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It is well established that there is a heritable element of susceptibility to chronic human ailments, yet there is compelling evidence that some 

components of such heritability are transmitted through non-genetic factors. Due to the complexity of reproductive processes, identifying the 

inheritance patterns of these factors is not easy. But little doubt exists that besides the genomic backbone, a range of epigenetic cues affect our 

genetic programme. The inter-generational transmission of epigenetic marks is believed to operate via four principal means that dramatically 

differ in their information content: DNA methylation, histone modifications, microRNAs and nucleosome positioning. These epigenetic signa-

tures influence the cellular machinery through positive and negative feedback mechanisms either alone or interactively. Understanding how 

these mechanisms work to activate or deactivate parts of our genetic programme not only on a day-to-day basis but also over generations is 

an important area of reproductive health research. 
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Introduction

Epigenetic aberrations have been conjectured to be highly relevant 

to sexual and reproductive health, as they account for the interactive 

relationship among the genomic landscape, gene environment in-

teractions and disease phenotype. Novel insights into aetiologies of 

complex non-Mendelian disease traits have provoked a burgeoning 

interest in the field of reproductive epigenetics. How a range of epi-

genetic mechanisms can differentially influence the male and female 

germ line and developmental process is being closely scrutinized. Of 

late, the subtle and elegant modulation of fidelity of transmissible 

heritable characteristics through epigenetic reprogramming has also 

received wider scientific attention. Developmental activation and 

deactivation of epigenetic signatures at the pre-implantation phase 

provides putative links between assisted reproductive technologies 

and imprinting disorders. Occurrence of imprinting errors disrupts 

placental growth and development in assisted conception proce-

dures. 

It is important to understand how epigenetic information is estab-

lished and regulated in the parental germline and how epigenetic 

inheritance takes place. This crucial knowledge may be of help to de-

termine the connection between environmentally manipulated epi-

genetic alterations and development of the organism. It has often 

been argued that most epigenetic modification, by whatever mech-

anism, is erased with each new generation, during gametogenesis 

and after fertilization. DNA methylation, histone modification, mi-

croRNA (miRNA) expression, and nucleosome positioning are the 

four basic modes driving the path of development (Figure 1). Epigen-

etic control systems generally involve three types of proteins: “writ-

ers,” “readers,” and “erasers (Table 1).” Writers attach chemical marks, 

such as methyl groups (to DNA) or acetyl groups (to the histone pro-

teins that DNA wraps around) [1]. Readers bind to these marks, 

thereby influencing gene expression; erasers remove the marks. The 

marks are passed down as cells divide, providing a sort of cellular 

memory to ensure that cell proliferation is effectively regulated.
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1. Epigenetic modi�cations 

1) DNA methylation 

DNA methylation, a well-characterised epigenetic modification, is a 

heritable covalent modification and is binary in nature. Most methyl-

ation occurs at the number five carbon of the cytosine pyrimidine 

ring (5-methyl-cytosine or 5 mC) and represents less than 5% of all 

cytosines in our genomes. Genomic methylation patterns are propa-

gated during cell division by DNA methyl-transferases (DNMT1, DN-

MT3A/B), which catalyse the transfer of a methyl group to DNA [2]. 

Five DNMT enzymes—DNMT1, DNMT2, DNMT3A, DNMT3B, and DN-

MT3L—actively regulate two different processes, that is, mainte-

nance and de novo methylation activities [3]. One of the important 

sites for DNA methylation is CpG-enriched regions associated with 

promoters called “CpG islands [4,5].” The majority of these sites are lo-

cated in the promoter region and first exon of genes. DNMTs, along 

with other enzymes, can orchestrate gene silencing and maintain a 

repressive chromatin state. Once methylated, proteins such as 

MeCP2, MBD1, MBD2, and MBD4, which have a methyl-binding do-

main (MBD), bind to the DNA, which further impedes recruitment of 

transcription factors to DNA, leading to abrogated gene expression 

[6]. Hypermethylation of DNA can also recruit histone deacetylase 

(HDAC), leading to inevitable alterations in gene expression [7,8]. 

DNA demethylation, a related event that is equally important, con-

verts methyl-cytosine into cytosine either actively or passively. The 

replication-independent active mechanism uses the ten-eleven 

translocation (TET) enzyme family (TET1, TET2, and TET3) to catalyse 

hydroxylation of 5mC followed by activation-induced cytidine deam-

ination [9,10]. On the other hand, replication-dependent passive de-

methylation occurs during inadequate availability of global methyl 

donor S-adenosyl-L-methionine (SAM) or DNMTs-mediated demeth-

ylation in the presence of Ca2+ ions and reducing surroundings [11]. 

Thus, promoter hypermethylation causes gene silencing whereas 

promoter demethylation results in gene expression. 

2) Histone modifications 

Histones are the globular proteins that undergo posttranslational 

modification and alter regulation of gene expression, and DNA repli-

cation, recombination, and repair. While nucleosomes represent the 

primary step in the construction of higher-order chromatin struc-

tures [12], histones have a protruding charged 15-38 amino acid N-

terminus (“histone tail”) that influences nucleosome assembly into 

higher order chromatin structures. In its condensed state, chromatin 

remains in a folded configuration so that the nucleosomes are 

stacked, and hence, not readily accessible to gene activation. Howev-
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er, covalent modifications such as acetylation, methylation, phos-

phorylation, poly-ADP ribosylation, and ubiquitination on the long 

tails of histones alter histones-DNA interaction and higher order 

chromatin folding. These post-translational covalent modifications 

regulate the contact between the octamer core and DNA, and deter-

mine DNA accessibility to transcription factor complexes. The capa-

bility to accumulate information appears to dwell in the amino-ter-

minal tails of the four core histones, which are exposed on the nu-

cleosome surface and are subject to enzyme-catalysed post-transla-

tional modifications of select amino acids, including lysine acetyla-

tion, lysine and arginine methylation, serine or threonine phosphory-

lation, lysine ubiquitination, lysine sumoylation, or glutamine ADP ri-

bosylation (Table 1). Epigenetic modification of the histone tail plays 

a key role in transcriptional regulation, DNA repair, DNA replication, 

alternative splicing, and chromosome condensation. With reference 

to its transcriptional state, the human genome can be approximately 

compartmentalised into actively transcribed euchromatin and tran-

scriptionally inactive heterochromatin [13]. Euchromatin is character-

ised by high levels of acetylation and trimethylated H3K4, H3K36, 

and H3K79. On the other hand, heterochromatin is categorized by 

low levels of acetylation and elevated levels of H3K9, H3K27, and 

H4K20 methylation [14]. Interestingly, such dynamic modifications 

are actively added or removed by different histone-modifying en-

zymes (writers and erasers, respectively) that catalyse modification 

of specific amino acids with definite modifying groups in a site-spe-

cific manner to manage transcriptional control (Table 1). With specific 

modification, histones regulate the structural organization of chro-

matin by altering the electrostatic charge provided by the substitut-

ed group and facilitating recognition sites for different adaptor pro-

teins (readers) such as proteins containing a bromodomain, which 

binds to the acetylated lysine inscriptions. 

