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Abstract The emergent interest in cancer epigenetics stems

from the fact that epigenetic modifications are implicated in

virtually every step of tumorigenesis. More interestingly,

epigenetic changes are reversible heritable changes that are

not due to the alteration in DNA sequence but have

potential to alter gene expression. Dietary agents consist

of many bioactive ingredients which actively regulate

various molecular targets involved in tumorigenesis. We

present evidence that numerous bioactive dietary compo-

nents can interfere with various epigenetic targets in cancer

prevention and therapy. These agents include curcumin

(turmeric), genistein (soybean), tea polyphenols (green tea),

resveratrol (grapes), and sulforaphane (cruciferous vegeta-

bles). These bioactive components alter the DNA methyl-

ation and histone modifications required for gene activation

or silencing in cancer prevention and therapy. Bioactive

components mediate epigenetic modifications associated

with the induction of tumor suppressor genes such as

p21WAF1/CIP1 and inhibition of tumor promoting genes such

as the human telomerase reverse transcriptase during

tumorigenesis processes. Here, we present considerable

evidence that bioactive components and their epigenetic

targets are associated with cancer prevention and therapy

which should facilitate novel drug discovery and develop-

ment. In addition, remarkable advances in our understanding

of basic epigenetic mechanisms as well as the rapid progress

that is being made in developing powerful new technologies,

such as those for sensitive and quantitative detection of

epigenetic and epigenomic changes in cancer biology, hold

great promise for novel epigenetic approaches to cancer

prevention and therapy.

Keywords Bioactive component . Dietary polyphenol .

Cancer . Epigenetic . DNA methylation . Histone

modifications

Introduction

Natural dietary agents including fruits, vegetables, and

spices have been showing great potential in preventing and

treating a wide variety of diseases including cancers.

Dietary agents consist of many bioactive compounds that

are ubiquitous in plants, many of which have been used as

ancient traditional medicines. Dietary agents are not only an

excellent source of fiber, vitamins, and minerals, but also

contain bioactive components such as polyphenols, alka-

loids, and phenolics that may serve more than a basic

nutrition function. The bioactive components of dietary

phytochemicals most often shown to be effective against

cancer are tea polyphenols, genistein, curcumin, resveratrol,

sulforaphane, isothiocyanates, silymarin, diallyl sulfide,

lycopene, rosmarinic acid, apigenin, and gingerol. These
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bioactive components have shown great potential in

preventing cancer through modifying genetic and epigenet-

ic targets. In this analysis, we will focus on epigenetic

targets of these bioactive dietary supplements associated

with cancer prevention and therapy.

Epigenetics and cancer

“Geneticists study the gene; however, for epigeneticists,

there is no obvious ‘epigene’” (Bird 2007). Nevertheless,

epigenetics is typically defined as the study of reversible

heritable changes in gene expression that are not due to

alterations in DNA sequence. The term ‘epigenetic’ was

coined by the developmental biologist, Conrad Hal

Waddington, in 1942. Robin Holliday defined epigenetics

as the study of the mechanisms of temporal and spatial

control of gene activity during the development of complex

organisms (Holliday 1990). One of the best examples of

epigenetic changes in eukaryotic biology is the different

developmental stages from the single fertilized egg, the

zygote, to a fully grown organism. Modern biology uses

epigenetic changes as molecular tools for finding and

treating various diseases including cancer. Cancer is a

multi-step process derived from combinational crosstalk

between genetic alterations and epigenetic influences

through various environmental factors (Ducasse and Brown

2006; Esteller 2008; Ellis et al. 2009). Moreover, it has been

well documented that environmental exposure to nutritional,

dietary, physical, and chemical factors could alter gene

expression and modify individual genetic susceptibility

through changes in the epigenome (Issa 2008; Suter and

Aagaard-Tillery 2009; Herceg 2007). Several distinct but

intertwined mechanisms are known to be part of the

epigenome which includes DNA methylation, histone

acetylation, poly-ADP-ribosylation and ATP-dependent

chromatin remodeling.

Epigenetic mechanisms controlling gene transcription

are often involved in cell proliferation, differentiation, and

survival and are casually linked with malignant development.

Alterations in epigenetic processes including chromatin

modifications such as DNA methylation and histone

acetylation are common targets studied in cancer epigenomics

(Herceg 2007; Esteller 2007). It has been shown that half of

all tumor suppressor genes are inactivated in cancers more

often by epigenetic, than by genetic, mechanisms (Issa

2008). Growing evidence suggests that bioactive dietary

components impact epigenetic processes often involved with

reactivation of tumor suppressor genes, activation of cell

survival proteins, and induction of cellular apoptosis in many

types of cancer (Landis-Piwowar et al. 2008; Li et al. 2010;

Paluszczak et al. 2010; Majid et al. 2008). In addition to

transcriptional silencing of tumor suppressor genes and

protein expression, noncoding microRNAs (miRNAs) can

regulate expression of a myriad of cellular proteins by

affecting mRNA stability and translation by epigenetic

processes in cancer progression (Esteller 2007; Ducasse

and Brown 2006). Interestingly, these miRNAs can control

the expression of various epigenetic modifying enzymes

such as DNA methyltransferases (DNMTs), histone methyl-

transferases (HMTs), and histone deacetylases (HDACs)

involved in carcinogenesis processes (Guil and Esteller

2009; Saito and Jones 2006). Recent evidence suggests that

bioactive dietary components can also target various onco-

genic or tumor suppressive miRNAs to alter the gene

expression profile in cancer prevention (Parker et al. 2009;

Sun et al. 2009; Li et al. 2009b). In fact, miRNA profiles are

now being used to classify human cancers (Calin et al.

2004). Further, miRNAs can directly or indirectly regulate

cancer progression either by acting as tumor suppressors or

by altering epigenetic modifying enzymes, respectively. In

particular, miRNA-221 and miRNA-222 target KIT, an

oncogene, and therefore function as tumor suppressors in

erythroblastic cells and other human solid tumors (Croce

2009). Furthermore, the miRNA-29 family can directly

regulate the expression of DNMTs and increase expression

of DNMT3a and DNMT3b thereby causing a global

genomic hypermethylation and silencing of methylation-

sensitive tumor suppressor genes such as FHIT and WWOX

(Fabbri et al. 2007).

