were identified. All traits which have been
genome-wide significantly associated with the respective genes
are listed in Supplementary Table S6a–m.

Overlap with MDD EWAS
Regression coefficients of the top 100 differentially methylated
positions associated with response and early improvement in the
present study were extracted from the summary statistics of a
large MDD EWAS in Generation Scotland [20]. These coefficients
are listed for each of the top 100 CpG sites in Supplementary
Tables S1 and S2. For response to treatment there was no
systematic association of the CpG sites as effect sizes from both
studies showed a null correlation (r= 0.01, p= 0.91) and a cross

Table 1. Clinical and sociodemographic data.

Total (N= 80) Responders (N= 40) Non-responders (N= 40) p-value (group comparison)

Age – yrs (SD) 41.55 (11.09) 41.45 (10.83) 41.65 (11.49) 0.94a

Female 46 (57.5%) 23 (57.5%) 23 (57.5%) 1.0b

Male – (%) 34 (42.5%) 17 (42.5%) 17 (42.5%)

Age at onset – yrs (SD) 33.48 (12.02) 36.00 (12.13) 30.95 (11.50) 0.06a

Duration of current episode – wks (SD) 30.38 (41.94) 28.15 (40.87) 32.60 (43.39) 0.64a

1st episode 28 (35%) 19 (48%) 9 (23%) 0.034b

Recurrent – (%) 52 (65%) 21 (52%) 31 (77%)

Hamilton scores

Baseline (SD) 22.33 (4.15) 22.83 (3.88) 21.82 (4.4) 0.28a

Day 14 (SD) 12.69 (8.83) 4.57 (2.26) 20.8 (4.21) <0.001a

Day 28 (SD) 12.61 (10.50) 2.63 (1.76) 22.60 (3.97) <0.001a

Smokers – (%) 0.35b

Yes 28 (36%) 16 (42%) 12 (30%)

No 50 (64%) 22 (58%) 28 (70%)

Cardiovascular disease – (%) 0.0504b

Yes 16 (20%) 4 (10%) 12 (30%)

No 64 (80%) 36 (90%) 28 (70%)

Metabolic disease – (%) 0.735b

Yes 10 (12.5%) 4 (10%) 6 (15%)

No 70 (87.5%) 36 (90%) 34 (85%)

Early improvement – (%)

Yes 36 (45%) 39 (97.5%) 5 (12.5%)

No 44 (55%) 1 (2.5%) 35 (87.5%)

Continuous measures are presented as mean (standard deviation) and categorical measures as frequency (percent).
Notes: at test; bχ² test; SD standard deviation, wks weeks; yrs years.
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table of the direction of effects did not reveal systematic overlap.
For early improvement, a small, but non-significant, positive
correlation between effect sizes was observed (r= 0.18, p= 0.09)
and 63% of effect estimates showed the same direction.

Exploratory analysis
Genetic Variation in SORBS2 has repeatedly been associated with
cardiovascular and metabolic diseases. Therefore, we performed
follow-up analyses to investigate whether there was an associa-
tion between previously diagnosed cardiovascular diseases, such
as high blood pressure or arrhythmia, metabolic diseases, such as
diabetes or obesity, and treatment response. Descriptively,
patients who responded to antidepressant therapy were less
likely to have a previous diagnosis of a cardiovascular disease, but
a chi-square test was not significant (Χ2(1) = 3.83, p= 0.0504). No

association between metabolic diseases and treatment response
was observed.
When we included previously diagnosed cardiovascular dis-

eases in the EWAS regression model as a covariate, associations
between treatment response and methylation of the DMR in
SORBS2 remained significant. Also, in a separate analysis,
previously diagnosed cardiovascular diseases did not predict
methylation in SORBS2 (all p > 0.46).