Table 1. Molecules involved in the process of epigenetic regulation         

Epigenetic alteration 
Modifying 

residue
Nomenclature Precursor molecule

Modifier Chromatin reading 
domain

Documented function
Writer Eraser

DNA Methylation

   5-methylcytosine Cytosine 5 mC S-adenosylmethionine, DNMT1 TET1/2 MBD 1/2/3 domain, Replication

   5-hydroxymethylcytosine 5 hmC methionine DNMT3a/b JHDM MeCP2 Transcription

   5-formylcytosine 5 fC DNMT3L AID

   5-carboxylcytosine 5 caC AID/APOBEC

Histone modification 

   Methylation Lysine K-mono-me 

K-di-me

K-tri-me

S-adenosylmethionine, 

methionine

KMT2A/B/C 

KMT3A/B

NSD2/3

KMT6

KDM5A (JARID1A)

KDM5C (JARID1C)

KDM6A (UTX)

Chromodomain, 

tudor domain,

TRIM33,

ING1/4,

MSG6,

MBT domain, 

PWWP domain,

PHD fingers, 

WD40/b propeller

Transcription, Repair

Arginine R- mono-me S-adenosylmethionine, AMT ADM Tudor domain Transcription

R- di-me methionine

R- tri-me

   Acetylation Lysine/

arginine

K-ac Acetyl CoA KAT3A

KAT3B

Class I 

(HDAC 1-3 and 8)

Bromodomain 

(BRD 1/2/3),

Transcription, Repair, 

Replication, Condensation

KAT6A

KAT6B

Class II 

(HDAC 4-7 and 9-10)

PHD fingers,

TRIM33

Class III 

(HDACs sirtuin 1–7)

PBRM1

Class IV HDAC11

   Phosphorylation Serine

/threonine/

tyrosine

S-ph

T-ph

Adenosine 

triphosphate 

ATM

JAK2

Phosphatases 14-3-3, BRCT

BRCA1

Transcription, Repair,

Condensation

Y-ph  PIM1 SH2 Transcription, Repair

   Ubiquitination Lysine K-ub Ubiquitin E1

E2

E3

Deubiquitinases 

(DUBs) USP7/

USP22/USP44.

UIM, IUIM Transcription

DNA repair
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3) miRNA 

MicroRNAs (miRNA) are single-stranded RNAs approximately 21–23 

nucleotides in length that are transcribed from DNA but not translat-

ed into proteins. These non-coding RNAs (ncRNAs) regulate several 

molecular pathways at the transcriptional or post-transcriptional lev-

el. miRNA genes primarily reside between genes (intergenic) or with-

in introns (intronic) of genes and are transcribed to a primary miRNA 

(pri-miRNA) mediated by polymerase II or III [15]. The pri-miRNA is 

processed within the nuclear compartment to a precursor miRNA 

(pre-miRNA) by Drosha, a class 2 RNase III enzyme. Subsequently, the 

transport of pre-miRNAs to the cytoplasm is arbitrated by exportin-5. 

In the cytoplasmic region, they are processed further to develop into 

mature miRNAs by Dicer, an RNase III type protein, into 21–25 nucle-

otide double-stranded RNAs (dsRNAs) and loaded onto the Argo-

naute (Argo) protein to generate the effector RNA-induced silencing 

complex (RISC) [16]. RISC binds to mRNA, forming a RISC-mRNA 

complex on which miRNAs mediate sequence-specific recognition 

and binding, which further degrades or silences the target mRNA de-

pending on the sequence complementarity. While the majority of re-

searchers believe that miRNAs restrain translation, evidence that 

miRNAs can actually augment translation through alterations in the 

Argo component of the RISC has also been reported. Thus, while 

miRNAs appear to police translation in an inhibitory fashion, they 

may also boost translation in defined biological settings.

4) Nucleosome positioning

 DNA packaging in nucleosomes might affect all stages of transcrip-

tion, thereby regulating gene expression. The precise position of nu-

cleosomes around the transcription start sites has an essential de-

gree of control over the initiation of transcription [17]. Nucleosome 

positioning not only decides the accessibility of the transcription fac-

tors to their target DNA sequence but has also been reported to take 

part in shaping the methylation landscape. Besides transcription reg-

ulation, nucleosome occupancy also participates in directing meiotic 

recombination events. The precise function of nucleosomes is influ-

enced by the incorporation of different histone variants that are in-

corporated into chromatin independently, outside the S-phase. Of-

ten linked with specific histone modifications, nucleosome remodel-

ling machinery is also influenced by DNA methylation. Thus, the in-

teraction among diverse epigenetic partners is often evident.

2. Role in gametogenesis 

Gametogenesis occurs in a precisely defined microenvironment, 

and therefore molecular events during this process have to be strictly 

regulated to enable correct transmission of heritable information to 

subsequent generations. Primordial germ cells (PGCs) are the deriva-

tive source of both female and male germ cells that experience ge-

nome-wide reprogramming during their relocation to the developing 

gonads. Reprogramming in the germ line is a crucial event to retune 

parent-specific epigenetic information, and is potentially vital for or-

ganization of sex-specific germ line development and identity [18]. 

The processes of development from germ cells to gametes and from 

gametes to embryos include dramatic cellular differentiation accom-

panied by drastic alteration in gene expression that occurs through 

tight regulation by genetic as well as epigenetic mechanisms [18]. 

These epigenetic mechanisms may be involved in checking meiosis 

and the terminal differentiation programme during gametogenesis, 

retaining information in gametes for the offspring and erasing im-

proper marks in zygotes before the beginning of a new being. The 

chromatin structure of germ cells acts as a basic mechanism to pre-

serve their unique self-renewal ability and block differentiation. In ad-

dition to chromatin remodelling, dynamic regulation of histone modi-

fications and DNA methylation is also required to maintain germ cells’ 

identity [19]. Developmental epigenetic characteristics are established 

in the process of gametogenesis and early embryogenesis (Figure 2). 

1) Spermatogenesis 

Male germ cells have compact nuclear DNA which are required for 

the transmission of the paternal genome to the oocyte. The highly 

compacted paternal DNA residing in the sperm head goes through 

extensive remodelling [20]. The process of spermatogenesis involves 

condensation of chromatin in the spermatid head prior to conversion 

of spermatids to spermatozoa [21]. The spermatids have a less com-

pact genome in the early stages of spermatogenesis that is further 

compacted in the sperm genome by the substitution of histones by 

non-histone proteins. In the process of histone replacement, they are 

first replaced by transition proteins (TNP1 and TNP2) and eventually 

by protamines (P1 and P2). This allows the protamines-bound sperm 

genome structure to compact 6 to 20 times more than the histone-

bound nuclear structure that makes it transcriptionally and transla-

tionally inert. Human spermatozoa are acknowledged to enclose a 

huge range of RNA molecules, including over 100 types of miRNA 

[22]. On the other hand, the mature sperm cells enclose only the 

mRNA and small RNAs that were present in the spermatids at the 

early phases of spermatogenesis. It was previously assumed that 

there is no participation of sperm transcriptome in embryo develop-

ment but several recent studies have described the involvement of 

sperm genome organization as well as paternal transcriptome in ear-

ly embryonic development. Moreover, chromatin of mature sperma-

tozoa retains small amounts of histones, which is crucial in the differ-

entiation and early development of the zygote. Surprisingly, the 

male pronucleus also displays elevated levels of histone acetylation, 

which supports higher transcription from the S phase in the zygote 

stage and later. Demethylation in the PGCs results in activation of 
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genes: deleted in azoospermia-like (Dazl) and synaptonemal com-

plex protein 3 (Sycp3), that are essential for gametogenesis [23]. This 

also regulates expression of testis-expressed (Tex19.1, Tex19.2) and 

Mili (also called Piwi-like 2) genes required to suppress any unmasked 

retrotransposon action and for a stable genome integrity [24]. miR-

NAs also regulate the transcriptional silencing in compact chromatin-

containing elongating spermatids [25]. Dicer activity has been found 

to be crucial during male germ cell differentiation, as reported in Dic-

er knockout studies, which shows that early Dicer deletion results in 

damage accumulation and compromised spermatogenesis [26,27]. 