DNA methylation

DNA methylation involves the covalent addition of a

methyl group to cytosines in eukaryotic DNA. DNA

methylation typically occurs at CpG dinucleotides, whereas

non-CpG methylation is often found in embryonic stem

cells. Moreover, 60–90% of all dispersed CpG sequences

are methylated in mammals, whereas, unmethylated CpGs

are grouped in clusters called “CpG islands” that are

present in the 5′-regulatory regions of many genes. The

DNA methylation state is maintained primarily by DNMTs,

which catalyze the transfer of a methyl group from the

methyl precursor, S-adenosyl-L-methionine (SAM), onto

the 5-position of certain cytosines in CpG dinucleotides

(Fig. 1). Multiple DNMTs are known to be present in

humans, animals, and microorganisms, and they have

varying degrees of specificity toward unmethylated and

hemimethylated DNA substrates (Bestor 2000). SAM is

the methyl donor in DNMT-mediated DNA methylation,

as in many other enzymatic methylation reactions [such

as the catechol-O-methyltransferase (COMT)-mediated

O-methylation of various catechol substrates], resulting

in the formation of S-adenosyl-L-homocysteine (SAH)

after donating its methyl group to the DNA substrate.
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In many disease processes such as cancer, gene promoter

CpG islands acquire abnormal hypermethylation by altering

DNMT expression and activity, which results in heritable

transcriptional gene silencing. DNA methylation may

impact the transcription of genes in two major ways. First,

the methylation of DNA prevents binding of sequence

specific transcriptional factors (e.g., AP-2, E2F, c-Myc) that

require the presence of unmethylated CpG within the

binding sites (Tate and Bird 1993). Second and likely more

important is that methylated DNA may be bound by

proteins known as methyl-CpG-binding domain (MBD)

proteins. MBD proteins then recruit additional proteins,

such as histone deacetylases and other chromatin-

remodeling proteins that can modify acetylation and

methylation status of histones to the locus thereby inhibit-

ing transcriptional access to the chromatin. This subse-

quently leads to the formation of compact, inactive

chromatin (Wade 2001; Ballestar and Wolffe 2001). The

clinical aspects of DNA methylation are very important

especially since DNA methylation is a reversible process and

thereby leads to silencing or activation of particular genes for

disease progression including cancer (Laird 2005).

In higher eukaryotes, DNA methylation is an enzymatic

process that is primarily mediated by three enzymes;

DNMT1, DNMT3a, and DNMT3b (Bestor 2000). DNMT1

is a ubiquitous enzyme considered the major methyltrans-

ferase for maintenance methylation, and the other two

DNMTs serve as de novo methyltransferases. In human cells,

DNMTs have some overlap in de novo and maintenance

function. DNMTs have been showed to be an extensive

molecular drug target for many available FDA-approved

epigenetic drugs such as 5-azacytidine, commercially avail-

able as Vidaza, and 5-aza-2′-deoxycytidine, commercially

available as Dacogen (Grønbaek et al. 2007; Kaminskas et

al. 2005). In addition, the DNMT1 antisense oligonucleotide

referred to as MG98 is currently under phase I clinical trials

for patients with advanced solid tumors (Plummer et al.

2009). However, many of the most commonly used drugs

DNMTs
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Fig. 1 Schematic diagram

illustrating DNA methylation

catalyzed by DNMTs. a The

DNA methylation process is

catalyzed by the DNMTs by

adding a methyl group (CH3)

from SAM to the 5-position

of the cytosine ring. SAM

donates a methyl group and is

then converted into SAH. b

Methylated cytosine moieties

in CpG dinucleotides within a

gene promoter. c DNMTs

convert unmethylated DNA

into methylated DNA in

chromatin. White circles

unmethylated CpG sites, green

circles hypermethylated CpG

sites, yellow circles histone

proteins, red thread DNA
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produce meaningful results in less than half of the patients,

and the use of higher doses often results in adverse side

effects (Grønbaek et al. 2007). Another derivative of 5-

azacytidine, zebularine, appears to be more stable than 5-

azacytidine or 5-aza-2′-deoxycytidine, but has very narrow

specificity towards cancer cells (Hellebrekers et al. 2007).

Therefore, many cancer patients are exposed to highly toxic

drugs and suffer from adverse side effects while receiving

few therapeutic benefits (Eisenberg et al. 1998). Hence non-

toxic and more effective dietary bioactive components have

received wide attention in the use against various cancers for

prevention and therapy. Extensive results have shown that

bioactive dietary components have great potential in altering

DNA methylation by modifying DNMTs levels in cancer

prevention and therapy (Li and Tollefsbol 2010).

Epigenetic regulation has attracted considerable interest

as a molecular target for cancer prevention and therapy as

well as a target of bioactive food components. Many

bioactive dietary components have shown promising results

in direct or indirect inhibition of DNMT activity in cancer

prevention and therapy. For example, (−)-epigallocatechin-

3-gallate (EGCG), a major component of green tea, is

known to complex with the DNMTs which reduces

methylating activity in cancer cells leading to cancer

prevention or therapy through epigenetic mechanisms

(Fang et al. 2003; Mittal et al. 2003; Tsao et al. 2009).

Furthermore, daily oral intake of EGCG in the form of

Polyphenon E, a green tea extract, was well tolerated by

chronic lymphocytic leukemia patients in phase I clinical

trials (Shanafelt et al. 2009).

Histone modifications

Many histone modifications play important roles in

epigenetic alterations, and acetylation and methylation are

the two main histone modifications that have been

clinically linked as predictors for cancer progression (Davis

and Ross 2007; Fraga et al. 2005; Seligson et al. 2005).