DISCUSSION
The aim of the present study was to identify differential
methylation signatures before treatment initiation associated with
antidepressant treatment outcome in 80 MDD patients, who were
part of a large randomized controlled trial. We focused our
analyses on antidepressant response after four weeks and
additionally investigated early improvement after two weeks of
treatment. For both outcomes, several DMRs at baseline were
observed, which may point to possible underlying mechanisms of
differential response to antidepressant pharmacotherapy.
While the epigenome-wide association study did not yield

findings remaining significant after correction for multiple testing
on the single site level, the region-based analyses highlighted
several CpG-sites as potentially relevant in antidepressant treat-
ment response. The most strongly associated CpG-site for
response was observed with hypermethylation of cg02107110 in
the WDR47 gene. WDR47 is a microtubule-associated protein and
plays a role in neuronal regulation, brain development, and brain
connectivity [40]. Regarding early improvement, the strongest
associated CpG-site was found in cg04568295. DNA-methylation
at this site has been associated with HbA1c-levels in type 1
diabetes [41].
The first epigenome-wide association study of antidepressant

response by Ju and colleagues identified three DMPs before
treatment between later responders (N= 82) and non-responders
(N= 95). One DMP located in the CHN2 gene could be replicated

Table 2. Differentially methylated regions associated with response after four weeks of treatment.

Chr Start Ende N probes P Sidak P Gene Direction

4 186732837 186733061 8 5.84E-16 1.75E-12 SORBS2 +

6 32016214 32016427 8 2.49E-12 8.26E-09 TNXB +

1 174844397 174844561 5 1.19E-09 5.11E-06 RABGAP1L +

8 1713005 1713013 3 2.74E-08 2.42E-03 LOC101927752;CLN8 +

10 96442621 96442675 3 4.59E-08 6.01E-04 CYP2C18 +

3 23244051 23244131 6 4.84E-08 4.28E-04 UBE2E2-AS1;UBE2E2 +

19 996220 996374 2 5.30E-08 2.43E-04 +

12 25801455 25801622 5 5.41E-08 2.29E-04 LMNTD1 +

22 50528213 50528299 4 6.20E-08 5.10E-04 MOV10L1 +

3 52099522 52099562 3 7.73E-08 1.37E-03 LINC00696 −

22 50585229 50585401 4 1.58E-07 6.49E-04 MOV10L1 +

1 108023366 108023487 5 2.65E-07 1.55E-03 NTNG1 +

3 48632568 48632724 4 5.57E-07 2.52E-03 COL7A1 +

2 128366514 128366595 2 5.90E-07 5.13E-03 MYO7B +

3 49459909 49460112 6 8.09E-07 2.81E-03 AMT;NICN1 +

20 30225681 30225852 4 8.45E-07 3.49E-03 COX4I2 +

6 116886276 116886350 2 9.22E-07 8.76E-03 +

6 32121355 32121523 8 1.44E-06 6.05E-03 PPT2;LOC100507547 +

17 36997563 36997732 4 3.75E-06 1.56E-02 C17orf98 +

10 45719880 45720041 2 5.02E-06 2.18E-02 −

Notes: Chr chromosome, − hypomethylation of DMR in responders, + hypermethylation of DMR in responders.

Fig. 2 Differentially methylated CpG-sites and regions (green)
associated with treatment response after four weeks.
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in a second cohort receiving the same antidepressant treatment
[23]. However, the CpG-sites highlighted in CHN2 were not
available for analysis in the present study after quality control had
been performed, and the DMP in the second highlighted gene
(JAK2) which as available in our data set (cg08584037) was not
significantly associated with response or early improvement in the
present study (p > 0.05). It also has to be taken into account that
the reported results of Ju and colleagues were not corrected for
major drivers of differential methylation such as smoking [42]. The
second study by Martinez-Pinteno and colleagues investigated
baseline differences in DNA methylation between responders and
non-responders (N= 11, each) and reported 21 significantly
differential methylated CpG-sites associated with response to
fluoxetine in adolescents. Within the two genes RHOJ and OR2L13
(Olfactory Receptor family 2 subfamily L member 13), four and three
DMPs were found between responders and non-responders [24].
These results were not replicated for antidepressant response in
adults in the present study. It has to be noted that besides
technical parameters such as the considered covariates, the
studies differ in clinical aspects, which might influence the
replicability of the results. One major aspect is the pharmacolo-
gical treatment, with administration of a different medication in
the study by Martinez-Pinteno et al. [24], and no EMC in the study
by Ju et al. [23]. It is unclear to what degree the present results are
specific to the applied medication regime. The epigenetic make-
up influencing therapy response can be expected to differ for
different antidepressants, and future studies and meta-analyses
should take this into account.
The significant DMRs were found in genes associated with a