Increasing evidence supports the vital role played by small RNA-me-

diated RNA regulation in normal spermatogenesis and can affect 

male fertility if it fluctuates from the normal germline. 

2) Oogenesis

The maternal DNA contained in the oocyte is bound by histones ac-

quired during oocyte growth comprising post-translational modifica-

tions associated with stalled metaphase II. The major difference be-

tween the chromatin of oocyte and somatic nuclei is the deficiency of 

H1 linker histones in oocytes, which are replaced with a specific H1 

variant whose role in early embryogenesis remains to be understood. 

Histone methylations play important roles in the regulation of chro-

matin structure and gene expression during follicle maturation, espe-

cially for oocyte meiotic maturation. Euchromatin histone-lysine N 

methyl-transferase 2 (EHMT2) methylate H3K9me1 and H3K9me2 are 

crucial for early meiotic progression. It has been established that H3K-

9me3 appears in growing oocytes from early antral follicles, increases 

subsequently during the growth phase, and is retained during oocyte 

meiotic maturation and activation [28,29]. However, at different de-

velopmental stages, sensitivity toward methylation of a diversity of 

histones including H3K4me, H3K4me2, and H3K4me3 has been 

found in granulosa cells of follicles as well as in oocytes from primary 

to antral-stage follicles [30]. In addition, histone ubiquitination may 

be another regulatory factor during follicle development. Ubiquiti-

nated histone H2A is coupled with transcriptional silencing of large 

chromatin areas during meiosis in females. The production of gam-

etes might require orderly and proper epigenetic reprogramming in 

premigratory and migratory germ cells for an appropriate epigeno-

type to support subsequent normal development. Genomic imprint-

ing in the oocytes of females occurs after birth and is arrested at the 

diplotene stage of meiotic prophase I, and is then completed by the 

de novo methylation process in the fully-grown oocyte stage.
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3. Role in embryogenesis

Organisms experience two developmental epigenetic reprogram-

ming events: the first during gametogenesis and the second in the 

pre-implantation embryo [31]. Embryonic development includes an 

array of cell fate decisions to specify cell lineages that are established 

early during development, and that must be “maintained” through 

multiple cell divisions. It is increasingly evident that epigenetic in-

scriptions play a critical role in this cell memory during development 

[32]. It has long been appreciated that the parental pronuclei in 

mammalian zygotes and during preimplantation development ac-

quire asymmetric epigenetic information, which include distribution 

of histone modifications and differences in the level of DNA methyla-

tion [33,34]. At this stage, the two parental genomes stay physically 

separate and undergo a diverse program of chromatin remodelling. 

Epigenetic restructuring is essential for transition of a totipotent zy-

gote into pluripotent stem cells, leading to channelization to the 

multipotent lineage progenitor cells that finally reach the lineage-

specific unipotent somatic cells. The stem cell transcriptome repro-

gramming by epigenetics is the ultimate control mechanism that 

provides stem cells with adaptability, flexibility, and versatility so they 

can modify their gene expression in response to developmental sig-

nals and differentiate into any cell (Figure 2). Here, the epigenetic 

modifiers play an important role to drive the information into cell-

specific functional lineages [35]. Reversible DNA methylation and co-

valent histone modifications are two important agents in these 

mechanisms, where transient histone modifications provide short-

term flexibility in the early development of lineage-committed 

genes. Besides this, the various stages of development can be forced 

into long-term or permanent repression by DNA methylation, nu-

cleosome positioning, and higher-order chromatin reorganization 

[36]. Recent reports from numerous laboratories have provided evi-

dence that the recently fertilized oocyte acquires epigenetic signals 

from the sperm chromatin that are necessary for proper embryonic 

development [37].

After the fertilization of highly specialized ova and sperm, a wave of 

demethylation takes place in the zygote genome that continues till 

the 16-cell stage of development. The processes of epigenetic re-

modelling occur differently in the genome of each parent at this 

stage. The paternal genome goes through numerous cycles of de-

condensation by demethylation as well as protamines replacement 

with histones and histone variants. Following fertilization, the mater-

nal genome completes meiosis and undergoes notably fewer epi-

genetic alterations as compared to the paternal genome. At the 

same time, imprinted regions escape demethylation cycles and 

maintain the specific epigenetic states of their parent of origin.

Reversible DNA methylation is an important epigenetic manipula-

tor involved in a number of processes that maintain genome stability, 

organize mono-allelic expression of parentally imprinted genes, si-

lence retrotransposons and confirm transcriptional silencing of 

genes on the inactive X chromosome. The two parental pronuclei 

have epigenetic asymmetry at the global levels of DNA methylation, 

as exhibited initially by high levels of DNA methylation [33,38]. These 

asymmetric and persistent epigenetic marks in the early stages of zy-

gotic development and their effect on early embryonic development 

remain unclear. DNA methylation patterns are established in embry-

onic development by DNMT3A/B [39]. Precise DNA methylation pat-

terns are required for regular development and lineage commit-

ment. This causes the methylation of the entire genome while CpG 

islands are protected, which causes global repression and permits 

housekeeping gene expression in all cells. Although DNA methyla-

tion event is secondary, it possibly contributes an additional level of 

repression by providing long-term stability. However, it can be cut off 

both actively and passively at the episodes of reprogramming in 

PGCs and preimplantation embryos [40]. 

DNA demethylation is a very important player in epigenetic repro-

gramming of embryonic development and differentiation that de-

termines cellular fate [41,42]. At the time of development, germline 

DNA methylation marks are globally removed in the blastocyst and a 

bimodal pattern is reestablished later during implantation when the 

entire genome gets methylated while CpG islands are protected. Just 

after fertilization, DNA-demethylation triggers the quiescent tran-

scriptional machinery of the totipotent zygote which helps through-

out germline reprogramming of the PGCs and eventually propels the 

pluripotent stem cells into lineage-restricted pathways. Both active 

and passive mechanisms of DNA demethylation mediate remodel-

ling of the paternal genomes just after fertilization and before the 

initial zygotic divisions. Genome-wide active demethylation in the 

paternal pronucleus occurs before pronuclear fusion and first cleav-

age division [43]. Active demethylation involves extensive oxidation 

followed by passive loss over early cell divisions in the zygote [44]. 