These histone modifications induce chromatin alterations

that allow access to the various transcriptional activators

and/or repressors at gene promoters, and they therefore play

an important role in gene regulation and tumorigenesis

(Fig. 2) (Ganesan et al. 2009; Dalvai and Bystricky 2010;

Sharma et al. 2010). Histones are subject to different

types of reversible covalent posttranslational modifications

including, but not limited to, lysine acetylation, lysine and

arginine methylation, serine and threonine phosphorylation,

and lysine ubiquitination and sumoylation. These modifica-

tions occur primarily within the histone amino-terminal tails

protruding from the surface of the nucleosome as well as on

the globular core region and regulate key cellular processes

such as transcription, replication, and repair (Kouzarides

2007). Specific histone modifications appear to act as

programmed “codes” which can be identified by specific

proteins to bring about distinct downstream events such as
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Fig. 2 Schematic representation

of histone modifications. HATs
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transcriptional activation or repression. The mechanism of

inheritance of this histone code, however, is still not fully

understood.

DNA methylation often suppresses gene expression,

with some exceptions like the human telomerase reverse

transcriptase (hTERT) gene (Berletch et al. 2008; Li et al.

2009a). Nevertheless, gene repression or activation is not

determined by histone acetylation or methylation in

general, but rather is determined by which residue is being

modified, for example, trimethylation of lysine 4 on histone

H3 (H3K4me3) is enriched for transcriptional gene activation,

whereas trimethylation of lysine 9 on histone H3 (H3K9me3)

and trimethylation of lysine 27 on histone H3 (H3K27me3) is

present at gene promoters for transcriptional repression

(Hebbes et al. 1988; Choudhuri et al. 2010). Further,

enrichment of acetylation at lysine residues at gene promoter

regions is associated with gene activation (Hebbes et al.

1988). Histone acetylation enhances chromatin accessibility

by neutralizing the DNA–histone interactions which results

in a relaxed, open chromatin conformation that allows the

transcriptional activators to gain access to their cognate

recognition elements and initiate/enhance transcription

(Fig. 2) (Görisch et al. 2005; Lafon-Hughes et al. 2008).

Histone modifications are catalyzed by many enzymes

such as histone acetyltransferases (HATs), histone deacety-

lases (HDACs), histone methyltransferases (HMTs), and

histone demethylases (HDMs). HATs and HDACs add and

remove acetyl group to the lysine residues present in

histones, respectively, whereas HMTs and HDMs add and

remove methyl groups to the different lysine or arginine

resides in histones, respectively (Choudhuri et al. 2010).

Further, arginine methylation is presumably transcription

activating, whereas lysine methylation can cause either

transcriptional activation or repression, depending on which

lysine residue is being methylated (Choudhuri et al. 2010).

Histone hypoacetylation at a promoter region, induced by

either lack of HAT function or increased HDAC activity,

results in silencing of the tumor suppressor gene, p21WAF1/CIP1,

in tumorigenesis (Majid et al. 2008; Kikuno et al. 2008).

By contrast, histone hyperacetylation at certain promoters

through either increased HAT activity or decreased HDAC

activity, results in an activation of normally repressed

genes (Acharya et al. 2005; Kim et al. 2003). Collectively,

the aberrant enrichment of HAT and HDAC activities may

trigger carcinogenesis processes (Mottet and Castronovo

et al. 2008).

It has been widely recognized that HDACs are promis-

ing targets in the field of oncology and epigenetic therapy

(Davis and Ross 2007; Marsoni et al. 2008). An impressive

body of preclinical research points to the ability of HDAC

inhibitors (HDACIs) to modulate a wide variety of cellular

functions, including cellular differentiation, cell cycle

progression, apoptosis, cytoskeleton modifications, and

angiogenesis (Marsoni et al. 2008). Thus, the use of

HDACIs is considered a potent strategy in cancer prevention

and epigenetic therapy. An extensive list of HDACIs has been

purified from natural sources or synthetically developed, and

many of these HDACIs have advanced to clinical applications

(Bolden et al. 2006). HDACIs such as trapoxin, trichostatin

A, and suberoylanilide hydroxamic acids (SAHAs) are

among the most studied and have more global HDAC

inhibition activity. Vorinostat or SAHA (brand name

Zolinza) is a commercially available FDA-approved HDACI

for treatment of cutaneous T-cell lymphoma (Ellis et al.

2009). Many other HDACIs are in different phases of

clinical trials such as panobinostat (LBH589), belinostat

(PXD101), TF2357, PCI-24781, phenylbutyrate, romidepsin

(depsipeptide), MS-275, MS-275 and, MGCD0103 (Ellis et

al. 2009).

Besides synthetic HDACIs, many bioactive dietary

components have shown promising results in direct or

indirect inhibition of HDAC activity as well as other

histone modification activities in cancer prevention and

therapy (Nian et al. 2009; Myzak et al. 2006c). For

example, sulforaphane (SFN), a major component present

in cruciferous vegetables, inhibits HDAC activity, at least

partially, by direct interaction with the HDAC active sites

(Myzak et al. 2004). In an another study, SFN has been

shown to result in HDAC inhibition in human volunteers

consuming SFN-rich broccoli sprouts, and the SFN-induced

HDAC inhibition increased histone acetylation in peripher-

al blood cells of the human subjects without adverse effects

(Myzak et al. 2006a, 2007).

Bioactive dietary components and epigenetic targets

For more than a decade, there has been considerable

interest in the use of naturally occurring botanicals for the

prevention of diseases, including cancers. Beverages, fruits,

vegetables, and other components of the human diet

commonly contain polyphenols which have been shown

in many investigations to have chemopreventive and anti-

cancer properties (Aggarwal and Shishodia 2006; Meeran

and Katiyar 2008; Yang et al. 2001). Different nutrients,

specifically dietary botanicals, can play a role in the

regulation of both normal and pathologic processes. An

improved understanding of the regulatory role of these

nutrients on various molecular targets may help in the

prevention and treatment of various cancers. Although

several dietary agents or nutrients regulate different

molecular targets in various cancers, here we summarize

the role of some common bioactive dietary agents and their

epigenetic targets on various cancers. The agents which we

discuss include tea polyphenol–catechins (green tea),

curcumin (turmeric), genistein (soybean), resveratrol

Clin Epigenet (2010) 1:101–116 105



(grapes), SFN (cruciferous vegetables), and other bioactive

components such as apigenin (parsley), baicalein (Indian

trumpet), cyanidins (grapes), isothiocyanate (cruciferous

vegetables), rosmarinic acid (rosemary), and silymarin

(milk thistle). A brief discussion includes their epigenetic

targets in cancer cells both in vitro and in vivo leading to

their multiple roles in the regulation of cancer prevention

and therapy. Some of the most commonly used bioactive

dietary components, including their source, botanical name,

and their epigenetic targets associated with tumorigenesis

are summarized in Table 1.