variety of domains, such as psychiatric, skeletal, immunological,
and metabolic traits. For example, genetic variation in RABGAP1L
has been associated with the psychiatric traits ease of getting up
in the morning [43], depressive affect [44], and neuroticism [45],
but also metabolic traits such as BMI [46]. The strongest
association was observed for a region in SORBS2 (ARGBP2). This
DMR was differentially methylated between responders and non-
responders, as well as between patients who showed an early
improvement after two weeks of treatment, and those who did
not. SORBS2 is a protein-coding gene, which encodes the sorbin
and SH3 domain containing 2 protein. Interestingly, the identified
DMR is in an enhancer region, which provides evidence for a
potential functional mechanism. Genetic variation in SORBS2 has
previously been implicated in cardiovascular diseases [47], type II
diabetes [48], and educational attainment [49] in European
ancestry populations. A pharmacogenetic GWAS suggested an
association of SORBS2 in response to lithium treatment [50] and in
the recently published EWAS by Zhu and colleagues, SORBS2 was
found as significant DMR associated with lifetime history of MDD
in monozygotic discordant twins [18]. In addition, a review by
Gharipour et al. highlighted SORBS2 as one of three overlapping
genes between mood disorders and obesity and formulated the
hypothesis that hypermethylation in SORBS2 might play a role in
the co-occurence of both syndromes due to inflammation
processes [51]. Based on the findings on SORBS2 in cardiovascular
and metabolic diseases, we performed additional exploratory
analysis, including previously diagnosed cardiac and metabolic

comorbidities of our MDD patients. Even after taking the
comorbidities into account, the association between response
and differentially methylation of SORBS2 remained significant.
Mechanistically, the SORBS2 splice variant neural Abelson-related
gene-binding protein 2 (nArgBP2) could be of particular interest,
because it is specifically expressed in neurons. The nArgBP2
protein is enriched at dendritic spines where it acts as a
cytoskeletal adaptor protein [52]. Due to the specificity of nArgBP2
to excitatory synaptic inputs, dysregulation results in an excita-
tory/inhibitory imbalance that could contribute to the disease
course in mood disorders [53] and also to the response to
antidepressants.
Another DMR in CYP2C18 identified in the present study is of

particular interest as CYP2C18 belongs to the cytochrome
P450 super family, which is involved in metabolism of many
drugs, and genetic variation in this gene has previously been
associated with escitalopram treatment response [54]. The
pharmacogenetic study by Braten and colleagues investigated
novel CYP2C-haplotypes to improve genetic prediction of
escitalopram metabolism. The presence of the two SNPs (i.e.,
rs2860840 (C > T: CYP2C18, 3’UTR) and rs11188059 (G > A:
CYP2C18, intron5) was associated with a significantly lower serum
concentration of escitalopram [54].
None of the gene-sets were significantly enriched for genetic