Towards the 16-celled morula stage it experiences a replication-de-

pendent loss of methylation (LOM) of the maternal pronucleus [43]. 

The delineation of the trophoectoderm from the inner cell mass at 

the blastocyst stage is also facilitated by hypomethylation in the pro-

moter region of transcription factor E-74-like factor 5 [45]. It is 

thought that DNA-demethylation excites the onset of pluripotency 

in the zygote, subsequently triggers the expression of lineage-deter-

mining transcription factors and determines the embryo’s segrega-

tion into the three embryonic germ layers. 

The next major reprogramming event in the developing embryo 

happens in germ cell precursors known as PGCs. These cells originate 

directly from the blastocyst’s pluripotent cells of the inner cell mass. 

They migrate to urogenital ridges during gastrulation, where they are 

reprogrammed by erasure of all pre-existing epigenetic modifications 
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such as removal of maintained marks that were made during the pre-

implantation stage [46,47]. These mechanisms of regulation result in 

repression of somatic differentiation of genes and/or activation of 

genes concerned in preservation of specific germ cell identity [45]. 

These important phenomena therefore set up the sex-specific epigen-

etic profiles and transcriptional planning needed for the typical devel-

opment of the germline and epigenetic inheritance regulation [48]. 

Reversible post-translational covalent histone modifications are 

crucial agents directing epigenetic regulation responsible for genera-

tion of differential transcriptional outcomes. Three different states of 

chromatin arrangement are seen depending on the occurrence and 

abundance of histone marks [49]. The first dynamic set of permissive 

marks, including tri-methylated histone H3 lysine 4 (H3K4me3), acet-

ylated histone H3 lysine 9 (H3K9ac) and acetylated histone H4 (H4ac) 

are found in the totipotent zygote and pluripotent stem cells. In so-

matic cells, lineage control genes are stably silenced by repressive 

histone modifications such as trimethylated histone H3 lysine 9 

(H3K9me3) and trimethylated histone H3 lysine 27 (H3K27me3), 

which are a second set. The third state of chromatin arrangement is a 

more important and exclusive feature known as bivalent domains, 

found in key developmentally regulated genes. This domain contains 

active H3K4me3 and repressive H3K27me3 along with repressive 

H2AK119Ub1 marks and unmethylated CpG DNA regions (non-

mCpG) [50]. These chromatin mechanisms acts as molecular switch-

es maintained at a poised state amenable for specific transcriptional 

response upon receipt of differentiation cues [1]. 

Histone variants also have specific role in reprogramming of the 

epigenome. This occurs after fertilization and contributes to the differ-

ences between the two parental genomes. The male pronucleus has 

been observed with a H3.3 histone variant that possibly plays a role in 

directing or preventing other paternal-specific histone modifications. 

Modification of H3.3 has also been linked with developmental arrest 

due to mutations in lysine 27 of H3.3 and paternal pericentric hetero-

chromatinization [51]. Although the exact functions of these H2A.X 

and H2A.Z variants remains unclear in early development, their dele-

tion brings developmental arrest and failure of implantation. 

Throughout the cellular stages and stages of development, a cell’s 

nuclear architecture undergoes extensive dynamic changes such as 

in the level of chromatin compaction, accessibility by transcription 

factors and nucleosome positioning within specialized nuclear re-

gions. This affects the degree of condensation of chromatin and nu-

cleosomal organization that allows region-specific transcriptional 

profiles to be established during the course of cell commitment [1]. 

Probably the most complete understanding of involvement of miR-

NAs in paternal epigenetic inheritance come from the studies in Cae-

norhabditis elegans [52]. Studies involving identification of RNA se-

quencing of sperm RNA also suggest the possibility that these RNAs 

could contribute to epigenetic states in the early embryo [53].

Genomic imprinting can occur at hundreds of coding genes and 

regulatory ncRNAs. This is one of the important phenomena in epi-

genetics that regulate gene activity by preferential allele-specific 

gene expression. Simply imprinting mono-allelic DNA methylation 

marks can control the expression of imprinted genes, which are than 

maintained throughout development in a lineage- or tissue-specific 

manner [54]. This specific epigenetic regulation leads to expression 

of only one parental allele of a gene in such a way that some imprint-

ed genes exhibit paternal expression whereas others exhibit mater-

nal expression. These imprints are obtained in the process of game-

togenesis when genome-wide epigenetic remodelling occurs, which 

must be maintained throughout preimplantation development 

where another wave of genome-wide epigenetic remodelling occurs 

[55]. The basic mechanism of this process is DNA methylation-based 

molecular arrangement, which regulates the establishment and 

maintenance of parental imprints all over early embryonic develop-

ment and gametogenesis [56]. It is imperative to mention that meth-

ylated DNA regions are transcriptionally inactive, whereas unmethyl-

ated DNA regions are transcriptionally active. Methylated DNA re-

gions are inhibited from expression by two processes, a methyl 

group attached to DNA can interfere in the binding to a particular 

transcription and methylated DNA regions can recruit MBD proteins 

mediating transcriptional repression. Genomic imprinting and epi-

genetic reprogramming in the context of DNA methylation is gov-

erned by two major waves of genome-wide demethylation and re-

methylation. First, in biparental genetic totipotent zygotic cells just 

after fertilization, and second in biparental methylation in the differ-

entially methylated regions (DMRs) that are eliminated, imprinted 

methylation is reestablished in the germline for the next generation. 

That means imprinted DMRs remain unaffected at this first wave of 

genome-wide DNA demethylation and maintain parental imprints in 

the somatic tissues of the embryo throughout life. Animal studies 

suggest that those imprints that are established in growing oocytes 

during primordial to antral follicle transition will remain unaffected in 

some genes until just prior to ovulation; which could be vulnerable 

to ovarian stimulation. Deviations in proper epigenetic reprogram-

ming such as disruption of imprinting in the germline can endorse 

heritable changes on transcription and diseases. 

4. Role in infertility 

Changes in the germline genome and epigenome can be a path for 

environmental and evolutionary adaptations. However, aberrant epi-

genetic remodelling of the germline is proposed as a potential mech-

anism by which gametogenesis can be compromised and can result 

in fertility and reproductive health-related problems. Emerging evi-

dence suggests that genetic factors (cytogenetic abnormalities, DNA 
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damage, disease status, hormonal abnormalities, effect of the micro 

environment, etc.) and environmental factors can have harmful ef-

fects on epigenetic arrangement during the process of implantation, 

placentation, and foetal growth. Therefore, even in a genetically nor-

mal individual, the environment can induce epimutations (a heritable 

change in gene expression that does not affect the definite base pair 

sequences of DNA) and can result in infertility and subfertility not 

only in the parent’s germline but also potentially in the offspring. 

1) Male infertility

Results of recent work have significantly improved our understand-

ing of the sperm epigenome and its probable role in embryonic de-

velopment. These new outcomes have facilitated a broad definition 

of a normal epigenetic state in the male gamete while also providing 

insight into the potential aetiologies of various idiopathic male infer-

tility cases [57]. Emerging studies have shown notable associations 

of aberrant DNA methylation in spermatozoa with idiopathic male 

infertility as well as increased frequency of spontaneous abortions 

and imprinting disorders [58]. In addition, the epigenetic errors in the 

process of spermatogenesis in humans have been acknowledged as 

causes for reduced sperm competency and reduced fertility in males. 