Tea polyphenols

DNA methylation

The tea plant Camellia sinesis is cultivated in more than 30

countries. Tea is consumed worldwide and next to water is

the most consumed beverage in the world, with an average

per capita consumption of ~120 mL/day (Mukhtar and

Ahmad 2000). Epidemiologic observations and laboratory

studies have indicated that polyphenolic compounds present

in tea may reduce the risk of a variety of diseases, including

coronary heart disease and cancer. The most abundant

chemical compound in green tea beverages is catechins,

which include (−)-epicatechin (EC), (−)-epicatechin-3-gallate

(ECG), (−)-epigallocatechin (EGC), and (−)-epigallocatechin-

3-gallate (EGCG) (Graham 1992). Of these, EGCG accounts

for more than 50% of the total polyphenol and effective

content in green tea (Lin and Liang 2000). EGCG has been

identified as a major and most effective constituent of green

tea. Therefore, the large majority of the in vitro and in vivo

studies of the effects of green tea have been conducted using

EGCG.

EGCG has been shown to induce apoptosis and cell

cycle arrest in many cancer cells without affecting normal

cells (Ahmad et al. 1997; Gu et al. 2009). Therefore, it is

likely that EGCG imparts its anti-cancer effects through

many different mechanisms (Balasubramanian et al. 2010;

Fassina et al. 2004; Huh et al. 2004). One mechanism

includes the inhibition of DNMT1 leading to demethylation

and reactivation of methylation-silenced genes. Treatment

of human esophageal KYSE 510 and 150 cells with EGCG

has been shown to lower DNMT1 activity and to lead to

hypomethylation and re-expression of genes including

p16INK4a, retinoic acid receptorβ (RARβ), O6-methylguanine

methyltransferase (MGMT), and human mutL homologue 1

(hMLH1) (Fang et al. 2003). In another study with oral

carcinoma cells, EGCG partially reversed the hypermethyla-

tion status of RECK, a tumor suppressor gene, and

significantly enhanced the expression level of RECK

mRNA. EGCG-induced epigenetic reactivation of RECK is

important since it negatively regulates matrix metalloprotei-

nases (MMPs) and inhibits tumor invasion, angiogenesis, and

metastasis (Kato et al. 2008). Pandey et al. (2010) demon-

strated that exposure of human prostate cancer LNCaP cells

to 1–10 μg/ml of green tea polyphenol for 1–7 days caused a

concentration- and time-dependent re-expression of a known

precursor to the genesis of prostate cancer, gluthathione-S-

transferase pi (GSTP1), which correlated with DNMT1

inhibition.

Recently, it has been observed that tea polyphenols

[catechin, epicatechin, and EGCG and bioflavonoids

(quercetin, fisetin, and myricetin)] inhibited SssI DNMT-

and DNMT1-mediated DNA methylation in a concentration-

dependent manner. The IC50 values for catechin, epicatechin,

and various flavonoids ranged from 1.0 to 8.4 μM, but

EGCG was a more potent inhibitor, with IC50 values ranging

from 0.21 to 0.47 μM (Lee et al. 2005). A molecular

modeling study demonstrated that EGCG exerts its inhibitory

effect on DNMT1 function by blocking entry of the key

nucleotide cytosine into its active site by hydrogen bonds and,

thus, prevents DNA methylation (Fang et al. 2003). Further-

more, the presence of Mg2+ can enhance the binding force of

EGCG and the DNMTs by stabilizing their binding

interactions nearly ten times more than without Mg2+

presence (Lee et al. 2005). Here, we discuss most of the

epigenetic targets altered by EGCG, but other catechins such

as EC, ECG, and EGC have also been found to share similar

properties although they are less efficient than EGCG

(Fang et al. 2003; Lee et al. 2005).

Besides direct inhibition of DNMT by EGCG, it was

also reported that consumption of polyphenols could lead to

a decrease in available S-adenosyl-L-methionine (SAM)

and an increase in S-adenosyl-L-homocysteine (SAH) and

homocysteine levels, thereby providing evidence of an

indirect inhibition of DNA methylation by EGCG (Lee

and Zhu 2006). This conjecture is supported by animal

studies demonstrating that EGCG consumption through

drinking water can moderately decrease the level of SAM

(without increasing the level of SAH) in the intestine

(Fang et al. 2007).

EGCG not only reactivates tumor suppressor genes by

inhibiting DNA methylation but also inhibits tumor

promoter genes such as hTERT, a catalytic subunit of

telomerase (Berletch et al. 2008). In most cases, hyper-

methylation of the regulatory region of a gene can inhibit

its expression. For example, the p16INK4a promoter

becomes methylated during tumorigenesis leading to

inhibition of its expression (Lee et al. 2003). Interestingly,

hTERT regulation by DNA methylation goes against the

paradigm, and hypermethylation of its promoter leads to

increased expression in cancer cells (Guilleret and Benhat-

tar 2004; Quante et al. 2005). One possible reason for this

paradox was shown in breast cancer cells were EGCG-
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induced progressive demethylation of the hTERT promoter

which allowed the E2F-1 repressor of hTERT to bind to its

promoter and inhibit its expression (Berletch et al. 2008).

Another classical example for EGCG-induced promoter

demethylation inhibiting an oncogene is Wingless-type

(Wnt) which occurs through epigenetic reactivation of

Wnt inhibitory factor-1 (WIF-1) in lung cancer cells (Gao

et al. 2009). The Wnt family consists of a group of

signaling molecules that is extensively involved in develop-

mental processes and oncogenesis.WIF-1 is a Wnt antagonist

that inhibits Wnt signaling by direct binding to Wnt

molecules (Gao et al. 2009).