variation identified in recent GWAS. This could be because the cut-off
of p< 0.001 resulted in a relatively large gene-set, but a restriction to
genes implied by DMR analysis did not yield significant findings
either. Also, the GWAS of antidepressant treatment response, which
is the most relevant for the present analysis, is relatively small in
comparison to other GWAS on psychiatric phenotypes [11], and also
the larger MDD GWAS is far from reliably identifying all associated
variants [55]. In combination with the limited sample size of the
present EWAS, the performed analyses might have been too limited
in statistical power to detect an enrichment. Furthermore, the
applied method is limited by mapping SNPs via chromosomal
position to specific genes. It has been shown that besides those cis-
regulatory effects, a substantial proportion of SNPs also act via trans-
regulatory effects on more distal loci [56]. Another promising
approach that could be pursued in future larger samples with
available genetic and genotype data is to test the association of DNA
methylation with polygenic risk scores calculated based on the
respective GWAS [57].
A look-up of the top 100 CpG sites for treatment response in a

large EWAS of MDD [20] did not reveal overlap between CpG sites
associated with antidepressant treatment response and MDD.
While this could point towards a specific DNA methylation
signature of antidepressant treatment response, the results could
again be in part attributable to low statistical power.
Overall, there is a wide correlation between the two investi-

gated outcome parameters (response and early improvement)
and the majority of differentially methylated CpG-sites were
implicated in both outcomes. This can be simply explained from
the patient sample investigated here in which 97.5% (N= 39) of
responders at week 4 also showed an early improvement to
antidepressant treatment at week 2. However, this is also in line
with convergent evidence in literature from our own studies as

Table 3. Results of GWAS-enrichment analyses.

Outcome GWAS N Genes Beta SE P

Response ADR 560 0.01 0.036 0.388

Depression 557 0.027 0.041 0.259

Early improvement ADR 451 0.028 0.041 0.125

Depression 448 0.06 0.049 0.12

Notes: ADR antidepressant treatment response, SE standard error.
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well as a number of additional investigations that early improve-
ment, defined as a 20% decrease of depressive symptomatology
within the first two weeks, is one of the most consistent clinical
predictors of later response to antidepressants [6, 58, 59], and that
biological predictors of antidepressant treatment response may be
identified already in the early course of treatment.
The major strength of our study is the selection of the

investigated patients from the large well-characterized EMC trial,
which enabled us to choose clear responders and non-responders
and to match the two groups according to several criteria, such as
age and sex. As antidepressants were washed out before the
baseline blood sampling, confounding based on antidepressant
use is minimal. In addition, we were able to control for potentially
influencing factors such as smoking and to include concomitant
cardiovascular and metabolic diseases in our analysis. However,
we cannot exclude that further confounding lifestyle factors might
have influenced our results, e.g., methylation in SORBS2 has been
linked to obesity [60].
Several limitations apply to the present study. The sample size is

relatively small compared to case-control EWAS of MDD and
therefore lacks statistical power. Even though we were able to
identify DMRs associated with antidepressant treatment response,
our results need to be confirmed in larger well-characterized MDD
samples. Secondly, gene expression patterns could not be
investigated in our sample, as the respective biomaterial is not
available, limiting the possibility to draw conclusions about
functional mechanisms. Thirdly, DNA methylation was assessed
at baseline. While from a prediction perspective, it is important to
identify pretreatment biomarkers of later therapy response, a
longitudinal assessment could provide important insights into
methylation changes associated with antidepressant treatment
outcomes. Furthermore, methylation was assessed in peripheral
blood samples and may potentially not reflect methylation in the
brain of depressed patients.
In conclusion, we identified differential methylated regions

associated with pharmacological antidepressant response in a
well-characterized MDD study sample before treatment initia-
tion. The DMR showing the strongest association was annotated
to SORBS2, which has previously been described as an
overlapping gene between mood disorders and obesity.
SORBS2 may therefore be a potential target gene enabling
better understanding of mood disorders and additionally
antidepressant treatment response, but confirmation in larger
samples is needed. In summary, our results provide further
evidence for the role of DNA methylation in patients’ response
to antidepressant treatment. Exploring DNA methylation in
larger and clinically well-characterized samples may lead enable
the stratification into different response subtypes.
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