The fundamental causes of infertility in males may be seminal oxida-

tive stress, double- and single-stranded DNA damage of both the 

nuclear and mitochondrial genome of sperm, sudden telomere attri-

tion and aberrant epigenetic alterations that can not only affect a 

single person but also their descendants [59]. The relationships be-

tween DNA methylation levels and male fertility in humans have 

been investigated in several studies. The methylation load and de-

fects of the sperm DNA have been confirmed as a cause of infertility. 

Emerging evidence suggest that miRNAs play an important role in 

male fertility. Specifically, miRNA knockout of Dicer in the sertoli cells 

has been shown to result in testicular dysgenesis and infertility due 

to alterations in sertoli cell architecture [60]. A concerted effort to 

identify the roles of particular miRNAs during spermatogenesis 

should help determine whether miRNAs can serve as important pre-

dictive or diagnostic indicators and/or a system for treating male in-

fertility. Epimutations could lead to male infertility, as suggested in 

the literature. Often hypermethylation has been found to be associ-

ated with poor semen parameters or male infertility. Evaluating the 

implications of lifestyle habits, food intake and environmental factors 

(e.g., drugs and toxins) on the sperm epigenome and the subsequent 

effect on fertility outcomes is needed. This should be of help to bet-

ter understand epigenome regulation in the male germline, and may 

also suggest new strategies for this line of research. 

2) Female infertility

In females, epigenetic changes in the oocytes can be affected by 

factors such as maternal nutrition and exposure to certain toxins that 

have been linked with neonatal developmental and gestational de-

fects [61]. Perturbations in epigenetic mechanisms may further eluci-

date the intrinsic causes of infertility or state of fertility or ovarian tu-

morigenesis [62]. Epigenetics in women with infertility is more com-

plex and less explored; the factors associated with epigenetic abnor-

malities are diverse. These factors include ovulation problems (more 

common due to polycystic ovary syndrome [PCOS]), endometriosis, 

inflammatory disorders, age-related factors, and nutritional status 

[63]. PCOS is a complex multi-factorial, chronic disease state that is 

one of the leading causes of anovulatory infertility and subfertility. 

PCOS is distinguished by a range of ovarian, hormonal, and metabol-

ic disturbances and exhibits chronic menstrual irregularities, follicular 

cysts on ultrasonography, hyperinsulinemia, obesity, and hyperandr-

ogenemia. In utero hyperandrogenism exposure may perturb the 

epigenetic reprogramming in foetal reproductive tissue and could 

be a cause of post-natal PCOS. Endometriosis has not been proven to 

have a genetic cause, but it is worth considering that abnormal ex-

pression of candidate genes could be provoked by different epigen-

etic modifications including DNA methylation, heterochromatization 

or aberrant regulation of miRNA expression [64].

It is well established that the decline in female reproductive re-

sponses is associated with advanced maternal age and postovulatory 

aging of oocytes [65], which leads to compromised quality of oocytes 

and a lower pregnancy rate. Understanding the underlying causes of 

these circumstances, which may include mitochondrial dysfunctions, 

aneuploidy, or epigenetic changes, has recently drawn increased at-

tention. This is an important factor in reproduction and reproductive 

health in order to ensure that the correct epigenetic modifications 

occur during oogenesis and early embryo development [66].

5. Role in assisted reproductive technology 

Assisted reproductive techniques intended to support infertile cou-

ples in having their own children have significant risks of passing on 

molecular errors to the next generations [67]. Although assisted re-

productive technology (ART) has become a common practice for the 

treatment of human infertility, the increased vulnerability of ART-

conceived children to perinatal health problems is poorly understood 

[68]. According to the Centers for Disease Control and Prevention, 

“ART includes all fertility treatments in which both eggs and sperms 

are handled.” These procedures include artificial insemination, in vitro 

maturation, in vitro fertilization, super-ovulation, embryo culture and 

transfer, and intra-cytoplasmic sperm injection [69]. ART is growing 

in popularity and becoming an increasingly important field. Current-

ly, 1% to 3% of annual births occur through ART in industrialized 

countries and the proportion is growing [70]. These technologies are 

considered procedurally safe except for an increased incidence of 
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premature births. In vitro culture and maturation of oocytes, super-

ovulation, and embryo culture can stimulate epigenetic modification 

that might be transmitted to the next generation and expected to 

influence its epigenome [71]. These procedures affect the DNA 

methylation pattern, parental imprinting status, and expression of 

imprinted genes. Two important techniques employed during ART, 

ovarian stimulation and in vitro culture, play a crucial role in epigene-

tic programming events that happen naturally through gametogen-

esis and early embryonic development [72]. ART-related manipula-

tions of oocytes and embryos coincide with the timing of epigenetic 

rewriting and sex-specific imprint acquisition. This suggests that ART 

can interfere with epigenetic programming events from this mo-

ment and beyond. In fact, studies show that imprinting disorders 

such as Beckwith-Wiedemann syndrome (BWS), Angelman syn-

drome and Prader-Willi syndrome are more common in children 

conceived by ART [72]. Several case series in children born via ART 

suggest that there is a three-fold to six-fold higher prevalence of ART-

conceived children born with BWS than in the general population. 

BWS is an overgrowth disorder where aberrant genetic and epigen-

etic regulation at the KCNQ1OT1 and H19 imprinted domains is the 

cause. Methylation abnormalities such as maternal LOM at KC-

NQ1OT1 and maternal gain of methylation at H19 have been identi-

fied in ART-conceived BWS children. Another common disorder seen 

is Angelman syndrome, which is a neurological disorder with genetic 

and epigenetic disturbances at the maternal LOM small nuclear ribo-

nucleoprotein polypeptide N-imprinted domain due to downregula-

tion of maternal UBE3A expression that cause abnormalities [73]. The 

major problem identified in these ART-associated imprinting disor-

ders is due to epimutations that are usually absent in the normal 

population and maternal alleles [72]. BWS also arises from imprinting 

defects at the SNRPN DMRs.

Observed differences in DNA methylation levels in ART and in vivo 

conception are not only due to the underlying infertility but also the 

effect of some aspect of ART procedures themselves [74]. It should be 

noted that ART is generally performed in individuals with infertility/

subfertility problems. As result, in most cases, successful ART produc-

es the birth of a child that has abnormal expression due to improper 

imprinting in the parental lineages. This prompts the question of 

whether infertility/subfertility implies epigenetic reprogramming or 

whether the manipulation of gametes/embryos by ART leads to epi-

genetic alterations or whether a combination of both is involved [73]. 