EGCG is unstable under physiological conditions, and

methylation of EGCG by COMT is a modification that

reduces the biological activity of EGCG (Landis-Piwowar

et al. 2010). Recently, Moiseeva et al. (2007) showed that

low-dose long-term exposure of bioactive components such

as EGCG and genistein results in epigenetic alterations of

gene expression, reduced growth, and increased cellular

apoptosis in breast cancer cells. Furthermore, there are

several synthetic analogs of EGCG that have been shown to

have strong anti-cancer activity with more efficacy and

stability than EGCG under physiological conditions (Kanwar

et al. 2010; Huo et al. 2010; Landis-Piwowar et al. 2007).

However, their epigenetic roles in cancer prevention and

therapy have not yet been reported.

Although various studies have shown that green tea

polyphenol or EGCG can effectively inhibit carcinogenesis

in various animal organs (Tran et al. 2010; Liang et al.

2010; Sagara et al. 2010; Zhang et al. 2010), their

epigenetic effects have been largely undetermined. Morey

Kinney et al. (2009) demonstrated that administration of

0.3% green tea polyphenols (GTPs) to wild-type (WT) and

transgenic adenocarcinoma of mouse prostate (TRAMP)

mice showed no alteration in 5-methyl-deoxycytidine

(5mdC) levels in prostate, gut, and liver from WT mice at

both 12 and 24 weeks of age, with the single exception of a

decrease of 5mdC in the liver at 12 weeks. Quite

surprisingly, GTPs treatment did not inhibit tumor progression

in TRAMPmice, although known pharmacodynamic markers

of GTPs such as Ssat and Clustrin mRNA levels were altered

in both WT and TRAMP prostates. However, Mittal et al.

(2003) demonstrated that topical application of EGCG

inhibits ultraviolet-B (UVB)-induced photocarcinogenesis

by UVB-induced global DNA hypomethylation in SKH-1

hairless mouse model system. Both immunohistochemical

analyses of 5mdC and DNMTs activities were restored

significantly by topical application of EGCG in a chronic

UVB-induced SKH-1 hairless mouse model system (Mittal

et al. 2003). Studies have strongly correlated dietary habits

and physical activity in relation to epigenetic reactivation of

several genes, including tumor suppressor genes (Yuasa et al.

2009; Yun et al. 2010a). Yuasa et al. (2005) demonstrated in

primary gastric carcinoma patients that past life style and

dietary habits including consumption of cruciferous vegeta-

bles and GTPs alter the methylation status of several genes

such as CDX2 and BMP-2, which are important for

preventing gastric carcinogenesis. Recently, Volate et al.

(2009) showed that administration 0.6% (w/v) GTPs in

drinking water to azoxymethane-treated Apc Min/+ mice

showed a significant decrease in CpG methylation in the

retinoic X receptor alpha gene promoter leading to inhibition

of intestinal tumorigenesis.

Histone modifications

The disruptions of histone acetylation/deacetylation balances

by bioactive components through regulation of HAT and

HDAC activities have received considerable attention in

cancer prevention and therapy. In addition to DNA methyl-

ation inhibitory activity, EGCG also regulates gene expression

through changes in histone modifications. Recently, Choi et

al. (2009) discovered that EGCG has strong HAT inhibitory

activity among all other catechins screened in various cell

extracts from B lymphocytes, and the order of HAT

inhibition by catechins is EGCG > EGC > EC. In the same

study, it was discovered that EGCG abrogates p300-induced

p65 acetylation in vitro and in vivo, increases the level

of cytosolic IκBα, and suppresses tumor necrosis factor

α-induced NF-κB activation. EGCG-induced p65 deace-

tylation events led to a cytoplasmic accumulation of

IκBα and subsequent cytosolic sequestration of NF-κB

resulting in the downstream inhibition of inflammatory

genes such as IL-6, COX-2, and NOS2 (Choi et al. 2009).

Further, they found that EGCG does not make any

significant changes in HDACs, HMTs, and SIRT1 in their

assay system. However, studies with human prostate

cancer LNCaP cells showed that exposure to 1–10 μg/ml

of GTPs for 1–7 days caused time-dependent inhibition of

HDAC1-3 expression and increased the levels of acetylat-

ed histone H3 (LysH9/18) and H4 levels (Pandey et al.

2010). GTPs-induced histone acetylation and promoter

demethylation reactivated the GSTP1 gene, which is an

important hallmark in prostate tumorigenesis.

Studies have also been initiated using combinations of

GTPs with known HDAC inhibitors to enhance DNMT

inhibition and HDAC inhibition activities, respectively, for

effective chemoprevention (Nair et al. 2008). Recently, Nihal

et al. (2010) showed that combined use of GTPs with

vorinostat, known as SAHA, a HDAC inhibitor, imparts

significant anti-proliferative effects against human melanoma

cells. The demethylating activity of EGCG may synergize

with the HDAC inhibitory action of vorinostat to help

de-repress silenced tumor suppressor genes regulating

key functions such as proliferation and cell survival. In

keeping with this view, they showed a greater anti-melanoma
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effect with the combination of EGCG and vorinostat than

either agent alone (Nihal et al. 2010). There is very limited

evidence regarding in vivo histone modification effects of

GTPs. A study with dimethylaminoazobenzene-induced

hepatocarcinogenesis in male Sprague–Dawley rats showed

that administration of 0.05% (w/w) Polyphenon E (from

black tea polyphenol) induced a significant decrease in

HDAC1 expression compared to animals fed a control diet

(Murugan et al. 2009).

Sulforaphane

Sulforaphane (SFN), an isothiocyanate naturally rich in

widely consumed cruciferous vegetables such as broccoli,

broccoli sprouts, cabbage, and kale, has been shown to

reduce the risk of developing many common cancers

(Higdon et al. 2007; Pledgie-Tracy et al. 2007; Keum et

al. 2009; Cheung and Kong 2010). SFN mediates chemo-

prevention through several mechanisms including cell cycle

arrest and induction of apoptosis and phase 2 detoxification

enzymes (Bryant et al. 2010; Chu et al. 2009; Dinkova-

Kostova et al. 2007; Bacon et al. 2003). However, there has

been growing interest in epigenetic regulation by SFN in

chemoprevention due to its histone deacetylase (HDAC)

inhibition activity (Myzak et al. 2007; Dashwood and Ho

2007; Ho et al. 2009). The HDAC inhibition activity of

SFN has been shown to lead to an increase in the global

and local histone acetylation status of a number of genes

(Bhamre et al. 2009; Telang et al. 2009; Dashwood and Ho

2008). SFN-mediated epigenetic alterations are believed to

be strongly involved in the process of cancer chemo-

prevention by altering the expression of various genes,

including tumor suppressor genes in various cancers

(Herman-Antosiewicz et al. 2007).

SFN was found to inhibit DNMTs in MCF-7 and MDA-

MB-231 breast cancer as well as CaCo-2 colon cancer cells

(Meeran et al. 2010; Traka et al. 2005). Meeran et al. (2010)

demonstrated that SFN treatment dose- and time-dependently

inhibited human telomerase reverse transcriptase (hTERT),

the catalytic regulatory subunit of telomerase, in both MCF-7

and MDA-MB-231 human breast cancer cells and that it had

negligible effects on normal control cells. Further, DNA

methyltransferases (DNMTs), especially DNMT1 and

DNMT3a, were also decreased in SFN-treated breast

cancer cells. More interestingly, down-regulation of

DNMTs induced site-specific CpG demethylation occurring

primarily in the first exon of the hTERT gene thereby

facilitating CTCF binding associated with hTERT repression

followed by cellular apoptosis in breast cancer cells (Meeran

et al. 2010).

SFN has also been found to have HDAC inhibitory

activity in many other cancer in vitro and in vivo cancer

models. SFN dose-dependently increased the activity of a

beta-catenin-responsive reporter (TOPflash) and diminished

HDAC activity in human embryonic kidney 293 cells

(Myzak et al. 2004). In HCT116 human colorectal cancer

cells, SFN inhibited HDAC activity thereby increasing

histone acetylation at the p21WAF1/CIP1 promoter to enhance

its expression (Myzak et al. 2004). Human prostate cancer

BPH-1, LNCaP, and PC-3 cells also showed significant

inhibition of HDAC activity by SFN treatment. Further,

SFN-induced histone acetylation increased the expression

of the p21WAF1/CIP1 protein, thereby inhibiting cell cycle

arrest and inducing cellular apoptosis in these prostate

cancer cell lines (Myzak et al. 2006b; Ho et al. 2009).

SFN also has HDAC inhibitory effects in vivo as shown

in animal and human models. Myzak et al. (2006a)

demonstrated that mice treated with a single oral dose of

10 μM SFN had significant HDAC inhibitory activity in

colonic mucosa with increased acetylated histones H3 and

H4. Further, the authors demonstrated that increased

acetylation enhanced the expression of p21WAF1/CIP1 and

bax gene expressions, thereby suppressing tumorigenesis

in Apc/+ mice (Myzak et al. 2006a). Another study

demonstrated that administration of 7.5 μM SFN per

animal for 21 days significantly reduced prostate cancer

PC-3 tumor xenografts by inhibiting HDAC activity in

vivo (Myzak et al. 2007). Importantly, in human subjects,

a single dose of 68 g of broccoli sprouts inhibited HDAC

activity significantly in peripheral blood mononuclear

cells at 3 and 6 h following consumption (Myzak et al.

2007). Following oral dosing, sulforaphane metabolites

were readily measurable in human breast tissue enriched

for epithelial cells (Cornblatt et al. 2007). Collectively,

SFN has been found to be a potent HDAC inhibitor both

in vitro and in vivo models.

Genistein

Genistein is an isoflavone belonging to the flavonoids

group of compounds and is found in a number of plants

including fava beans, soybeans, lupin, kudzu, and psoralea.

Genistein and other isoflavones have been found to have

anti-cancer and anti-angiogenic properties in various cancers.

Several studies have found moderate doses of genistein to

have inhibitory effects on cancers of the prostate, cervix,

brain, breast, and colon (Barnes 1995). It is becoming

increasingly clear that genistein exerts multiple effects on

cancer cell growth. Several mechanisms for the anti-

proliferative and anti-cancer properties of genistein have been

found, including prevention of DNA mutation, reduction in

cancer cell proliferation, inhibition of angiogenesis, and

induction of cellular apoptosis (Singh et al. 2006; Gu et al.

2005; Su et al. 2005; Sasamura et al. 2004). One potential

Clin Epigenet (2010) 1:101–116 109



mechanism that has recently received considerable attention

is that genistein is involved in regulation of gene transcription

or silencing activity by modulating epigenetic events such as

DNA methylation and/or chromatin modifications (Li and

Tollefsbol 2010; Li et al. 2009a; Kikuno et al. 2008).

Several reports have found that genistein has DNA

methyltransferase inhibitory activity as well as histone

modification properties in cancer cells. In prostate cancer

cells, genistein induced the expression of the tumor

suppressor genes p21WAF1/CIP1 and p16INK4a by altering

promoter methylation and histone modification (Majid et al.

2008; Kikuno et al. 2008). Further, it was found that

genistein increased acetylated histones 3 and 4 and H3-

lysine4 at the p21WAF1/CIP1 and p16INK4a transcription start

sites, mediated by induction of HATs. Genistein-mediated

promoter hypomethylation and hyperacetylation reactivate

expression of tumor suppressor genes in human prostate

cancer cells and are followed by cell cycle arrest and

cellular apoptosis induced by cyclin and caspase pathways,

respectively (Majid et al. 2008; Kikuno et al. 2008). This

dietary bioactive compound also reactivates BTG3, a tumor

suppressor gene, in A498, ACHN, and HEK-293 renal

carcinoma cell lines (Majid et al. 2009). Genistein activates

the epigenetic re-expression of BTG3 by altering promoter

DNA methylation through inhibition of DNMTs and

methyl-CpG-binding domain 2 in these cells, whereas,

genistein also increases histone acetylation by enhancing

HAT activity, followed by enrichment of acetylated histones

3 and 4, dimethyl-H3K4, and trimethyl-H3K4 near the

transcription start site at the BTG3 gene promoter (Majid et

al. 2009). This is consistent with other reports that genistein

upregulated mRNA expression of the BRAC1, p16INK4a,

RARb, MGMT, and p21WAF1/CIP1 genes (Majid et al. 2008;

Fang et al. 2005). Studies have also shown that genistein in

combination with other DNA methyltransferases or HDAC

inhibitors enhanced the reactivation of methylation-silenced

genes (Raynal et al. 2008; Li et al. 2009a; Fang et al. 2005).