It is possible that infertility and ART alone or in combination disrupt 

the complex biological pathways leading to aberrant epigenetic alter-

ations such as the methylation status of imprinted regions and may 

cause imprinting disorders. However, the relatively small number of 

cases of ART associated with imprinting disorders makes it challeng-

ing to carry out conclusive clinical trials. Therefore, coordinated clinical 

and basic studies in large registries are mandatory to determine the 

actual impact of ART on epigenetic alterations. When the safety of hu-

man ART is considered from an epigenetic perspective, we must take 

into account the functional implications of epigenetic reprogram-

ming in very early development and adult disease [68,75]. Moreover, 

artificial conception process not only transmits sperm nuclear DNA to 

the oocyte but also activation factor, centrosomes, and a host of mes-

senger RNA and microRNAs that can influence post-fertilization activ-

ity [76]. Children born of ART need to be evaluated with long-term 

follow-up from childhood into adulthood to identify potential im-

pacts of genomic imprinting in infertility and ART [77]. As nutritional 

and/or metabolic status influences cellular microenvironment, there-

fore, both these factors might also influence the epigenomic land-

scape of children born from assisted reproductive procedures [78].

6. Transgenerational epigenetic inheritance

Epigenetic information could be transmitted to the subsequent 

generation as genetic information is passed on, and is now discussed 

as transgenerational epigenetic inheritance. This event can have a 

broad spectrum of implications for the state of health, disease devel-

opment, and more importantly, molecular adaptation and evolution. 

The epigenetic transmission of information can occur due to con-

necting links, the gametes that can pass adhered epigenetic marks 

from the previous generation to subsequent generations. Because 

the environment can induce changes in the germline epigenome 

that can be transmitted to subsequent progeny, therefore, might be 

a cause for disease aetiology observed at later stages of life [79-81]. 

The most common mechanism mediating transgenerational epigen-

etic inheritance is DNA methylation, by which the major program-

ming occurs during early mammalian development [82]. However, 

ncRNAs have also been identified as a possible mechanism for regu-

lating transgenerational transmission of information [83]. In addition, 

piRNAs have been noted as possible mediators of the mechanism 

that silences mobile genetic elements transgenerationally [83,84]. 

Evidence suggests that transgenerational epigenetic inheritance in-

cludes the transmission of epigenetic marks between generations in 

the absence of any environmental exposure [85], but their limits, that 

is, the degree to which this can occur, remain unclear [86]. Therefore, 

identifying the mechanisms of this mode of transmission and their 

impact on life is an area of epigenomics waiting to be explored.

Direct exposure generally has an effect on somatic tissues, but a 

transgenerational effect requires a transmission of epigenetic infor-

mation with the germline. It has been demonstrated that exposure 

in the parental generation is remembered and transmitted to unex-

posed future generations through gametes as a “memory” of the en-

vironment. Environmental and metabolic conditions during gesta-

tion may shape epigenetic reprogramming and may further influ-
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ence the lifetime health of the child and the disease aetiology in off-

spring [87-89]. This illustrates that the intrauterine environment (nu-

trition, stress, and so on) has a vital effect on developmental pro-

gramming, which, in turn, not only influences the germline (sperm 

or egg) in the foetus (F1) but also the germline of the foetus (F2) [90]. 

When these influences are transmitted and continue to appear 

across generations beyond F3, this reflects the transgenerational in-

heritance of epigenetics and cannot be described by direct environ-

mental exposure anymore. Evidence from further investigation has 

shown that epigenetic effects could be inherited into the fourth gen-

eration. However, due to versatility of exposure and the transient na-

ture of epigenetics, it becomes more difficult to understand the 

mechanisms in this complex process [91]. It has now been shown in 

several different laboratories and animal model systems that stress 

can promote the epigenetic transgenerational inheritance of disease. 

The account of transgenerational disease and pathology has distinct 

and greater frequency than direct exposure pathology, as shown in 

recent studies [92,93]. In this context, the epigenetic transgenera-

tional inheritance of disease has drawn great interest and should be 

taken seriously in future health management and therapies. Re-

search has shown that the exposure to environmental toxicants in 

the early postnatal phase can promote infertility [94]. Available mo-

lecular evidence has shown that epigenetic information carrier pro-

teins in gametes play important roles in the transmission of pheno-

types from parents to offspring [95]. 

Table 2. Molecular epigenetic mechanisms in regulation of spermatogenesis 

Spermatogenesis Epigenetic modification

DNA methylation Abnormal methylation of imprinted and non-imprinted genes detected in several reproductive disorders [96]

Regulated chromatin and DNA methylation of adult germline stem cells for transition to gametogenesis [97]

A lkylation repair homolog 5 (ALKBH5) is a m(6)A demethylase which control spermatogenesis by methylation of eukaryotic messenger 

RNA [98]

Role of genomic imprinting and their perturbations in gametogenesis and early embryogenesis [99]

Hyper-methylated mitochondrial genome of poor-quality spermatozoa is linked with elevated tendency of apoptotic state [100]

Aberrant DNMT3B expression leads to bilateral spermatogenic arrest [101]

Imprinting of FAM50B plays a role in spermatogenesis [102]

Aberrant DNA methylation is associated with abnormal spermatogenesis [103]

Histone modification S imultaneous occurrence of trimethylated H3K79 and hyperacetylated H4 is associated with a histone-to-protamine transition protein 

TNP1 in spermatids [104]

H istone ubiquitin ligases have various regulatory functions ranging from spermatogonia differentiation and meiotic division to sper-

miogenesis [105]

Increase in histone H4 acetylation is associated with histone-to-protamine replacement in elongating spermatids [106]

Chromatin remodeling from histone-based chromatin to a protamine-based structure during spermatid differentiation [107,108]

S perm chromatin repackaging includes the incorporation of the sperm-specific histone H2A variant HTAS-1 with widespread erasure of 

histone acetylation [109]

CHD5, chromatin-remodeling nuclear protein is required for spermatid chromatin condensation [110]

Kdm3a lysine demethylase is required for cytoskeletal rearrangements during spermatogenesis [111]

Value of histone phosphorylation during spermatogenesis [112]

Ubiquitin-proteasome system removes and establishes key structures in the mature spermatid nucleosome [113]

D ynamic modifications and expressions of histone variant H3.1 and H3.3 throughout the meiotic prophase and highly complex pattern 

histone modifications postmeiotically in the male germ line [114]

JmjC domain-containing proteins have intrinsic demethylase activity toward H3K9 and are essential in spermiogenesis [115]

Acetylation-mediated degradation of core histones through proteasomes occurs during DNA repair and spermatogenesis [116]

D ynamic acetylation and methylation modification patterns of histone H3 in certain stages of germ cell differentiation with a constant 

presence of H3K27me3 throughout all stages [117]

H3K9ac in male germ cells plays a role during human spermatozoa development [118]

Existence of RNF8-dependent histone H2A and H2AX ubiquitination in the DNA damage response and spermatogenesis [119]

miRNA expression m iRNAs, small interfering RNAs, and Piwi-interacting RNAs (piRNAs) regulate gene expression at the post-transcriptional or translation 

level in spermatogenesis [120] 

Double control by miRNA-regulated histone modifications occurs during spermatogenesis [121]

Differential miRNA expression profiling of spermatozoa exists in patients with seminal alterations [122]

Long noncoding RNAs are an important regulator of spermatogenesis [123-125]

An miRNA pool is present in human sperm and plays a role in embryogenesis and spermatogenesis [126]

The undifferentiated state in mammalian male germ cells is regulated by miRNAs 221 and 222 [127]

miRNA-146 modulate retinoic acid signaling in spermatogonial differentiation [128]

Long noncoding RNAs are an important regulator of spermatogenesis [129]

m iR-449 cluster along with miR-34b/c function redundantly in male germ cell development by targeting E2F transcription factor-reti-

noblastoma protein (E2F-pRb) pathway [130]
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Conclusion

Exploring and understanding the role of the epigenetic landscape 

in reproductive health is important. Diverse sets of consecutive epi-

genetic modifications form the basis of reproductive fitness (Tables 

2-7). The key reprogramming events in reproduction ensure correct 

establishment and maintenance of epigenetic marks in germ cell de-

velopment and early embryogenesis, while preventing the transmis-

sion of faulty information to offspring. As epigenomic landscape 

could be influenced by nutritional and/or metabolic factors, both 

these factors might also influence the cellular microenvironment 

during development and later stages in life. Moreover, faults gener-

ated by missing critical steps in differentiation have consequences 

for infertility and imprinting disorders. Furthermore, the widespread 

performance of ART to treat infertility demands more thorough re-

search from the epigenetic perspective, including a comprehensive 

strategy and planning to address nutrition, environmental factors, 

and in vitro embryo production. However, the potential for far-reach-

ing transgenerational consequences requires exploration in suitable 

models.

While alterations in the epigenomic landscape are required for reg-

ular growth and development, they can also be responsible for some 

diseases. The significance of epigenetics in maintaining normal de-

velopment and biology is reflected by the observation that many 

health complaints build up when the wrong type of epigenetic 

marks are introduced or are added at the wrong time or in the wrong 

place. Disrupting any of the four systems that contribute to epigene-

tic alterations can cause abnormal activation or silencing of genes. 

Table 3. Molecular epigenetic mechanisms in regulation of oogenesis 

Oogenesis Epigenetic modification 

DNA methylation Dynamic expression and variants of DMNTs are present in oogenesis [3]

DNMT3A/DNMT3L methylation creates imprints essential for functional imprinting in oocytes [131]

H3K9me3 followed by DNA methylation plays a key role in oocyte development [132]

R everse methylation patterns have been found between CpG and non-CpG sites in the Dnmt1o 5'-upstream region and are hypometh-

ylated at the meiotic metaphase II stage of oogenesis and spermatogenesis [133]

T he histone acetyltransferases CBP (Nejire) and Chameau are required for differentiation and DNA replication programs in the stages of 

oogenesis [134]

Methylated DNA is incorporated in growing oocytes by de novo DNA methylation [135]

H yperacetylation of histone H4K5 and phosphorylation of H3 during meiosis interferes with axial chromatid condensation, large-scale 

chromatin remodeling and sister chromatid separation in oocytes [136]

DNA methylation and AKAP95 play a role in oocyte growth and fully grown prophase oocytes transfected with foreign chromatin [137]

Histones H2A and H4 methylation is induced by protein arginine methyltransferase Prmt5-Mep50 in late oogenesis [138]

L ower level of DNA methylation at Oct4 and Sox2 promoters observed during in vitro maturation and vitrification followed as com-

pared to the in vivo matured oocytes [139]

Histone modification Bam activated H3K36 trimethylation promotes differentiation during early oogenesis [140]

SIRT1 plays a role in oocyte maturation in a redox state [141]

Dynamics of chromatin structure and function with substantial modulatory effects were revealed during oogenesis [142]

C pG islands are resistant to de novo methylation during oogenesis and associated with post-fertilization methylation maintenance [143]

H DAC1 and HDAC2 play a role in acetylation of histone and non-histone proteins for regulation of transcription and apoptosis during 

oocyte development [144]

D NA demethylation and histone H3 acetylation of Lhx8-3' untranslated region is essential for primordial follicle activation during oo-

genesis [145]

MLL2, H3K4 methyltransferase is required for promoter-specific H3K4me3 during oogenesis and early development [146]

miRNA expression miRNA-318 maintains cell fate and promotes developmental transition in the follicular epithelium [147]

Endo-siRNAs are vital for meiosis I in oocyte development [148,149]

Oocyte maturation is regulated by microRNA-378 [150]

Let-7 miRNA-mediated Lin28 regulates maintenance and differentiation during oogenesis [151]

piRNA pathway genes regulate Zfrp8/PDCD2 protein, which is essential in ovarian stem cells [152]

miRNAs play a role in the physiologic process of ovarian and ovulation dysfunction [153]

miR-124 in ovarian cells plays a role in gonad development and sex determination [154] 

miR-989 plays a key role in border cell migration during oogenesis [155]

microRNA miR-7 controls the developmental switch in follicle cells by regulating zinc-finger protein Tramtrack69 [156]

Dicer-1 plays a critical role in oogenesis [157-159]

miRNA-184 has several functions in oogenesis and early embryogenesis [160]

miRNA has a temporal differential expression pattern during oocyte maturation [161]
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Thus, an organism might be prone to epigenetic reprogramming er-

rors during the resetting of the genome of gametes and zygotes, 

which differentiate to create many specific tissue types. On the other 

hand, the reversibility of epigenetic marks suggests the possibility 

that the activity of key genes and pathways can be regulated as a 

therapeutic approach. This suggests that the epigenome has truly ar-

Table 4. Molecular epigenetic mechanisms in regulation of embryogenesis 

Embryogenesis Epigenetic modification

DNA methylation V ariable DNA methylation levels are observed at differentially methylated regions during the early stages of embryonic development 

[162]

Regulation of Igf2r/Airn imprinting is allele-specific during gastrulation [163]

Imprinted differentially methylated domains of the germline are required for early embryo development [164]

De novo DNA methyltransferases and DNMT3A are activated by histone H3 during embryogenesis [165]

Differential methylation is selectively retained at imprinted loci during early development [166]

The TET family plays a dynamic role during embryogenesis and is required for the expression of NANOG in the blastocysts [167]

Dynamic DNA methylation occurs during preimplantation development and embryonic stages [168,169]

Im print of paternally expressed gene 1/mesoderm-specific transcript homologue is variably regulated in human preimplantation em-

bryos [170]

J MJD3 performs active demethylation of H3K27me3 during early embryo development and is required for progression of embryos to 

blastocysts [171]

Histone modification H 3K4 methylation is established at the early pronuclear stage necessary for minor zygotic gene activation and early embryonic preim-

plantation development [172]

V arious histone H2A variants H2A.Bbd, H2A.Z and H2A.X are localized and expressed during oogenesis and preimplantation embryo 

development [173]

T he oocyte H3K9/HP1 pathway recognizes and modifies the constitutive heterochromatin of sperm chromatin in preimplantation 

embryos [174]

H istone H3 lysine 4 methyltransferases (KMT2B and KMT5A) and demethylases (KDM5B and KDM1A) play a complex role during 

mouse preimplantation embryos development [175]

H histone  modifications and chromatin remodeling controls transcription play a role in the inner cell mass and trophectoderm cell lin-

eages specification [176] 

P AD4, peptidylarginine deiminases and histone H3 citrullination are found in oocytes and preimplantation embryonic development 