Genistein not only reactivates tumor suppressor genes

through epigenetic modifications but also inhibits the

expression of tumor promoter genes such as hTERT.

Genistein inhibits DNMT1, DNMT3a, and DNMT3b and

enriches inactivating histone trimethyl-H3K9 followed by

transcriptional repression of hTERT expression in human

breast cancer cells (Li et al. 2009a). In another study with

MDA-MB-468 human breast cancer cells, low concentrations

of genistein partially demethylated the GSTP1 tumor

suppressor gene promoter and reactivated its expression

(King-Batoon et al. 2008).

In addition to in vitro epigenetic modulation, genistein-

treated neonatal CD-1 mice showed anomalously hypome-

thylated nucleosomal binding protein-1 promoter than

hypermethylated control (non-genistein) treated mice (Tang

et al. 2008). In contrast to genistein-induced DNA

hypomethylation mediated through DNMT inhibition,

studies also have shown that genistein induced hyper-

methylation in some animal models (Day et al. 2002;

Guerrero-Bosagna et al. 2008). In accordance with animal

studies, genistein also increased hypermethylation in

human studies randomized with selective cancer-related

genes. Thirty-four healthy premenopausal women were

randomized to take 40 or 140 mg isoflavones daily through

one menstrual cycle, and the methylation status of p16INK4a,

RASSF1A, RARβ2, ER and CCND2 were assessed in

intraductal specimens. The results showed that RARβ2

and CCND2 were hypermethylated after genistein admin-

istration, and these results correlated well with serum

genistein levels (Qin et al. 2009).

Curcumin

Curcumin, a yellow pigment present in the spice turmeric

(Curcuma longa), has been linked with multiple beneficial

activities including anti-inflammatory, anti-angiogenic and

wound-healing, antioxidant, and anti-cancer properties.

Curcumin has been shown in various animal models and

human studies to be extremely safe even at very high doses;

however, their solubility and bioavailability is an obstacle

for therapeutic drug development (Aggarwal et al. 2003;

Shishodia et al. 2007). Curcumin-mediated chemopreven-

tion is mainly facilitated through cell cycle arrest and

induction of cellular apoptosis in various cancer cells.

Curcumin-induced apoptosis is involved with the intrinsic

and extrinsic apoptosis pathways, the NF-κB-mediated

pathway as well as the PI3K/Akt signaling pathway

(Reuter et al. 2008). Recent evidence has shown that

curcumin also inhibits DNMT activities and histone

modification such as HDAC inhibition in tumorigenesis

(Fu and Kurzrock 2010).

Molecular docking of the interaction between curcumin

and DNMT1 suggested that curcumin covalently blocks the

catalytic thiolate of C1226 of DNMT1 to exert its inhibitory

effect (Liu et al. 2005). This inhibition seems to be

comparatively lower than other bioactive dietary components

such as EGCG and genistein (Fang et al. 2007; Liu et al.

2005). Further, curcumin treatment with extracted genomic

DNA from a leukemia cell line induced global hypomethy-

lation (Liu et al. 2005). These results provide strong

evidence that curcumin is a potent DNA hypomethylating

agent, which is important for its broad-spectrum inhibitory

activity in inflammation, cancer, and many other diseases.

Curcumin also has strong inhibitory activity against

HDACs and HATs in several in vitro cancer models.

Curcumin showed strong proliferation inhibition potency

on Burkitt’s lymphoma Raji cells in vitro, with the IC50

value for 24 h at 25 μM. Significant decreases in the
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amounts of p300, HDAC1, HDAC3, and HDAC8 were

detected after treatment with curcumin followed by preven-

tion of IkappaB alpha degradation and inhibition of nuclear

translocation of the NF-κB/p65 subunit (Chen et al. 2007; Liu

et al. 2005). Meja et al. (2008) demonstrated that even very

low concentrations of curcumin (30 and 200 nM) restored

corticosteroid function in human monocytes exposed to

oxidants. This occurred by maintaining HDAC2 activity via

preventing oxidant-induced degradation of HDAC2 through

down-regulating gene expression associated with protein

degradation.

Curcumin has been identified as a strong inhibitor for

HATs in both in vitro and in vivo cancer models. One of the

early epigenetic studies showed that curcumin is a specific

inhibitor of p300/CREB-binding protein (CBP) HAT

activity but not of p300/CBP-associated factor, in vitro

and in vivo. Curcumin-mediated p300/CBP inhibition was

associated with repression of histones H3 and H4 and non-

histone protein such as p53 and HIV-TAT proteins

(Balasubramanyam et al. 2004). Another structural analysis

study done by Marcu et al. (2006) revealed that alpha, beta

unsaturated carbonyl groups in the curcumin side chain

function as Michael reaction sites, which is required for

its HAT inhibitory activity. Further, they demonstrate that

curcumin selectively promotes proteasome-dependent

degradation of p300 and closely related CBP protein

without affecting the HATs such as PCAF or GCN5 in

prostate PC3-M and peripheral blood lymphocytes.

Interestingly, curcumin was able to effectively block

histone hyperacetylation in both PC3-M prostate cancer

cells and peripheral blood lymphocytes induced by the

HDAC inhibitor MS-275 (Marcu et al. 2006).

Kang et al. (2006) showed a strong inhibition of

curcumin-mediated HAT inhibitory activity associated with

a decrease in histone H3 and H4 acetylation in brain cancer

cells. Further, curcumin-induced histone modifications

associated with caspases-mediated cellular apoptosis in

brain cancer cells and enhanced neurogenesis, synaptogene-

sis, and migration of neural progenitor cells in brain-derived

adult neural stem cells in vitro (Kang et al. 2006). Another

study demonstrated that curcumin restored ultraviolet

radiation-induced hyperacetylation in the promoter region

of ATF3, COX2, and MKP1, which are inflammatory-related

genes in human keratinocytes (Pollack et al. 2009). Further,

studies have also shown that curcumin-mediated promoter

hypoacetylation of certain genes was strongly correlated

with gene silencing (Cui et al. 2007; Pollack et al. 2009). A

very recent study showed that curcumin inhibits high

glucose-induced proinflammatory cytokines by epigenetic

modification in human monocytic (THP-1) cells. It was

demonstrated that curcumin treatment significantly reduced

HAT activity, p300 and acetylated CBP/p300 gene expres-

sion, and induced HDAC2 expression in THP-1 cells,

thereby inhibiting high glucose-induced proinflammatory

cytokines, which is an important molecular target in reducing

diabetic complications (Yun et al. 2010b).

In animal models, curcumin is found to be protective

against cardiac failure, inflammation, and fibrosis through

down-regulation of NFκB, GATA4, and TGFβ signaling

as well as inhibition of HAT activity in rats (Morimoto et

al. 2008; Li et al. 2008). Curcumin was also found to be

very effective against streptozotocin-induced diabetes in

male Sprague–Dawley rats through the inhibition of H3

hyperacetylation, NFκB binding, and p300 and H3S10

phosphorylation (Chiu et al. 2009; Tikoo et al. 2008).

Resveratrol

Resveratrol is a dietary polyphenol derived from grapes,

berries, peanuts, and other plant sources. Resveratrol was

found to have strong anti-cancer properties by modulating

signal transduction pathways that control cell division and

growth, apoptosis, inflammation, angiogenesis, and metasta-

sis (Bishayee 2009). The anti-cancer property of resveratrol

has been supported by its ability to inhibit proliferation of a

wide variety of human tumor cells such as in skin, breast,

prostate, lung, and colon (Mao et al. 2010; Vanamala et al.

2010; Liu et al. 2010; Kraft et al. 2009). These in vitro

results have led to numerous preclinical animal studies to

evaluate the potential of this drug for cancer chemopreven-

tion and chemotherapy. Multiple biochemical and molecular

actions seem to contribute to resveratrol effects against

precancerous or cancer cells (Athar et al. 2009).

Resveratrol has been shown to have weaker DNMT

inhibitory activity than other dietary bioactive components

such as EGCG. Resveratrol prevents epigenetic silencing of

BRCA-1 induced by aromatic hydrocarbon receptor (AHR)

in MCF-7 human breast cancer cells (Papoutsis et al. 2010).

It was demonstrated that AHR-mediated enrichment of

mono-methylated-H3K9, DNMT1, and methyl-binding

domain protein-2 at BRCA-1 promoter was restored, at

least partially by resveratrol treatment, which was associated

with BRAC-1 reactivation in MCF-7 cells (Papoutsis et al.

2010). In contrast, resveratrol did not significantly induce

retinoic acid receptor beta 2 (RARβ 2) expressions by

inhibiting RARβ2 promoter methylation in MCF-7 cells

compared to other adenosine analogs (Stefanska et al. 2010).

Studies have shown that resveratrol is associated with

activation of the type III HDAC inhibitors, sirtuin 1

(SIRT1), and p300, in multiple in vitro and in vivo models

(Kaeberlein et al. 2005). The activated SIRT1 negatively

regulates Survivin expression through its deacetylase

activity. Wang et al. (2008) found that human BRCA1-

associated breast cancers have lower levels of SIRT1

expression. However, bioactive dietary components associated
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with SIRT1 activation mediated an increased expression of

human BRAC1 by altering H3 acetylation, which is an

important strategy for targeted therapy for BRCA1-

associated breast cancer (Wang et al. 2008). In addition,

SIRT1-associated BRAC1 signaling is important for inhibit-

ing tumorigenesis by activating oncoproteins in human breast

cancer cells (Wang et al. 2008). It was shown in APC/+ mice

that SIRT1-encoded proteins are required for resveratrol-

mediated chemoprevention (Boily et al. 2009). SIRT1 also

plays important roles in aging processes, since SIRT1-null

mice could not tolerate caloric restriction and did not extend

their lifespan compared to control mice (Boily et al. 2008).

Other bioactive components

In addition to the aforementioned bioactive components,

other common fruits and vegetables have also been reported

to have epigenetic targets either through DNMT inhibition

or histone modifications. These bioactive compounds

include apigenin (parsley), baicalein (Indian trumpet),

cyanidins (grapes), isothiocyanate (cruciferous vegetables),

rosmarinic acid (rosemary), and silymarin (milk thistle). All

of these bioactive components have been reported to have

either direct or indirect epigenetic targets in cancer chemo-

prevention and therapy (Davis and Ross 2007; Fang et

al. 2007; Paluszczak et al. 2010; King-Batoon et al. 2008;

Li and Tollefsbol 2010).

Conclusion and future directions

The emerging field of nutritional genomics targets nutrient-

related genetic and epigenetic changes for prevention and

therapy of various diseases including cancer. From the

studies described herein, it is clear that bioactive dietary

components hold great potential not only in the prevention

but also in the therapy of a wide variety of cancers by

altering various epigenetic modifications. Cancer is a multi-

step processes and uses many survival pathways to prevail

over normal cells. Therefore, bioactive components which

have numerous molecular targets and suppress multiple

cellular pathways such as EGCG may have strong potential

for cancer prevention and treatment. Although individual

bioactive components have shown great potential in

prevention and treatment of various cancers, the combined

use of dietary components should be more efficient in

targeting the many cellular processes involved in tumori-

genesis. Additional clinical studies are required to analyze

the safety profile of doses, route of administration, organ

specificity, and bioavailability of these bioactive components

in human subjects. Ancient medicinal uses and extant

scientific evidence strongly endorse the use of these bioactive

dietary components for drug discovery and development

against cancer prevention and therapy.
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