[177]

H2A variant H2af1o specific to oocytes is essential for cell synchrony before midblastula transition in early embryos [178]

H istone H2B variant TH2B regulates chromatin-to-nucleoprotamine transition both preceding and following transmission of 

the male genome to the egg [179]

H istone demethylases (UTX and JMJD3) particularly target the repressive H3K27me3 modification and activate bivalent genes in spe-

cific embryonic developmental stages [180]

B ivalent histone modifications H3K4me3 and H3K27me3 are required to repress or promote differentiation during embryonic devel-

opment [181]

Sperm-specific chromatin modifications are essential for activation early in embryonic development [182]

Dynamic deposition of histone H3 variants are critical for chromatin reorganization in early embryos [183]

Histone H4K20me3 and HP1α are markers for cell type commitment and present in undifferentiated embryonic stem cells [184]

miRNA expression miRNA-21 is essential for blastocyst development in vitro by regulating transcription of PTEN, caspase-3, and Bcl-2 [185]

miRNA-29b regulates Dnmt3a/3b expression in early embryonic development [186]

Let-7a-Dicer interaction causes differential miRNA expression in dormant blastocysts and regulates the implantation potential [187]

The differential expression profile of miRNA in 2-cell and 4-cell embryos modulates embryonic development [188]

Spermatozoal RNAs impact fertilization, embryonic developmental stages and offspring phenotype [22]

Sperm RNAs-12 and -1 are present in one-celled embryos and the early preimplantation stages [189]

miRNA is expressed in blastocysts [190]

miRNA plays a role in translational reprogramming in oocytes and embryos [191]

Ion channels mediate bicarbonate-dependent activation of miRNA-125b during preimplantation embryo development [192]

miRNA plays a vital role in the maternal-to-embryonic transition during early development steps [193]

B iogenesis expression profiling of microRNA is found diminished after fertilization and later stages of preimplantation development 

[194]

Maternally expressed miRNA-206 regulates cell movement by targeting JNK signaling during gastrulation [195]

Z ygote-specific miRNA-135a regulates first cell cleavage in preimplantation embryo development by controlling the expression of 

identified E3 ubiquitin ligase seven in absentia homolog 1A (Siah1a) [196]
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Table 5. Molecular epigenetic mechanisms in regulation of male infertility 

Male infertility Epigenetic modification

DNA methylation Hypermethylated RHOX gene imparts infertility [197]

D ifferential allele-specific DNA methylation at regulatory sites of piRNA genes is associated with disturbed spermatogenesis in idiopathic 

infertility [198]

The hypermethylated promoter of discoidin domain receptor 1 gene causes nonobstructive azoospermia [199]

A berrant methylation of the tissue-specific differentially methylated region of the GTF2A1L promoter is correlated with male infertility 

[200]

M esoderm-specific transcript homologue DNA methylation is associated with oligozoospermia and decreased bi-testicular volume [201]

In fertility is associated with the gain of methylation in spermatogenesis-related genes and loss of methylation in the inflammation/im-

mune response-related genes in males with subfertility [202]

T he genome-wide specific promoter methylation profile of cell-free seminal DNA causes defective production and maturation of sperm 

leading to the male infertility [203]

Aberrant methylation imprints in sperm DNA associated with abnormal semen parameters and infertility [204]

Hypermethylated MTHFR promoter in sperms is linked with idiopathic male infertility [205]

Histone modification Chromatin remodeling and reprogramming play regulatory roles during spermatogenesis and interconnects to male infertility [108]

Epigenetics and subfertility are linked in males [206]

Epigenetics plays a role in spermatogenesis and causes reduced fertility in males [207]

A ltered histone retention and epigenetic modifications of developmental and imprinted gene loci are observed in the sperm of infertile 

men [208]

Deficiency of Jmjd1a demethylase causes severe oligozoospermia, small testes and infertility in males [209]

miRNA expression miRNA-34b/c and miRNA-449a/b/c are vital for normal spermatogenesis and male fertility [210]

Individual differences in sperm miRNA-34 family abundance are a potential biomarker for male fertility [211]

miRNAs (hsa-miR-34b*, hsa-miR-34b, hsa-miR-34c-5p, hsa-miR-429, and hsa-miR-122) are a biomarker to diagnose subfertility [212]

miRNA expressions vary in infertile men with different histopathological patterns [213] 

CSR-1 Argonaute functions with ALG-3/4 during spermatogenesis to amplify a small RNA signal and may promote male fertility [214]

Defects in ALKBH5, a RNA demethylase cause compromised spermatogenesis and male infertility [215] 

m iRNA in asthenozoospermic and oligoasthenozoospermic males have a different expression profile than in males with normal sper-

matogenesis [216]

microRNAs in seminal plasma have an altered profile in the molecular diagnosis of male infertility [217]

Table 6. Molecular epigenetic mechanisms in regulation of female infertility 

Female infertility Epigenetic modification

DNA methylation Epigenetics alterations are associated with endometriosis-related infertility [218]

D NA methylation is an integral causal factor for endometriosis by disturbing the nuclear receptors genes, HOX gene clusters including 

the GATA family [219]

E ndometriosis-associated infertility is observed with a decrease in expression of the HOXA10 gene due to hypermethylation in eutopic 

mid-secretory endometrium [220] 

D NA hypermethylation reduces HOXA11 expression in the eutopic mid-secretory endometrium of women with endometriosis-associ-

ated infertility [221]

Involvement of DNMT3L in DNA methylation of specific patterns in endometrioma drives ovarian endometriosis [222]

Histone modification siRNA plays a role in reproductive failure [223]

N eonatal estrogen exposure alters expression of multiple chromatin-modifying proteins and persistently alters epigenetic marks in the 

adult uterus at the Six1 locus leading to infertility and uterine cancer [224]

C hromatin configuration and histone methylation are altered in old germinal vesicle oocytes, possibly causing infertility in advanced 

age [225]

miRNA expression m iRNA-376a control primordial follicle assembly by regulating Pcna and are linked to the abnormal morphology of follicles and infertil-

ity [226]

miRNA-224 is linked to PCOS and ovulation disorder-associated infertility [92]

ZFP36L2, a RNA-binding protein linked with anovulation and meiotic arrest of oocytes in infertile females [227]

Oocyte DICER is required for follicular development and linked with female fertility in adulthood [228]

T he expression of the actin protein TAGLN2 is regulated by MiR-133b during oocyte growth and maturation and is a probable target for 

infertility therapy [229]

D ifferential miRNA expression in recurrent spontaneous abortion by targeting genes are involved in adhesion, apoptosis and angio-

genesis [230]

DNMT3A variants are associated with endometriosis and endometriosis-related infertility [231]

Transcription, translation and posttranslational control by miRNA in the female reproductive tract [232]

Differential expression of miRNA and their polymorphic target sites in endometriosis and endometriosis-related infertility [233,234]
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rived as a target for drug development, as pharmaceutical compa-

nies and biotech giants have programmes aimed squarely at proteins 

that operate in the epigenetic space. Recent technological advances 

are enabling research on a genome-wide scale, which is facilitating a 

more “systems biology”-based approach to understanding disease 

aetiology. 
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